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Abstract

We study the general effects of anomalous U(1)A gauge symmetry on soft supersymmetry

(SUSY) breaking terms in large volume scenario, where the MSSM sector is localized on a

small cycle whose volume is stabilized by the D-term potential of the U(1)A. Since it obtains

SUSY breaking mass regardless of the detailed form of Kähler potential, the U(1)A vector

superfield acts as a messenger mediating the SUSY breaking in the moduli sector to the MSSM

sector. Then, through the loops of U(1)A vector superfield, there arise soft masses of the

order of m2
3/2/8π

2 for scalar mass squares, m3/2/(8π
2)2 for gaugino masses, and m3/2/8π

2 for

A-paramteres. In addition, the massive U(1)A vector superfield can have non-zero F and D-

components through the moduli mixing in the Kähler potential, and this can result in larger

soft masses depending upon the details of the moduli mixing. For instance, in the presence

of one-loop induced moduli mixing between the visible sector modulus and the large volume

modulus, the U(1)A D-term provides soft scalar mass squares of the order of m2
3/2. However,

if the visible sector modulus is mixed only with small cycle moduli, its effect on soft terms

depends on how to stabilize the small cycle moduli.
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I. INTRODUCTION

Moduli stabilization is one of the key steps to understand low energy phenomenology of string

theory. So far, several scenarios are suggested and their phenomenological and cosmological

consequences are studied extensively. In particular, within the Type IIB theory, fluxes and non-

perturbative corrections to the superpotential are considered as crucial ingredients for fixing

moduli [1, 2]. Based on this idea, two types of scenario are particularly well-studied. The first

is the KKLT type scenario [3] in which the Kähler moduli are stabilized at a supersymmetric

AdS minimum by non-perturbative correction to the superpotential and the vacuum is uplifted

to de-Sitter spacetime by additional SUSY breaking effect such as an anti-brane. On the other

hand, if the overall volume modulus is taken to have a large vacuum value, the non-perturbative

superpotential of the large volume modulus will be negligible. Still the large volume modulus

can be stabilized at SUSY breaking minimum if there exists a small cycle modulus which admits

non-perturbative superpotential and has a correct sign of α′ correction to its Kähler potential.

This is the so-called Large Volume Scenario (LVS) [4] which we will focus on in this paper.

For both the KKLT and LVS scenarios, in realistic situation, the number of independent

and sizable non-perturbative terms in the superpotential might not be enough to stabilize all

Kähler moduli. As pointed out in [5], when the non-perturbative superpotential of the visible

sector Kähler modulus Tv is generated by E3 instantons, it must be equipped with the standard

model (SM) charged matter superfields. Because the vacuum values of the SM charged matter

fields should be zero or at most weak scale, the effect of such non-perturbative superpotential

on fixing the visible sector modulus must be negligible. One natural solution for fixing Tv in

such case is D-term stabilization. If there exists an anomalous U(1) symmetry under which

Tv transforms nonlinearly, the corresponding D-term contains the moduli dependent FI-term

which is proportional to ∂TvK. If the moduli space of the underlying string compactification

admits a solution with vanishing FI-term, which is indeed the case for many of the Type IIB

string compactifications, the D-term scalar potential fixes Tv near the point with vanishing

FI-term.

Stabilizing moduli in the absence of proper non-perturbative superpotential is not just an

issue of moduli stabilization, but directly related to the pattern of soft SUSY breaking param-

eters in the visible sector. For the KKLT type scenario, the soft terms in case with anomalous

U(1) have been studied in [6, 7]. Combining with the SUSY breaking effects of the original
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KKLT type models [8–11], it has been noticed that various patterns of soft terms can be real-

ized. On the other hand, for the LVS, the soft terms generated by D-term stabilization have

been discussed recently in [12–14].

In [14], the structure of soft terms has been examined for a class of LVS in the presence

of one-loop induced moduli mixing between the visible sector modulus and the large volume

modulus [13]. It was shown that such moduli mixing induces a U(1)A D-term of the order of

m2
3/2, which would provide soft scalar masses of the order of the gravitino mass m3/2, while the

resulting gaugino masses and A-parameters are of the order of m3/2/8π
2. Therefore, in such set

up, the gravitino mass cannot be much larger than the (multi) TeV scale to realize weak scale

SUSY. However, it is also noticed that the specific form of moduli mixing plays the crucial role

to determine the size of soft masses. Such mixing-dependent soft terms can be classified as

model-dependent contribution of the U(1)A mediation. Then, it is natural to ask if there exists

any model-independent contribution of the U(1)A mediation, not depending on the detailed

form of the moduli Kähler potential. If such contribution exists, it would provide the lower

bound of the soft masses in generic LVS with anomalous U(1)A.

The aim of this paper is to extend the previous analysis [14] to more general class of LVS. We

first divide the soft terms into the model-independent and the model-dependent parts on the

basis of how much they depend on the detailed form of moduli mixing in the Kähler potential.

It is shown that the U(1)A vector supermultiplet gains SUSY-breaking mass splitting regardless

of the moduli mixing, so the model-independent soft masses are generated as a result of the loop

threshold of the massive U(1)A vector supermultiplet. The resulting soft scalar masses are of

the order of m3/2/4π, while gaugino masses are of the order of m3/2/(8π
2)2 and A-terms are of

the order of m3/2/8π
2. For the model-dependent contributions, as in [14], D-term contribution

can appear due to the moduli mixing in the Kähler potential. In addition to the case studied in

[14], we study the case that the visible sector Kähler modulus is mixed with other small cycle

Kähler moduli at tree-level, and find that its contribution can dominate the soft terms or not,

depending on how to stabilize the small cycle Kähler moduli. In any case, we find that the

U(1)A mediated soft terms play an essential role to determine the spectrum of the MSSM soft

terms for models with D-term stabilization in LVS.

This paper is organized as follows. In section (II), we review the work of [14], especially focus

on the U(1)A contribution to soft scalar mass. In section(III), we show that there are other

types of soft terms induced by U(1)A, not only those discussed in [14]. Section (IV) is devoted
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to construct the effective action of the light degrees of freedom by integrating out the heavy

U(1)A vector superfield, and calculate the MSSM soft terms discussed in (III) more concretely.

Section (V) is the conclusion. Throughout the paper, we will limit ourselves to 4D effective

SUGRA.

II. REVIEW OF D-TERM STABILIZATION WITH MODULI MIXING

Before moving to the central part of our argument, it is worth reviewing the previous work

[14], in which we studied sparticle spectrum of large volume compactification with loop-induced

moduli mixing.

In the large volume scenario (LVS), there are at least two types of Käher moduli super-

fields. One type is a large volume modulus Tb which determines the overall size of a com-

pactification volume. Another type, Ts, describes the volume of a small 4-cycle which admits

non-perturbative effects to the superpotential. Then, ReTb can be stabilized at a large vacuum

value due to the competition between α′ corrections suppressed by the inverse compactification

volume and the non-perturbative corrections which are exponentially suppressed. In the large

volume limit, 〈ReTb〉 ≫ 1, the model is given by∗

K = −3 ln tb +
(t

3/2
s − ξα′)

t
3/2
b

+O(t−3
b ),

W = W0 + Ae−aTs (1)

for tI = TI+T
∗
I (I = b, s). ξα′ represents the leading order α′ correction, W0 is the flux induced

constant superpotential, A and a are constants involved in the non-perturbative correction to

the superpotential. In this model, the vacuum values of tb and ts are fixed as

ats = 2 ln
MPl

|m3/2|
+O(1), t3/2s = ξα′

(

1 +O
( 1

ats

)

)

, (2)

where the gravitino mass, m3/2 = eK/2W = W0t
−3/2
b (1+O(t

−3/2
b )). It is straightforward to find

F Tb

tb
= m∗

3/2

(

1 +O(t
−3/2
b )

)

,

∗ In most of discussion, detailed dynamics of the string dilaton and complex structure moduli is not important,

so we assume that they are stabilized at a supersymmetric solution by fluxes and regarded as fixed values

[4, 12]. The effect of backreaction due to the Kähler moduli stabilization is also negligible. In the following,

unless specified, we set the 4D Planck scale (in the Einstein frame) MPl = 1.
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F Ts

ts
=

m∗
3/2

ln |MPl/m3/2|

(

3

4
+O

( 1

ln |MPl/m3/2|
)

)

, (3)

where the F -component of a generic chiral superfield ΦI is defined by F I = −eK/2KIJ̄(DJW )∗.

