Dielectrophoresis force spectroscopy for colloidal clusters

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 324
  • Download : 0
Optical trapping-based force spectroscopy was used to measure the frequency-dependent DEP forces and DEP crossover frequencies of colloidal polymethyl methacrylate spheres and clusters. A single sphere or cluster, held by an optical tweezer, was positioned near the center of a pair of gold-film electrodes where alternating current elecroosmosis flow was negligible. Use of amplitude modulation and phase-sensitive lock-in detection for accurate measurement of the DEP force yielded new insight into dielectric relaxation mechanisms near the crossover frequencies. On one hand, the size dependence of the DEP force near the crossover frequencies indicates that the dominant polarization mechanism is a volume effect. On the other hand, the power-law dependence of the crossover frequency on the particle radius with an exponent of 2 indicates the dielectric relaxation is more likely because of ionic diffusion across the particle surface, suggesting the dominant polarization mechanism may be a surface polarization effect. Better theories are needed to explain the experiment. Nevertheless, the strong size dependence of the crossover frequencies suggests the use of DEP for size sorting of micron-sized particles.
Publisher
WILEY-BLACKWELL
Issue Date
2012-08
Language
English
Article Type
Article
Keywords

CARBON NANOTUBES; OPTICAL TWEEZERS; SEPARATION; PARTICLES; MICROSPHERES; CONDUCTANCE; DISPERSION

Citation

ELECTROPHORESIS, v.33, no.16, pp.2491 - 2497

ISSN
0173-0835
DOI
10.1002/elps.201100643
URI
http://hdl.handle.net/10203/102907
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0