Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes

Cited 1489 time in webofscience Cited 0 time in scopus
  • Hit : 551
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeong, Hyung-Moko
dc.contributor.authorLee, Jung-Wooko
dc.contributor.authorShin, Weon-Hoko
dc.contributor.authorChoi, Yoon-Jeongko
dc.contributor.authorShin, Hyun-Joonko
dc.contributor.authorKang, Jeung-Kuko
dc.contributor.authorChoi, Jang-Wookko
dc.date.accessioned2013-03-12T01:30:32Z-
dc.date.available2013-03-12T01:30:32Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2011-06-
dc.identifier.citationNANO LETTERS, v.11, no.6, pp.2472 - 2477-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/100966-
dc.description.abstractAlthough various carbon nanomaterials including activated carbon, carbon nanotubes, and graphene have been successfully demonstrated for high-performance ultracapacitors, their capacitances need to be improved further for wider and more challenging applications. Herein, using nitrogen-doped graphene produced by a simple plasma process, we developed ultracapacitors whose capacitances (similar to 280 F/g(electrode)) are about 4 times larger than those of pristine graphene based counterparts without sacrificing other essential and useful properties for ultracapacitor operations including excellent cycle life (>200000), high power capability, and compatibility with flexible substrates. While we were trying to understand the improved capacitance using scanning photoemission microscopy with a capability of probing local nitrogen-carbon bonding configurations within a single sheet of graphene, we observed interesting microscopic features of N-configurations: N-doped sites even at basal planes, distinctive distributions of N-configurations between edges and basal planes, and their distinctive evolutions with plasma duration. The local N-configuration mappings during plasma treatment, alongside binding energy calculated by density functional theory, revealed that the origin of the improved capacitance is a certain N-configuration at basal planes.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCARBON NANOTUBE ELECTRODES-
dc.subjectENERGY-STORAGE DEVICES-
dc.subjectELECTROCHEMICAL CAPACITORS-
dc.subjectELECTRICAL-PROPERTIES-
dc.subjectCONDUCTING POLYMERS-
dc.subjectSUPERCAPACITORS-
dc.subjectFILMS-
dc.subjectOXIDE-
dc.subjectDEPOSITION-
dc.subjectREDUCTION-
dc.titleNitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes-
dc.typeArticle-
dc.identifier.wosid000291322600048-
dc.identifier.scopusid2-s2.0-79958784559-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue6-
dc.citation.beginningpage2472-
dc.citation.endingpage2477-
dc.citation.publicationnameNANO LETTERS-
dc.contributor.localauthorKang, Jeung-Ku-
dc.contributor.localauthorChoi, Jang-Wook-
dc.contributor.nonIdAuthorChoi, Yoon-Jeong-
dc.contributor.nonIdAuthorShin, Hyun-Joon-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorUltracapacitor-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthornitrogen doping-
dc.subject.keywordAuthorplasma treatment-
dc.subject.keywordAuthorscanning photoemission microscopy-
dc.subject.keywordAuthorlocal mapping-
dc.subject.keywordPlusCARBON NANOTUBE ELECTRODES-
dc.subject.keywordPlusENERGY-STORAGE DEVICES-
dc.subject.keywordPlusELECTROCHEMICAL CAPACITORS-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusCONDUCTING POLYMERS-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusREDUCTION-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1489 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0