An interesting feature of the LVS is a large hierarchy among the mass scales such as

Mst

MPl
∼ t

−3/4
b ,

MKK

MPl
∼ t−1

b ,
Mwind

MPl
∼ t

−1/2
b ,

m3/2

MPl
∼ |W0|t−3/2

b , (4)

where Mst is the string scale, MKK is the bulk KK scale, and Mwind is the winding scale.

In order to construct a phenomenologically viable model, we need to specify the visible

sector. It is noticed in [5], however, that the MSSM cycle Kähler modulus Tv can not have a

non-perturbative superpotential like Ts due to the chiral nature of MSSM matter. Besides, Tv

cannot be identified as Tb, since the MSSM gauge couplings at high energy scale are inversely

proportional to the vacuum value of the modulus. Therefore in the LVS, the visible sector

modulus is not fixed by non-perturbative and α′ corrections. In such a situation, D-term

stabilization can be used to fix Tv. Elaborating further on the issue in the framework of

4D effective SUGRA, we introduce the anomalous U(1)A gauge symmetry and suitable gauge

transformations as followings.

U(1)A : VA → VA + ΛA + Λ∗
A, Tv → Tv + 2δGSΛA, Φi → e−2qiΛAΦi, (5)

where VA is the vector superfield which contains the U(1)A gauge boson, ΛA is a chiral superfield

parameterizing the U(1)A transformation on N = 1 superspace, Tv is the visible sector Kähler

modulus chiral superfield which transforms nonlinearly under the U(1)A, δGS denotes the con-

stant associated with Green-Schwarz (GS) anomaly cancelation [15], and finally Φi stands for

generic chiral matter superfields localized on the visible sector 4-cycle with U(1)A charge qi.

Since δGS is determined by GS anomaly cancellation condition which is evaluated at one-loop

level, generically

δGS = O
( 1

8π2

)

. (6)

Once taking into account the above symmetry, we can write down the gauge invariant Kähler

potential and superpotential, including the visible sector fields, proposed by

K = −3 ln tb +
(ts − αs ln tb)

3/2 − ξα′

t
3/2
b

+O(t−3
b ) +

(tA − αA ln tb)
2

2tpb
+ ZiΦ

∗
i e

2qiVAΦi +O(Φ4
i ),

W = W0 + Ae−aTs +O(Φ3
i ), (7)
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where tI = TI + T ∗
I (I = b, s, v), and tA = tv − 2δGSVA is the gauge invariant combination of

the visible sector modulus, p is the modular weight which determines the U(1)A gauge boson

mass scale (8), and αA (αs) is the moduli mixing parameter between tv (ts) and tb. Several

assumptions were made regarding the U(1)A sector. First, the Kähler potential allows the limit

of vanishing FI-term, ∂TvK = 0. Second, there are radiative corrections to the Kähler potential

at one-loop level, which induce the moduli mixing between the visible sector modulus and the

large volume modulus, i.e. tA → tA − αA ln tb. Then the mixing parameter, αA = O(1/8π2).

The first assumption plays a key role in achieving the D-term stabilization of Tv. The idea

behind theD-term stabilization is that Tv becomes a part of the massive U(1)A vector superfield

[14]. The imaginary part of the scalar component of Tv is eaten by the U(1)A gauge boson,

gaining a mass through the Stückelberg mechanism. The real part obtains the same mass from

the D-term potential. The U(1)A gaugino and the fermionic component of Tv constitute a

Dirac spinor with the same mass as the bosons. In the supersymmetric limit, the mass squared

of the U(1)A vector supermultiplet is given by

M2
A =

〈

g2A
2

∂2K

∂V 2
A

〉

≃
〈

2g2Aδ
2
GS

∂2K

∂Tv∂T ∗
v

〉

=

〈

2g2Aδ
2
GS

tpb

〉

, (8)

where gA is the U(1)A gauge coupling. As [12], if p is 3/2,

MA ∼ Mst/8π
2 ≫ m3/2. (9)

Therefore we expect that the U(1)A vector supermultiplet is much heavier than the remaining

Kähler moduli and matters, which indicates that the massive U(1)A vector superfield is fixed

mostly by following superfield equations of motion,

∂K

∂VA
≃ −2δGS∂TvK ≃ 0. (10)

We can find the solution of (10) provided by the first assumption. Then, Tv is stabilized near

the point with vanishing FI-term.

The second assumption turns out to be important in determining the pattern of soft terms.

In order to account for the effect on the soft terms, consider the soft scalar mass squared of Φi

given by

m2
i ≃

2

3
〈VF + σVuplift〉 − F TIF T ∗

J ∂TI∂T ∗

J
ln e−K/3Zi − qig

2
ADA (I = b, s, v) (11)

at tree-level of 4D effective SUGRA. VF = eK
(

KIJ̄DIW (DJW )∗ − 3|W |2
)

is the F -term scalar

potential determined by (7), and Vuplift is an additional uplifting potential needed to achieve
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a phenomenologically viable de-Sitter vacuum V0 ≈ 〈VF + Vuplift〉 ≃ 0. g2ADA is the auxiliary

D-component of the U(1)A gauge superfield VA. The constant σ depends on the origin of

the uplifting potential. If Vuplift originates from an anti-brane (or any SUSY breaking branes)

stabilized at the tip of warped throat, then σ = 1. As a result, the vacuum energy contributions

are almost cancelled and the remaining contributions are much suppressed compared to 〈VF 〉.
On the other hand, if Vuplfit is made by F -term uplifting, σ is 3/2. In such cases, the first term

in the RHS of (11) is of the order

− 1

3
〈VF 〉 = O

(

m2
3/2t

−3/2
b

ln(MPl/m3/2)

)

. (12)

To evaluate the second term (modulus-mediated contribution) and third term (D-term contri-

bution) in the RHS of (11), additional terms should be specified. The matter Kähler metric Zi

is given by

Zi =
Yi((tA − βA ln tb))

tb

(

1 +O
(

t
−3/2
b

))

. (13)

Here Yi((tA− βA ln tb)) is assumed to be expanded about (tA − βA ln tb) = 0 in positive powers

of (tA − βA ln tb) to allow the vanishing limit of (tA − βA ln tb) as [12]

Yi((tA − βA ln tb)) = Yi(0) + Y (n)
i (0)(tA − βA ln tb)

n + Y (n+1)
i (0)(tA − βA ln tb)

n+1 + · · · , (14)

where n is the positive integer, and Yi(0), Y (n)
i (0), Y (n+1)(0), · · · are constants of order one.

Since the matter fields in visible sector are localized on the small 4-cycle, tb-dependence of

Zi can be understood by the argument that the physical Yukawa couplings should not have

power-dependence on the bulk compactification volume. Logarithmic dependence, however, is

allowed at the one-loop level. Hence the moduli mixing parameter βA is also of the order of

1/8π2. The auxiliary components, F Tv and g2ADA, are determined dominantly by the superfield

equations of motion (10),

∂TvK ≃ (tv − 2δGSVA)− αA ln tb
tpb

≃ 0. (15)

In the Wess-Zumino gauge, the component fields are given by

tv ≃ αA ln tb (0 component),

F Tv ≃ αA
F Tb

tb
= αAm

∗
3/2 (F component),

g2ADA ≃ αA
δGS

∣

∣

∣

∣

F Tb

tb

∣

∣

∣

∣

2

=
αA
δGS

|m3/2|2 (D component). (16)
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As stated above, both δGS and αA are generated at the one-loop level, and hence

δGS ∼ αA = O
( 1

8π2

)

→ F Tv = O
(m3/2

8π2

)

, g2ADA = O(m2
3/2). (17)

It is straightforward to estimate the order of the scalar masses using the auxiliary components

provided by (3), (16) and (17). We identify that the modulus-mediated contribution is much

smaller than m2
3/2 :

∣

∣

∣
− F TIF T ∗

J ∂TI∂T ∗

J
ln e−K/3Zi

∣

∣

∣
. O

(

(βA − αA)

∣

∣

∣

∣

F Tb

tb

∣

∣

∣

∣

2
)

= O
(m2

3/2

8π2

)

. (18)

As a result, the soft scalar mass is dominated by the D-term contribution as

m2
i ≃ −qiαA

δGS

m2
3/2 = O(m2

3/2), (19)

and this is one of the main result of our previous work [14].

