Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells

Cited 102 time in webofscience Cited 0 time in scopus
  • Hit : 479
  • Download : 0
The synthesis, conductivity properties, area specific resistance (ASR) and thermal expansion behaviour of the layered perovskite SmBaCo2O5+d (SBCO) are investigated for use as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The SBCO is prepared and shows the expected orthorhombic pattern. The electrical conductivity of SBCO exhibits a metal-insulator transition at about 200 degrees C. The maximum conductivity is 570 S cm(-1) at 200 degrees C and its value is higher than 170 S cm(-1) over the whole temperature range investigated. Under variable oxygen partial pressure SBCO is found to be a p-type conductor. The ASR of a composite cathode (50 wt% SBCO and 50 wt% Ce0.9Gd0.1O2-d. SBCO:50) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte is 0.05 Omega cm(2) at 700 degrees C. An abrupt increase in thermal expansion is observed in the vicinity of 320 degrees C and is ascribed to the generation of oxygen vacancies. The coefficients of thermal expansion (CTE) of SBCO is 19.7 and 20.0 x 10(-6) K-1 at 600 and 700 degrees C, respectively. By contrast, CTE values for SBCO:50 are 12.3, 12.5 and 12.7 x 10(-6) K-1 at 500, 600 and 700 degrees C, that is, very similar to the value of the CGO91 electrolyte. (C) 2009 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2009-12
Language
English
Article Type
Article
Keywords

ELECTRICAL-PROPERTIES; PHASE-TRANSITION; SPIN-STATE; CONDUCTIVITY; GD; SM; DY; LNBACO(2)O(5+DELTA); SYSTEM; PR

Citation

JOURNAL OF POWER SOURCES, v.194, no.2, pp.704 - 711

ISSN
0378-7753
DOI
10.1016/j.jpowsour.2009.06.024
URI
http://hdl.handle.net/10203/100143
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 102 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0