Concept of Cold Energy Storage for Superconducting Flywheel Energy Storage System

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 373
  • Download : 0
A superconducting flywheel energy storage (SFES) system is an energy storage device with unprecedented small kinetic energy loss by utilizing diamagnetic levitation property of superconductor. The system, therefore, is expected to be one of the most promising candidates in the application of renewable energy field such as PV (photovoltaic) or wind energy development where the power generation is intermittent. An innovative concept to store cold thermal energy as well as kinetic energy in the SFES system is proposed in this paper to decrease required cooling energy during the energy storage period. We have found that the cooling energy can be considerably decreased by the suggested cooling concept. The methodology of cold thermal energy storage is introduced, and the experimental validation is carried out. A specially designed thermosiphon is adopted as a thermal bridge between the high temperature superconductor (HTS) bulks and the cold head of cryocooler, and the working fluid of the thermosiphon is utilized as the thermal energy storage material. Solid nitrogen is generated in the thermosiphon by surplus electricity, and then the mock up HTS bulks are successfully cooled around 64 K by the existence of solid nitrogen even though the implemented cryocooler is turned off.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2011-06
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, v.21, no.3, pp.2221 - 2224

ISSN
1051-8223
URI
http://hdl.handle.net/10203/100118
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0