We can interpret the result (19) from the view of effective theory constructed by integrating

out Tv and VA. In the effective theory, the U(1)A gauge symmetry does not exist anymore,

hence no D-term contribution as well. The effect of D-term, however, is transformed to that

of modulus mediation, which originates from the effective Kähler metric of light matter fields

Φ̃i = eqiTv/δGSΦi,

Zeff
i =

Yi((αA − βA) ln tb)

t
1+qiαA/δGS

b

(

1 +O(t
−3/2
b )

)

. (20)

The soft scalar mass squared is obtained as

m2
i ≃ −F TbF T ∗

b ∂Tb∂T ∗

b
ln e−K/3Zeff

i ≃ −qiαA
δGS

m2
3/2. (21)

III. GENERIC FEATURES OF U(1)A MEDIATION

A. Model-independent contribtuion

To make brief summary on the previous section, when the visible sector Kähler modulus

is stabilized near the point with vanishing FI-term, the SUSY breaking of the large volume

modulus can be transmitted to the MSSM sector by the one-loop induced moduli mixing. Its

effect appears as the D-term contribution, dominating soft scalar masses. The vanishing limit

of FI-term is generic in string compactification [12, 16–18], but the form of moduli mixing

among the visible sector modulus and other Kähler moduli is rather model dependent. That
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is to say that we need to figure out a model independent, i.e. moduli mixing independent,

soft term contribution of the U(1)A. In order to do so, let us suppose that there is no moduli

mixing, αA = βA = 0. At first sight, the scalar mass squared seems to be much suppressed

compared to the gravitino mass squared, since from (20)

m2
i ∼ −F TIF T ∗

J ∂TI∂T ∗

J
ln e−K/3Zeff

i

= −F TIF T ∗

J ∂TI∂T ∗

J
lnYi(0)

(

1 +O(t
−3/2
b )

)

≤ O
(

m2
3/2t

−3/2
b

)

, (22)

where I = (b, s)†. We claim that, however, there is model-independent one-loop corrections to

the effective Kähler metric of light matter fields to yield

Zeff
i = Zeff

i(tree)

(

1− ǫAi ln tb

)

, (23)

where Zeff
i(tree) is the tree-level effective Kähler metric, given by (20), and ǫAi is the constant of

O(1/8π2). Accordingly, the soft scalar mass is not dominated by (22) but modified as follows.

m2
i ≃ −F TIF T ∗

J ∂TI∂T ∗

J
ln e−K/3Zeff

i

≃ −F TbF T ∗

b ∂Tb∂T ∗

b
ln
(

1− ǫAi ln tb

)

≃ −ǫAim2
3/2 = O

(m2
3/2

8π2

)

. (24)

Note that the values of αA, βA are given by string-loop corrections, so they are not calculable

in 4D effective SUGRA. On the other hand, ǫAi can be computed from the U(1)A vector

supermultiplet threshold at the level of effective field theory. As mentioned in section (II) the

massive U(1)A vector superfield, referred to VH , obtains the mass of (8) in the SUSY limit.

In reality, VH touchs on the SUSY breaking superfield Tb by means of mass interaction in the

Kähler potential, so there is small mass splitting among component fields of VH . Then, VH plays

the role of a messenger superfield in the visible sector. The MSSM sparticles are communicated

to the large volume modulus Tb through the loops of VH , and have soft masses as (24).

To be more specific, let us fix the modular weight p. In fact the D-term mediated soft scalar

masses are not affected by p, and that’s why we did not care much about that in the previous

work [14]. However, the mass spectrum of the U(1)A vector supermultiplet is highly dependent

on the value of p, hence ǫAi and induced soft terms are also influenced by p. If the visible sector

4-cycle is stabilized at a geometric regime, it is natural to fix p at 3/2 such like the Kähler

† In this case, we must add soft term contributions from the string dilaton and uplifting potential, but it turned

out that their corrections are less than or similar to the value given by (22) [12].
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potential of Ts in (1). In a singular cycle regime, we might lose the analogy to Ts, but it is

quite plausible that the analogy is still valid even in that case. So, we set

p = 3/2. (25)

As we will see in next section, the corresponding soft scalar mass squared (24) is given by

∆M.I.m
2
i = −g

2
Aq

2
i

16π2
|m3/2|2. (26)

There are also such contributions for gaugino masses and A-parameters. We call these soft

term contributions “model-independent contributions” of the U(1)A, in the sense that they are

independent of the specific form of the moduli Kähler potential.

Implication of the model-independent contributions is that (26) provides the lower bound

of soft scalar masses, |mi| & m3/2/4π, (unless the model-independent contribution is canceled

by the additional model-dependent string-loop correction), so that the gravitino mass should

not exceed more that the scale of (multi) TeV if the weak scale SUSY is realized in nature.

Further, since the mass squared of (26) is negative for any nonzero U(1)A charge assignment,

(26) should not dominantly contribute to the MSSM squark and slepton masses.

B. Model-dependent contribution

As being noted above, the model-independent soft terms of the U(1)A are potentially prob-

lematic. However, in [14], we have already argue that the D-term contribution induced by

moduli mixing can dominate over the model-independent contributions. Such a non-trivial D-

term is originated from the non-trivial Kähler potential of Tv. Based on the viewpoint of moduli

mixing between the visible sector modulus and the other SUSY breaking moduli, the visible

sector modulus can be mixed not only with the large volume modulus at the one-loop level, but

also with small Kähler moduli at the tree-level. Such model-dependence can be accommodated

by generalizing the model (7) as follows.

(ts − αs ln tb)
3/2 − ξα′

t
3/2
b

+
(tA − αA ln tb)

2

2t
3/2
b

→ ∆K(ts1, · · · tsns
, tA, αA ln tb)− ξα′

t
3/2
b

,

W0 + Ae−aTs → W0 +
nw
∑

j=1

Aje
−ajTsj , (27)

where tsj = Tsj + T ∗
sj (j = 1, · · · , ns), ns is the number of small Kähler moduli, and nw moduli

of them have non-perturbative terms in the superpotential. Even though a number of Kähler
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moduli are allowed in (27), all the U(1)A neutral Kähler moduli would be stabilized by the

SUSY breaking effect so their masses will be around m3/2 which is much smaller than the mass

of VH . Therefore we still make use of the superfield equation (10) to evaluate F -term of Tv and

D-term of VA as functions of the light moduli F -terms. Then,

F Tv = −eK/2KIJ̄(DJW )∗ ≃
∑

I=b,s1,···snw

−
(

∂TI∂T ∗

v
∆K

∂Tv∂T ∗

v
∆K

)

F TI ,

g2ADA = −g2AηIKI ≃
∑

I,J=b,s1,···snw,v

1

δGS

(

∂TI∂T ∗

J
∂Tv∆K

∂Tv∂T ∗

v
∆K

)

F TIF T ∗

J , (28)

where ηI = {δGS,−qiΦi} for {Tv,Φi}, ηI = 0 for Tb, Ts1, · · · , Tsnw
. The modulus and D-

term mediated soft scalar masses are determined by (11) and (28) after stabilizing the light

moduli. Depending on what types of moduli are mixed, the order of each contribution will

be different and can be compared with the model-independent contribution.‡ Notice that for

the D-term contribution, there is the enhancement factor 1/δGS of O(8π2), so there might be

interesting contributions to the soft terms. We have attempted to estimate (28), and its effect

on the soft scalar masses for generic moduli mixing by assuming that ∆K ∼ tsj ∼ tv = O(1),

∂TI∆K ∼ ∆K/tI for I = {s1, · · · , snw, v}, and ∂Tb∆K ∼ αA∆K/tb. Then,

F Tv

tv
∼ F Tsj

tsj
,

g2ADA ∼ αA
δGS

∣

∣

∣

∣

F Tb

tb

∣

∣

∣

∣

2

+

(

κbj
αA
δGS

F Tb

tb

F T ∗

sj

tsj
+ h.c.

)

+
κj
δGS

∣

∣

∣

∣

F Tsj

tsj

∣

∣

∣

∣

2

, (29)

where κbi, κj are order one. If we take that Yi = e−K/3Zi is also the generic function of tsj, tv,

and αA ln tb,

− F IF J∗

∂I∂J̄ ln e
−K/3Zi ∼ λbαA

∣

∣

∣

∣

F Tb

tb

∣

∣

∣

∣

2

+ λbjαA

(

F Tb

tb

F T ∗

sj

tsj
+ h.c.

