Effect of the unmixedness of unburned gases on the pressure fluctuations in a dump combustor

Cited 10 time in webofscience Cited 10 time in scopus
  • Hit : 665
  • Download : 2
DC FieldValueLanguage
dc.contributor.authorHong, Jung Gooko
dc.contributor.authorOh, KCko
dc.contributor.authorDo Lee, Uko
dc.contributor.authorShin, Hyun Dongko
dc.date.accessioned2009-07-27T02:07:31Z-
dc.date.available2009-07-27T02:07:31Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2008-07-
dc.identifier.citationENERGY & FUELS, v.22, no.4, pp.2221 - 2228-
dc.identifier.issn0887-0624-
dc.identifier.urihttp://hdl.handle.net/10203/10281-
dc.description.abstractCombustion instability is a serious obstacle for the lean premixed combustion of gas turbines and can even cause fatal damage to the combustor and the entire system. Thus, enhanced understanding of the mechanisms of combustion instability is necessary for designing and operating gas turbine combustors. In this study, in order to elucidate the instability phenomena, an experimental study was conducted in a rearward-step dump combustor with LPG and air. The fuel supply conditions and the mixing distances (L-fuel) between fuel and air are used as experimental parameters to examine the effects of fuel modulation and unmixedness. The fluctuations of pressure, heat release, and equivalence ratio were measured by a piezoelectric pressure sensor and a high speed intensified charge coupled device (ICCD) camera, respectively. The unmixedness was measured by acetone laser induced fluorescence (LIF) at nonreacting flow because of stratification of the fuel in air. Various combustion modes occurred in accordance with the equivalence ratio and the fuel supply conditions. In the case of the fully premixed condition, the spatial fuel distribution inside the combustion chamber exists in a homogeneous state compared with the partially premixed condition, which leads to instant heat release, with relatively greater intensity for the chemiluminescence of the flame and higher amplitude of pressure fluctuations. On the contrary, in the partially premixed condition, the spatial fuel distribution exists in a heterogeneous state from the combustion chamber entrance, and the flame's burnout or reignition progresses in accordance with the stratified distribution of fuel. The unmixedness of fuel and air leads to a relatively smaller intensity for the chemiluminescence of the flame and reduced amplitude of pressure fluctuations.-
dc.description.sponsorshipThis work was supported by the Korea Science and Technology Foundation through the Combustion Engineering Research Center (CERC) at the Korea Advanced Institute of Science and Technology, as well as by Mitsubishi Heavy Industries, Ltd., Japan.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherAMER CHEMICAL SOC-
dc.subjectSWIRL-STABILIZED COMBUSTOR-
dc.subjectHEAT-RELEASE-
dc.subjectINSTABILITY-
dc.subjectDYNAMICS-
dc.subjectFLAME-
dc.subjectOSCILLATIONS-
dc.subjectSIMULATION-
dc.subjectACTUATION-
dc.subjectMECHANISM-
dc.titleEffect of the unmixedness of unburned gases on the pressure fluctuations in a dump combustor-
dc.typeArticle-
dc.identifier.wosid000257793200015-
dc.identifier.scopusid2-s2.0-49649093131-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue4-
dc.citation.beginningpage2221-
dc.citation.endingpage2228-
dc.citation.publicationnameENERGY & FUELS-
dc.identifier.doi10.1021/ef800018s-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorShin, Hyun Dong-
dc.contributor.nonIdAuthorOh, KC-
dc.contributor.nonIdAuthorDo Lee, U-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSWIRL-STABILIZED COMBUSTOR-
dc.subject.keywordPlusHEAT-RELEASE-
dc.subject.keywordPlusINSTABILITY-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusFLAME-
dc.subject.keywordPlusOSCILLATIONS-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusACTUATION-
dc.subject.keywordPlusMECHANISM-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0