Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: Role of surface oxide

Cited 35 time in webofscience Cited 0 time in scopus
  • Hit : 588
  • Download : 0
Recent studies suggest that surface oxides on transition metal nanoparticles play an important role in determining the catalytic activity of CO oxidation. In this work, we investigated the influence of surface modification of Rh and Ru nanoparticles on the catalytic activity of CO oxidation using UV-ozone surface treatment. Monodisperse Rh and Ru nanoparticles were synthesized by polyol reduction using poly(vinylpyrrolidone) (PVP) as a capping agent. The size of the nanoparticles was controlled by varying the concentration of the Rh and Ru precursors or using the seeded-growth method. The changes that occurred during UV-ozone surface treatment were characterized with X-ray photoelectron spectroscopy, which showed that the oxidation state increased after surface treatment. The catalytic activity and activation energy of Rh and Ru nanoparticle arrays were measured before and after the chemical modification. Our reaction studies indicate that the turnover rate of CO oxidation on Rh nanoparticles increases by a factor of three after UV-ozone treatment due to the formation of catalytically active Rh oxide. In contrast, the catalytic activity of Ru nanoparticles decreases after UV-ozone treatment, suggesting that the Ru bulk oxide formed during UV-ozone treatment is catalytically inactive. The results suggest an intriguing way to tune catalytic activity via engineering of the nanoscale surface oxide. (C) 2011 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2012-05
Language
English
Article Type
Article; Proceedings Paper
Keywords

RAY PHOTOELECTRON-SPECTROSCOPY; PLATINUM NANOPARTICLES; SIZE; GROWTH; RUTHENIUM; SELECTIVITY; ORIGIN; SBA-15; SCALE; FILMS

Citation

CATALYSIS TODAY, v.185, no.1, pp.131 - 137

ISSN
0920-5861
DOI
10.1016/j.cattod.2011.09.024
URI
http://hdl.handle.net/10203/101175
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0