)

+ λj

∣

∣

∣

∣

F Tsj

tsj

∣

∣

∣

∣

2

, (30)

where λb, λbj, and λj are order one. In this naive estimation, soft scalar masses seem to be

dominated by the D-term contribution whether αA = 0 or not. However, this is not always

true, since ∆K is not a generic function of small moduli. Let us consider a simple example

suggested in [5]

∆K =
(

t1 − δGSVA

)3/2

+
√
5
(

t2 + δGSVA

)3/2

,

W = W0 + Ae−a(T1+T2). (31)

‡ It is noticed that the absolute SUSY breaking scale determined by ‖F I ‖2 ≈ |KIĪF
IF I∗ | should be distin-

guished from the soft SUSY breaking mass scale determined by ‖∆Im
2
i ‖ ≈ |F IF I∗

∂I∂Ī ln(e
−K/3Zi)|.
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where tI = TI + T ∗
I (I = 1, 2) are small cycle moduli, charged under the U(1)A. We change the

basis of small moduli into the U(1)A neutral modulus Ts = T1 + T2, and the so-called visible

sector modulus Tv = T1 − T2. In this basis, (31) is rewritten as

∆K =
1

2
√
2

(

ts + tA

)3/2

+

√
5

2
√
2

(

ts − tA

)3/2

,

W = W0 + Ae−aTs . (32)

It is noticed that in the Kähler potential of (32), there is no moduli mixing between Tv and Tb,

but nontrivial mixing between Tv and Ts exists at the tree-level. From (10) and (28), we have

tv ≃ 2ts/3,
F Tv

tv
≃ F Ts

ts
= O

( m3/2

ln |MPl/m3/2|
)

= O
(m3/2

8π2

)

, g2ADA ≃ 0. (33)

The value of F Ts/ts is given by (3). The U(1)A D-term, induced by moduli mixing, is rather

suppressed. Consequently, the model-dependent soft scalar mass squared (11) is estimated as

∆M.D.m
2
i ≃ −|F Tv |2∂Tv∂T ∗

v
lnYi(tA) = O

(

∣

∣F Tv/tv
∣

∣

2
)

= O
( m2

3/2

(8π2)2

)

. (34)

Proceeding from what has been said above, it should be concluded that the model-independent

contributions (26) still dominate soft scalar masses, even though the non-trivial moduli mixing

exists. In (IVB), it is shown that the patter of (34) is generic in case that all small moduli

are stabilized by non-perturbative superpotential (ns = nw), and there is no one-loop induced

moduli mixing between Tv and Tb (αA = βA = 0). Thus it points out that there should be

additional soft term contribution from the matter sector (e.g. gauge mediation which is not

covered in this paper), dominating soft scalar masses.

IV. SOFT SUSY BREAKING TERMS IN D-TERM STABILIZATION

Up to now, we have discussed possible types of soft SUSY breaking terms through the

U(1)A mediation. In what follows, we will provide more concrete formulae of the soft terms

discussed in section (III). Because the stabilization procedure of light fields, and induced soft

term contributions are rather clearly described by effective theory, we will construct the effective

action by integrating out the massive U(1)A vector supermultiplet. After that, the soft terms

will be analyzed in details.

Begining from the generalized action discussed in (III B), there are ns + 2 Kähler moduli.

Among them, one modulus Tb has the large vacuum value, and the rest of ns+1 moduli remain

12



small. The small moduli are classified into one visible sector modulus Tv charged under the

U(1)A, nw moduli Ts1, · · · , Tsnw
which have non-perturbative superpotential, and ns−nw moduli

Tsnw+1, · · · , Tsns
which do not have non-perturbative terms in the superpotential. The visible

sector matter fields Φi are localized on a small 4-cycle whose volume is described by Tv. The

holomorphic gauge kinetic functions of the U(1)A and the MSSM gauge groups are referred to

fA and fa respectively. Then, the Kähler potential, superpotential and gauge kinetic functions

are given by

K = −3 ln tb +
∆K(~ts, tA, αA ln tb)− ξα′

t
3/2
b

+O(t−3
b ) + ZiΦ

∗
i e

2qiVAΦi +O(Φ4
i ),

W = W0 +
nw
∑

j=1

Aje
−ajTsj +

1

3!
λijk(~Ts)ΦiΦjΦk +O(Φ4

i ),

fA = kATv + γA(~Ts), fa = kaTv + γa(~Ts) (35)

where

tI = TI + T ∗
I for I = b, s1, · · · , sns, v,

~g = g1, · · · , gns
for g = ts, Ts,

Zi = Zi(~ts, tA, tb) =
Yi(~ts, tA, βA ln tb)

tb

(

1 +O(t
−3/2
b )

)

, (36)

and kA, ka are fixed by GS anomaly cancellation conditions,

1

4π2

∑

i

q3i = kAδGS,
1

4π2

∑

i

qiTr(T
2
a (Φi)) = kaδGS, (37)

where δGS is encoded in the gauge invariant combination tA = tv − 2δGSVA. We follow the

normalization convention of [14], so that the orders of each constant are given by

a1, · · · , anw
= O(8π2), ξα′ = O(1), kA,a = O(1), δGS ∼ αA ∼ βA = O

( 1

8π2

)

. (38)

Because we are taking bottom-up approach, we can not determine the moduli dependent func-

tions γa(~Ts), λijk(~Ts), and Yi(~ts, tA, βA ln tb) whose explicit forms are given by underlying string

theory. Although their specific expressions are required to calculate the soft SUSY breaking

terms, the order of their contributions can be estimated under the assumption that the func-

tions depend on ~Ts in two ways. One way is that the visible sector cycle is sequestered from the

cycles whose volumes are described by ~Ts, that γa, λijk, and Yi are independent of ~Ts. Another
way is that those cycles are not sequestered from each other, so γa, λijk and Yi are of the same

order of Tsj multiplied by the derivative of them with respect to Tsj.
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A. Effective theory

Firstly, let us decompose the U(1)A vector superfield as VA = V0+VH , where VH is the heavy

vector superfield, and V0 is the background superfield defined by a solution of the superfield

equation of motion,

∂K

∂VA

∣

∣

∣

∣

VA=V0

= O(D2D̄2V0). (39)

Ignoring the part of the supercovariant derivatives, the Kähler potential is written as

K = K|VA=V0
+

1

2

∂2K

∂V 2
A

∣

∣

∣

∣

VA=V0

V 2
H +O(V 3

H). (40)

By integrating out VH in a supersymmetric way, we get the tree-level Kähler potential, where

V0 is substituted, as well as the Coleman-Weinberg type Kähler potential at the one-loop level

[19, 20]. Thus the effective Kähler potential is given by

Keff = K|VA=V0
+

M2
A

16π2
Tr ln

M2
A

eM2
UV

+ (two-loops), (41)

where e = 2.718... is Euler’s number, M2
A is the mass squared superfield for the U(1)A vector

superfield

M2
A =

g2A
2

∂2K

∂V 2
A

∣

∣

∣

∣

VA=V0

(42)

and M2
UV is the cut-off superfield which will be specified later. To proceed further, let us define

several superfields as functions of VA,

ξFI(VA) =
δGS∆K

′(~ts, tA, αA ln tb)

t
3/2
b

, M2
matD

(VA) = qiẐiΦ
∗
i e

2qiVAΦi,

M2
GS(VA) =

δ2GS∆K
′′(~ts, tA, αA ln tb)

t
3/2
b

, M2
mat(VA) = q2i Z̃iΦ

∗
i e

2qiVAΦi, (43)

where qiẐi = qiZi − δGSZi
′, and q2i Z̃i = q2iZi − 2δGSqiZi

′ + δ2GSZi
′′. Here, the primed notation

denotes the partial derivative with respect to tA, i.e. f
′ = ∂f/∂tA, f

′′ = ∂2f/∂t2A. The subscript

‘matD’ of M2
matD

stands for matter fields contribution to the D-term. For the model of (35),

up to leading order in the volume expansion, (39) is equivalent to

ξFI(V0)−M2
matD

(V0) = O(D2D̄2V0). (44)

And the mass squared superfield (42) is given by

M2
A = 2g2A

(

M2
GS(V0) +M2

mat(V0)
)

. (45)
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Comparing with (8), the expression (45) includes the contribution from the charged matter

fields. In order to realize the D-term stabilization of Tv, such matter contribution should be

small and treated perturbatively. Therefore we focus on the region :

M2
GS ≫M2

mat, (46)

where M2
GS = 〈M2

GS〉 andM2
mat = 〈M2

mat〉. (46) implies that the Stückelberg mechanism domi-

nantly determines the U(1)A gauge boson mass, i.e. M2
A = 〈M2

A〉 ≃ 2g2AM
2
GS

§. If there happens

to be no cancellation among various terms inside M2
matD

, the orders of 〈M2
matD

〉, 〈M2
mat〉 and

M2
mat will be the same. In this case, we can solve (44) perturbatively by decomposing V0 into

v0+ ǫ, where v0 is the zeroth order vector superfield which is determined by the moduli sector :

ξFI(v0) = 0, (47)

and ǫ is the small expansion parameter determined by v0 as follows

ǫ = V0 − v0 =
1

2

(

ξFI(v0)−M2
matD

(v0)

M2
GS(v0) +M2

mat(v0)

)

