Metabolic network modeling and simulation for drug targeting and discovery

Cited 42 time in webofscience Cited 0 time in scopus
  • Hit : 378
  • Download : 9
Systems biology has greatly contributed toward the analysis and understanding of biological systems under various genotypic and environmental conditions on a much larger scale than ever before. One of the applications of systems biology can be seen in unraveling and understanding complicated human diseases where the primary causes for a disease are often not clear. The in silico genome-scale metabolic network models can be employed for the analysis of diseases and for the discovery of novel drug targets suitable for treating the disease. Also, new antimicrobial targets can be discovered by analyzing, at the systems level, the genome-scale metabolic network of pathogenic microorganisms. Such applications are possible as these genome-scale metabolic network models contain extensive stoichiometric relationships among the metabolites constituting the organism's metabolism and information on the associated biophysical constraints. In this review, we highlight applications of genome-scale metabolic network modeling and simulations in predicting drug targets and designing potential strategies in combating pathogenic infection. Also, the use of metabolic network models in the systematic analysis of several human diseases is examined. Other computational and experimental approaches are discussed to complement the use of metabolic network models in the analysis of biological systems and to facilitate the drug discovery pipeline.
Publisher
WILEY-BLACKWELL
Issue Date
2012-03
Language
English
Article Type
Review
Citation

BIOTECHNOLOGY JOURNAL, v.7, no.3, pp.330 - 342

ISSN
1860-6768
DOI
10.1002/biot.201100159
URI
http://hdl.handle.net/10203/102803
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 42 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0