(

1 +O(. ǫ)
)

= −1

2

(M2
matD

M2
GS

)(

1 +O
(M2

mat

M2
GS

))

. (48)

where we have omitted v0 dependence in the last line for the simplicity. Then, up to the order

of M2
mat/M2

GS, the background superfield V0 can be expanded by

V0 =
1

2

(

tv − t0A
δGS

−
M2

matD

M2
GS

)

, (49)

where t0A = t0A(~ts, αA ln tb) is the solution of

∆K ′(~ts, t
0
A, αA ln tb) = 0. (50)

We assume that the solution actually exists inside or on the boundary of Kähler cone. After

integrating out VH , the light degrees of freedom can be described in the U(1)A gauge invariant

field basis. With the matter field redefinition Φi → e−qiTv/δGSΦi, the one-loop effective Kähler

potential (41) is given by

Keff = −3 ln tb +
∆Keff − ξα′

t
3/2
b

+O(1/t3b)

+ Zeff
i Φ∗

iΦi −
(qiẐ

eff
i Φ∗

iΦi)
2

2M2
GS

(

1 +O
(

g2A
8π2

,
M2

mat

M2
GS

))

+O(Φ4
i ). (51)

§ Of course, we have to show that the matter fields are really stabilized far below MGS. However, this is

rather model-dependent question involving details of the matter sector. Since we concentrate on the soft

term contributions from the moduli sector, matter field stabilization will not be covered in this paper.
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The one-loop correction gives

∆Keff = ∆K(~ts, t
0
A, αA ln tb) +

g2Aδ
2
GS

8π2
∆K ′′(~ts, t

0
A, αA ln tb) ln

2g2AM2
GS

eM2
UV

,

Zeff
i = e−qit

0

A
/δGS

(

Zi(~ts, t
0
A, tb) +

g2Aq
2
i Z̃i(~ts, t

0
A, tb)

8π2
ln

2g2AM2
GS

M2
UV

)

, (52)

where

qiẐ
eff
i = e−qit

0

A
/δGS

(

qiZi(~ts, t
0
A, tb)− δGSZi

′(~ts, t
0
A, tb)

)

,

q2i Z̃i(~ts, t
0
A, tb) = q2iZi(~ts, t

0
A, tb)− 2δGSqiZi

′(~ts, t
0
A, tb) + δ2GSZi

′′(~ts, t
0
A, tb). (53)

The effective superpotential and gauge kinetic functions are

Weff = W0 +
nw
∑

j=1

Aje
−ajTsj +

1

3!
λijk(~Ts)ΦiΦjΦk +O(Φ4

i ),

f eff
a = γa(~Ts), (54)

where f eff
a is obtained by adding the anomalous pieces generated from the matter fields redefi-

nition.

Let us illustrate the form of Zeff
i in more detail in order to clarify the model-independent

contribution. We consider the model of (7). ∆K and Zi are given by

∆K(~ts, tA, αA ln tb) = (ts − αs ln tb)
3/2 + (tA − αA ln tb)

2/2,

Zi(ts, tA, tb) =
1

tb

(

Yi(0) + Y (n)
i (0)(tA − αA ln tb)

n +O
(

(tA − αA ln tb)
n+1
))

, (55)

where n is the positive integer. In this example, we set αA = βA which implies that ln tb-

dependence of the matter Kähler metric comes only from moduli redefinition. (43) and (50)

yield M2
GS = δ2GSt

−3/2
b and t0A = αA ln tb, respectively. As a result,

Zeff
i =

Yi(0)
t
1+qiαA/δGS

b

(

1 +
g2Aq

2
i

8π2
ln

2g2Aδ
2
GS

M2
UVt

3/2
b

)

. (56)

The effect of moduli redefinition is encoded in the prefactor of the RHS of (56).

Now, we should specify the cut-off superfield M2
UV in order to determine the model-

independent contribution. We might choose M2
UV so that 〈MUV〉 ∼ Mstring. However, the

cut-off scale as a “superfield” is rather subtle from the 4D effective field theory point of view.

There is no reason to take M2
UV ∼ t

−3/2
b . By performing component calculation in appendix

(A), we find that M2
UV ∼ t−1

b is correct choice regardless of moduli redefinition. In (A), it is
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identified that the tree-level mass splitting of the U(1)A vector supermultiplet is given by (A4),

(A5). Through the vector supermultiplet loops, the matter sector soft terms are generated. In

the superfield approach, this is equivalently related to the mismatch between M2
GS and M2

UV,

so that at the one-loop level the matter Kähler metric depends on the large volume modulus

Tb as follows

Zeff
i = Zeff

i(tree)

(

1 +
g2Aq

2
i

8π2
ln

M2
GS

M2
UV

)

≃ Zeff
i(tree)

(

1− g2Aq
2
i

16π2
ln tb

)

. (57)

where Zeff
i(tree) = Yi(0)t−(1+qiαA/δGS)

b is given by (23) and (56). Induced soft terms are the same

as those evaluated in the component Lagrangian.

We might infer the UV scale 〈MUV〉 = MUV from a running gauge coupling constant. The

Kaplunovsky-Louis formula for the physical gauge coupling [22] is given by

1

g2a(µ)
= Re(fa) +

ba
16π2

ln
eK/3M2

Pl

µ2
− Tr(T 2

a (Φi))

8π2
ln e−K/3Zi(µ) +

Tr(T 2
a (G))

8π2
ln g−2

a (µ),

(58)

where ba =
∑

r Tr(T
2
a (Φi))−Tr(Ta(G)). The combination of e−K/3Zi(µ) ≃ Yi is nearly indepen-

dent of tb at leading order. Thus in the large volume limit, the effective UV scale at which the

gauge couplings start to run is neither the string scaleMst ∼MPlt
−3/4
b nor the Planck scale, but

rather the winding scale eK/6MPl ∼ MPlt
−1/2
b [23]. If the holomorphic gauge kinetic functions

fa are universal as a consequence of GUT, the phyiscal gauge couplings seem to be unified at

this scale. On the one hand, when the Planck scale is introduced in the superpotential as the

natural suppression scale of higher dimensional operators, the physical suppression scale is not

the Planck scale, but scales to eK/6MPl due to the canonical normalization of the matter fields.

With these considerations, we naturally expect the “effective” cut-off of the visible sector is

MUV = eK/6MPl ≃ t
−1/2
b , and the corresponding cut-off superfield,

M2
UV = eK/3M2

Pl = t−1
b

(

1 +O(t
−3/2
b )

)

. (59)

Again, we should address that the moduli-superfields dependence of M2
UV is not explicitly

determined by the real cut-off scale of the effective SUGRA given by underlying string theory.

In the language of component calculations, the scalar mass contribution from loops of the

U(1)A vector supermultiplet is the threshold correction generated at the scale of the U(1)A

vector boson mass. Therefore, the real cut-off of the theory does not play the crucial role to

determine the value of model-independent scalar masses as long as the cut-off scale is sufficiently
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bigger than the scale of the U(1)A vector boson mass¶. Such UV-insensitivity of the correction

is the same with that of gauge mediation, where the soft masses are generated at the scale

of messenger mass and the UV cut-off scale of the theory is not important. However, we also

notice that depending on the cut-off scale of the effective theory, there might be additional

string-loop correction which cancels the model-independent contribution obtained by (57). If

cancellation is exact at leading order, the soft scalar masses can be further suppressed compared

to the gravitino mass. Therefore evaluating such string contributions is very important. Since

the calculation is beyond the scope of this paper, we just mention its importance.

It is straightforward to stabilize light scalar fields by minimizing the effective SUGRA po-

tential constructed from (51) and (54),

V eff
F = eKeff

(

KIJ̄
effDIWeffDJ̄W

∗
eff − 3|Weff |2

)

. (60)

The light Kähler moduli will be stabilized in the same manner as usual LVS models. The one-

loop correction to ∆Keff
mod is actually three-loop suppressed, since δGS = O(1/8π2), so negligible

for moduli stabilization. The moduli F -components are mostly determined by vacuum values

of the scalar moduli, where the F -term is defined as

F I = −eKeff/2KIJ̄
effDJ̄W

∗
eff . (61)

Those F -terms play the role of the SUSY breaking sources for the MSSM sector.

B. Soft SUSY breaking terms

We are now ready to calculate the MSSM soft terms induced by moduli stabilization with

the U(1)A. For the action described by (51) and (54), the MSSM soft terms take the form

Lsoft = −1

2
Maλ

aλa − 1

2
m2
i |φi|2 −

1

3!
Aijkyijkφiφjφk + h.c., (62)

where λa and φi are canonically normalized gauginos and scalar components of Φi respectively,

yijk denote the canonically normalized Yukawa couplings,

yijk =
λijk(~Ts)

√

e−K0Zeff
i Z

eff
j Z

eff
k

, (63)

¶ As we can see in (A), the additional quartic term which depends on the cut-off scale can emerge at one-loop

level, but this term does not contribute to the scalar mass.
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and the soft SUSY breaking parameters at a scale just below MA are given by [24–28]

Ma

g2a
=

1

2
F I∂If

eff
a − 1

8π2

∑

i

Tr(T 2
a (Φi))F

I∂I ln
(

e−K0/3Zeff
i

)

+
∆anom.Ma

g2a
,

m2
i =

2

3
V eff
F − F IF J∗

∂I∂J̄ ln
(

e−K0/3Zeff
i

)

+∆anom.m
2
i ,

Aijk = −F I∂I ln

(

λijk(~Ts)

e−K0Zeff
i Z

eff
j Z

eff
k

)

+∆anom.Aijk, (64)

where K0 = Keff |Φi=0 and I = Tb, ~Ts. The additional contribution to the soft parameters,

denoted as ∆anom.Ma, ∆anom.m
2
i and ∆anom.Aijk, represents the anomaly mediation [28] in which

the induced parameters are proportional to
∣

∣

∣

∣

m∗
3/2 +

1

3
KIF

I

∣

∣

∣

∣

≤ O
(

m3/2t
−3/2
b

)

(65)

multiplied by additional loop suppression factors. Those contributions are strongly suppressed

with respect to the prior contributions in the large volume limit due to the no-scale property

of the leading order scalar potential, so we neglect its effect from now on. By substituting (52)

to (64), and expanding in powers of 1/tb, g
2
A/8π

2, and δGS, the leading order contributions are

obtained as follows.

Ma

g2a
≃ − g2Aq

2
a

(8π2)2
m∗

3/2 +
1

2

∑

I=Tb, ~Ts

F I∂I

(

γa + kat
0
A

)

− 1

8π2

∑

i

Tr(T 2
a (Φi))

∑

I=Tb, ~Ts

F I∂I

(

lnYi +
g2Aq

2
i

8π2
ln g2A∆K

′′

)

,

m2
i ≃ −g

2
Aq

2
i

16π2
|m3/2|2 +

∑

I,J=Tb, ~Ts

F IF J̄∂I∂J̄

(

qi
δGS

t0A − lnYi −
g2Aq

2
i

8π2
ln g2A∆K

′′

)

, (66)

Aijk ≃
g2A(q

2
i + q2j + q2k)

16π2
m∗

3/2 −
∑

I=Tb, ~Ts

F I∂I

(

ln
λijk

YiYjYk
−
g2A(q

2
i + q2j + q2k)

8π2
ln g2A∆K

′′

)

.

where

q2a =
∑

i

q2iTr(T
2
a (Φi)), γa = γa(~Ts), λijk = λijk(~Ts), t0A = t0A(~ts, αA ln tb),

Yi = e−K0/3Zi(~ts, t
0
A, tb) = Yi(~ts, t0A, βA ln tb), ∆K ′′ = ∆K ′′(ta, t

0
A, αA ln tb). (67)

For each soft parameters in (66), first terms of the RHS are the model-independent contributions

induced by the U(1)A threshold correction. These contributions are estimated as

∆M.I.Ma = O
( m3/2

(8π2)2

)

, ∆M.I.m
2
i = O

(m2
3/2

8π2

)

, ∆M.I.Aijk = O
(m3/2

8π2

)

. (68)
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On the other hand, the remaining contributions are determined after specifying the forms of

γa, λijk, Yi, ∆K ′′ and t0A. The soft terms which depend on t0A are easily understood from (49) :

F Tv =
∑

I=Tb, ~Ts

F I∂I

(

t0A + δGS

M2
matD

M2
GS

)

,

−qig2ADA =
∑

I,J=Tb, ~Ts

F IF J̄∂I∂J̄

(

qi
δGS

t0A + qi
M2

matD

M2
GS

)

. (69)

In the perspective of UV theory, they are identified as the modulus and D-term mediated soft

masses induced by moduli mixing. In (66), the contributions from the SUSY breaking of matter

fields are not included, because we focus on the soft terms generated from the moduli sector at a

energy scale just below MA. In the effective theory, matter contributions come from the higher

dimensional operator of (51), and can be included consistently. Their contributions should be

critical in the case that the effect of moduli mixing is suppressed.

In order to estimate model-dependent contributions, let us look at the following cases. First,

consider the case when there is no moduli mixing and the visible sector is sequestered from the

other moduli sector. Then, γa, λijk, Yi, ∆K ′′ and t0A are independent of Tb, ~Ts. As a result,

∆
(1)
M.D.Ma = O(m3/2t

−3/2
b ), ∆

(1)
M.D.m

2
i ≤ O(m2

3/2t
−3/2
b ), ∆

(1)
M.D.Aijk = O(m3/2t

−3/2
b ). (70)

The model-independent contribution dominates overall soft terms. The second case is that the

visible sector is still sequestered from the small moduli sector, but the one-loop induced moduli

mixing between the visible sector modulus and the large volume modulus [13, 14] gives rise to

t0A ≃ αA ln tb, Yi ≃ Yi((αA − βA) ln tb). Then, gaugino and sfermion masses are dominated by

the model-dependent contribution :

∆
(2)
M.D.Ma ≃ g2A

2
F Tb∂Tb

(

kat
0
A

)

≃ g2AkaαA
2

F Tb

tb
=
g2AkaαA

2
m∗

3/2,

∆
(2)
M.D.m

2
i ≃ qi

δGS
F TbF T ∗

b ∂Tb∂T ∗

b
t0A ≃ −qiαA

δGS
|m3/2|2, (71)

whereas the model-dependent contribution to A-terms might be comparable with the model-

independent contribution :

∆
(2)
M.D.Aijk ≃ −F Tb∂Tb ln

λijk
YiYjYk

≃ (αA − βA)m
∗
3/2

(

∂t lnYi(t)Yj(t)Yk(t)
)

t=(αA−βA) ln tb
. (72)

The resulting model-dependent contributions are estimated as

∆
(2)
M.D.Ma = O

(m3/2

8π2

)

, ∆
(2)
M.D.m

2
i = O(m2

3/2), ∆
(2)
M.D.Aijk = O

(m3/2

8π2

)

. (73)
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The third case is that there is no one-loop induced moduli mixing with the large volume modulus

(αA = βA = 0), but the visible sector is not sequestered from the small moduli sector. Hence

{γa, λijk} and {Yi, ∆K ′′, t0A} are generic functions of ~Ts and ~ts respectively. Most controllable

situation is that ns = nw, i.e. the number of small moduli is equal to the number of non-

perturbatively generated terms in the superpotential. In appendix (B), we show that due to

the no-scale property of the Kähler potential, the leading order F Tsj/tsj are universal as

F Tsj

tsj
=

m∗
3/2

ln |MPl/m3/2|

(

3

4
+O

( 1

ln |MPl/m3/2|
)

)

= O
(m3/2

8π2

)

for j = 1, · · · , ns = nw. (74)

At first sight, the model-dependent (D-term) contribution to the soft scalar mass seems to be

comparable with the model-independent contribution by following estimation.

∆M.D.m
2
i ≃

qi
δGS

∑

I,J=~Ts

F IF J̄∂I∂J̄t
0
A(~ts) = O

( 1

δGS

∣

∣

∣

∣

F Ts

ts

∣

∣

∣

∣

2
)

= O
(m2

3/2

8π2

)

, (75)

where 1/δGS = O(8π2), tsjtsk∂tsj∂tskt
0
A ∼ t0A = O(1) according to our normalization convention.

However, this is not easily achieved. The no-scale property of the tree-level Kähler potential

imply that ∆K(λ~ts, λtA) ≈ λ3/2∆K(~ts, tA). So, the solution of (50) (∆K ′(~ts, t
0
A) = 0) also

scales as t0A(λ~ts) ≈ λt0A(~ts). Then, the leading order contributions of (75) cancel out :

∑

I,J=~Ts

F IF J̄∂I∂J̄t
0
A(~ts) ≃

∣

∣

∣

∣

F Ts

ts

∣

∣

∣

∣

2
∑

tsj ,tsk

(

tsjtsk∂tsj∂tsk t
0
A

)

= 0 (76)

thanks to the universality of F Ts/ts and the scaling behavior of t0A at leading order. Conse-

quently, the D-term contribution is at most of the same order as the model-dependent modulus

mediated soft term. Thus,

∆
(3)
M.D.Ma = O

(m3/2

8π2

)

, ∆
(3)
M.D.m

2
i = O

( m2
3/2

(8π2)2

)

, ∆
(3)
M.D.Aijk = O

(m3/2

8π2

)

. (77)

For gaugino masses and A-terms, the model-dependent contributions are of the same order as

those of the second case,

∆
(3)
M.D.Ma ≃ −g

2
A

2

∑

j

F Tsj∂Tsj

(

γa(~Ts) + kat
0
A(~ts)

)

≃ −
∑

j

F Tsj∂Tsj

(

γa(~Ts) + kat
0
A(~ts)

)

2Re(γa(~Ts)) + kat0A(~ts)
∼ F Tsj

tsj
= O

(

m3/2

ln(MPl/m3/2)

)

,

∆
(3)
M.D.Aijk ≃ −

∑

j

F Tsj∂Tsj ln
λijk

YiYjYk
∼ F Tsj

tsj
= O

(

m3/2

ln(MPl/m3/2)

)

, (78)
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where we assume that γa(~Ts), Yi(~ts, t0A(~ts)), λijk(~Ts) are generic functions of ~Ts, in the sense

that tsj∂Tsj (γa(
~Ts) + kat

0
A(~ts)) ∼ (γa(~Ts) + kat

0
A(~ts)), tsj∂TsjYi(~ts, t0A(~ts)) ∼ Yi(~ts, t0A(~ts)),

tsj∂Tsjλijk(~Ts) ∼ λijk(~Ts). Look at the final case when ns > nw so that some of small moduli

do not admit non-perturbative superpotential. In such a case, the moduli might be stabilized

via several corrections to the Kähler potential which break no-scale structure [29, 30]. Even

though the situation is less controllable, we generally expect that if the moduli are stabilized

by the Kähler potential, the corresponding F -terms will be of order of m3/2. Unlike the third

case, there is no scaling property or symmetry to suppress the D-term contribution, and 1/δGS

enhancement effect with respect to the ordinary modulus mediation will be realized. Therefore,

we expect

∆
(4)
M.D.Ma = O(m3/2), ∆

(4)
M.D.m

2
i = O(8π2m2

3/2), ∆
(4)
M.D.Aijk = O(m3/2), (79)

and these contributions dominate overall soft terms.

V. CONCLUSION

To conclude, the central to this paper has been the study of soft term structure of the

LVS models in which the visible sector Kähler modulus is dominantly stabilized by the D-

term potential of the anomalous U(1)A gauge symmetry. This analysis has led to the following

observations : Regardless of the detailed form of the Kähler potential, there are unavoidable soft

term contributions coming from the U(1)A vector supermultiplet threshold correction. These

model-independent contributions are of the order ofm3/2/4π for soft scalar masses, m3/2/(8π
2)2

for gaugino masses, and m3/2/8π
2 for A-parameters. However, the corresponding soft scalar

mass squares are negative for any non-zero U(1)A charge assignment. In order to prevent

charge and color breaking of the MSSM sector, the additional model-dependent contributions

must be needed. We get such contributions from the moduli sector. As studied in [14], the

moduli mixing between the visible sector modulus and the large volume modulus in the Kähler

potential provides sfermion masses of the order of m3/2. But, if the visible sector modulus is

mixed only with small moduli stabilized by non-perturbative corrections to the superpotential,

the corresponding model dependent contribution is of the order of m3/2/8π
2. In this case,

we still need an additional contribution from the matter sector to compensate for the model-

independent sfermion mass squared.
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An inevitable consequence of our paper is that due to the model-independent contribution,

in order to obtain TeV-scale gaugino mass, the gravitino mass m3/2 ≃ |W0|t−3/2
b is bounded

from the above by the scale of the order of 106GeV. This means that if the effective UV scale of

the visible sectorMUV ∼MPlt
−1/2
b is identified as the GUT scaleMGUT ∼ 2×1016GeV, the flux

induced superpotential W0 should be much smaller than the value of O(1). In other words, if

W0 is given by O(1) so that m3/2 ∼ 1011GeV forMUV ∼MGUT, we need to fine-tune the visible

sector model parameters to get correct orders of soft terms. So there is still a tension between

the natural large volume scenario and the idea of grand unification. Of course, this conclusion

can be wrong, if there are additional (model-dependent) string-loop corrections which cancel

the above model-independent contributions. Since the detailed calculation should be performed

in string theory, we leave it as a further work.

In this paper, we did not discuss stabilization ofD-flat directions. As a remnant of the U(1)A,

there is anomalous global U(1)PQ symmetry for the D-flat directional light matter fields. Since

the U(1)PQ should be spontaneously broken above 109GeV by astrophysical considerations [31],

in [14], we introduced the PQ sector which consists of the U(1)A charged but the SM singlet

matter fields. They dominantly break the U(1)PQ and the QCD axion [32–34] is generated.

Similar approach can be made here. After that, we can estimate the soft SUSY breaking

terms coming from the PQ sector. They might be keystones when the moduli mixing effect is

suppressed and the model-independent contribution dominates soft scalar masses.
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Appendix A: Model-independent soft scalar masses

Starting from the Kähler potential and superpotential given by (35), let us try deriving the

scalar mass squared (26) at a component level. In order to see the effect of the U(1)A threshold
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correction clearly, we only consider a single small modulus and matter superfield, and take ∆K,

Zi and W as simple as possible. However, we allow the loop-induced moduli redefinition of the

visible sector modulus as a probe for model-dependence. Then,

K = −3 ln tb +
(t

3/2
s − ξα′) + (tA − αA ln tb)

2/2

t
3/2
b

+O(1/t−3
b ) +

Φ∗
i e

2qiVAΦi
tb

,

W = W0 + Ae−aTs . (A1)

The large volume modulus Tb and the small cycle modulus Ts are stabilized in the usual manner.

In this background, we can extract the effective tree-level Lagrangian for component fields

of Tv,Φi, VA. Since the background spacetime is nearly flat due to the no-scale structure of

large volume stabilization, the leading order Lagrangian can be derived in flat spacetime limit.

In other words, we neglect any soft terms of the order of ∆m2
i ∼ m2

3/2t
−3/2
b and possible

gravitational effect.

The tree-level Lagrangian for the canonically normalized component fields is written as

follows.

Ltree ≃ 1

2

(

tv�tv + ϕv�ϕv

)

+ φ∗
i�φi + i

(

∂µψ̄vσ̄
µ∂µψv + ∂µψ̄iσ̄

µψi + ∂µλ̄Aσ̄
µλA

)

− 1

4
F µνFµν −

1

2

(

2g2A(M
2
GS + q2i |φi|2)

)

AµAµ + JµAAµ

−
(

(
√
2gAMGS)ψvλA + (

√
2qiφ

∗
i )ψiλA + h.c.

)

− g2A
2

(√
2MGStv − qi|φi|2

)2

−
(

1

4
m3/2ψ

2
v + h.c.

)

+
1

4
m2

3/2t
2
v +

(

αA
δGS

m2
3/2

)√
2MGStv, (A2)

where {tv+iϕv, ψv} is the visible sector modulus supermultiplet, tv and ϕv are the real part and

the imaginary part of the scalar modulus respectively, ψv is the fermion component, {φi, ψi} is

the chiral matter field supermultiplet, φi is the complex scalar, ψi is the fermion component,

{Aµ, λA} is the U(1)A gauge supermultiplet in the WZ gauge, Aµ is the gauge field and λA is

the gaugino, the U(1)A current JµA =
(

qiψ̄iσ̄
µψi + iqi(φ

∗
i ∂

µφi − φi∂
µφ∗

i ) +
√
2MGS∂

µϕv

)

, and

finally MGS is the square root of the vacuum value of M2
GS in (43) : MGS = δGSt

−3/4
b .

The first three lines of (A2) represent a supersymmetric part of the Lagrangian, while the last

line is induced by the SUSY breaking of the large volume modulus Tb. Note that the modulus

tv has a soft mass squared of the order m2
3/2, whereas the matter field φi does not have such

term. This difference can be easily understood as follows. Since the matter field is localized on

the MSSM 4-cycle, the Kähler metric of Φi is suppressed by t−1
b as in (A2). Thus, the SUSY

breaking of Tb is not transmitted to Φi and no soft terms are generated at the tree-level. On
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the other hand, the Kähler metric of Tv is suppressed by a inverse power of the Calabi-Yau

volume t
−3/2
b . In this case, due to the additional suppression factor t

−1/2
b , sequestering does

not work. The resulting SUSY breaking mass squared is of the order of |F Tb/tb|2 ∼ m2
3/2. The

SUSY breaking Majorana mass term of ψv also comes from the Kähler potential for the same

reason. The linear term of tv which is proportional to αA originates from the moduli mixing

term, (tA − αA ln tb) in the Kähler potential.

The mass squared of the U(1)A gauge boson Aµ is given by the supersymmetric contribution,

2g2A(M
2
GS + q2i |φi|2). We want to consider the case that the gauge boson gets its mass mostly

from the Stückelberg mechanism, i.e. M2
GS ≫ q2i |φi|2. In this limit, one-loop correction to the

scalar potential is generated as follows.

∆V1−loop(φi) = − Λ4

128π2
Str1 +

Λ2

64π2
StrM2 +

1

64π2
StrM4

(

ln
M2

Λ2
− 3

2

)

, (A3)

where Λ is the cut-off scale which is independent of φi, andM
2 =M2(|φi|2) is the φi dependent

tree-level mass squared matrix for Aµ, tv, φi, ψv, λA, and ψi. Since the visible sector is

localized on the vanishing cycle, the natural cut-off scale of the 4D effective field theory is

the string scale, Λ ∼ Mstring ∼ t
−3/4
b . The mass of the U(1)A gauge boson is of the order of

MGS ∼ δGSt
−3/4
b ∼Mstring/8π

2 which is quite below the cut-off scale, so we can safely calculate

the one-loop correction of (A3) including all fields discussed above. In [35], it was argued that

in the case of D3 branes at orbifold singularities, the cut-off scale is given by the winding scale

Λ ∼ Mwind ∼ t
−1/2
b which is much bigger than the mass of the U(1)A gauge boson. For all

cases, the U(1)A vector superfield can be included in the effective field theory. In order to see

the cut-off dependence of the soft terms explicitly, we do not fix Λ as a specific value during

calculation. After calculation, we will discuss its effect on the soft terms.

If we ignore the SUSY breaking terms specified in the last line of (A2), the vacuum will be

described by D-flat condition,
√
2MGStv = qi|φi|2. Then, a complex scalar field which spans the

D-flat direction, and a linear combination of ψv and ψi which does not appear in the third line

of (A2) remain massless. Masses of the other fields are all the same as 2g2A(M
2
GS + q2i |φi|2), and

hence (A3) is vanishing. Now let us correctly count the SUSY breaking terms. By diagonalizing

M2(|φi|2) and expanding the mass eigenvalues in powers of q2i |φi|2, we get the following mass

squared spectrum at the leading order. For bosons,

Aµ : M2
A = 2g2A

(

M2
GS + q2i |φi|2

)

,
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tv : M2
tv =M2

A −m2
3/2

(

1

2
− q2i |φi|2

2M2
GS

)

,

φi : M2
φi

= −m2
3/2

(

qiαA
δGS

+
q2i |φi|2
2M2

GS

)

, (A4)

and for fermions,

λ1A : M2
λ1
A
=M2

A +
1

8
m2

3/2 +m3/2MA

(

1

2
− q2i |φi|2

2M2
GS

)

,

λ2A : M2
λ2
A
=M2

A +
1

8
m2

3/2 −m3/2MA

(

1

2
− q2i |φi|2

2M2
GS

)

,

ψi : M2
ψi

= O
(

m2
3/2|φi|4

M4
GS

)

, (A5)

where λ1A, λ
2
A are the mass eigenstates of the heavy fermions. In this mass spectrum, the SUSY

breaking effect induced by the last line of (A2) is reflected on the terms proportional to m3/2.

Although (A4) and (A5) are evaluated directly from (A2), one can calculate M2
φi

from the

tree-level effective scalar potential of φi in which tv is integrated out along the D-flat direction,
√
2MGStv ≈ qi|φi|2. Then, the effective scalar potential Veff(φi) = −(qiαA/δGS)m

2
3/2|φi|2 −

(m2
3/2/8M

2
GS)q

2
i |φi|4 and M2

φi
= ∂φi∂φ∗i Veff(φi) = −m2

3/2 (qiαA/δGS + q2i |φi|2/2M2
GS) is obtained.

It is straightforward to calculate ∆V1−loop by substituting (A4), (A5) to (A3). There is no

soft mass contribution from Λ2StrM2/64π2. However, the last term of the RHS of (A3),

1

64π2
StrM4 ln

M2

e3/2Λ2

=
1

64π2

(

3M4
A ln

M2
A

e3/2Λ2
+M4

tv ln
M2

tv

e3/2Λ2
− 2M4

λ1
A
ln

M2
λ1
A

e3/2Λ2
− 2M4

λ2
A
ln

M2
λ2
A

e3/2Λ2

)

+
1

64π2

(

M4
φi
ln
M2

φi

Λ2
− 2M4

ψi
ln
M2

ψi

Λ2

)

, (A6)

should be carefully treated. Notice that the masses of heavy fields (Aµ, tv, and λ1,2A ) are

independent of αA, i.e. independent of moduli mixing. Thus soft SUSY breaking terms induced

by the second line of the RHS of (A6) can be called model-independent contribution. We find

that the induced soft mass for φi is also cut-off independent at the one-loop level. This is quite

reasonable, since it corresponds to the U(1)A threshold correction. Suppose αA = 0, then there

is no soft scalar mass contribution from the third line. Even if αA is nonzero, its contribution

is suppressed by (m2
3/2/M

2
GS) compared to the model-independent contribution. Accordingly,

∆V1−loop(φi) = constant− g2Aq
2
i

16π2
m2

3/2|φi|2 +O
(

m2
3/2Λ

2|φi|4

8π2M4
GS

,
m2

3/2|φi|4

8π2M2
GS

,
αAm

4
3/2|φi|2

δGS8π2M2
GS

)

, (A7)
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where “constant” implies that the value is independent of φi, the scalar mass squared,

∆m2
i = −g

2
Aq

2
i

16π2
m2

3/2, (A8)

comes from the second line of the RHS of (A6). The scalar mass contribution from the last term

of (A7) can be ignored. The term which depends on the cut-off scale is the quartic potential of

|φi|, so its effect on the scalar mass is negligible regardless of taking Λ as Mstring or Mwind. The

value (A8) is identical with the model-independent contribution of (66) obtained by setting

M2
UV ≃ t−1

b .

Appendix B: Small moduli F -components in the LVS

In this appendix, we will exhibit the result of (74) explicitly. We begin from the effective

Kähler potential (51) and superpotential (54) constructed by integrating out the U(1)A vector

superfield. The model consists of a single large volume modulus Tb, and ns small moduli Tsj .

For each Tsj, there exists non-perturbative correction to the superpotential (ns = nw). Also

there is no one-loop induced moduli mixing between Tsj and Tb (αA = 0). The matter sector

does not have an important role for evaluating moduli F -terms, so we can ignore it. Then, the

Kähler potential and superpotential for the moduli sector are given by

Keff = −3 ln tb +
K̂(~ts)− ξα′

t
3/2
b

+O(t−3
b ),

W = W0 +
∑

j

Aae
−ajTsj , (B1)

where

K̂(~ts) = ∆K(~ts, t
0
A(~ts)) +

g2Aδ
2
GS

8π2
∆K ′′(~ts, t

0
A(~ts)) ln

2g2Aδ
2
GS∆K

′′(~ts, t
0
A(~ts))

et
1/2
b

= ∆K(~ts, t
0
A(~ts))

(

1 +O
( 1

(8π2)3

)

)

. (B2)

Since the U(1)A threshold correction is three-loop suppressed, we set the argument of K̂ just ~ts

as ∆K. Due to the no-scaler structure of the tree-level Kähler potential, K̂ has the following

scaling behavior

K̂(λ~ts) = λ3/2K̂(~ts) (B3)
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up to (string) loop corrections. The corresponding scalar potential is given by

VF = eK
(

KIJ̄DIWDJ̄W
∗ − 3|W |2

)

=
1

t
3/2
b

(

K̂ij(∂TsiW )(∂T ∗

sj
W ∗)− 1

2

(

K̂ijK̂j(∂TsiW )(W ∗t
−3/2
b ) + h.c.

)

+
1

4

(

K̂ijK̂iK̂j − 3K̂ + 3ξα′

)
∣

∣

∣
Wt

−3/2
b

∣

∣

∣

2
)

+O(t−6
b ) (B4)

where K̂i = ∂tsiK̂(~ts), K̂ij = ∂tsi∂tsj K̂, K̂ij = (K̂ij)
−1. In leading order of 1/tb expansion, the

stationary condition ∂TbVF = ∂TsjVF = 0 gives

∂TskVF = 0 :
(

K̂ij(∂T ∗

sj
W ∗)− 1

2
K̂ijK̂j(W

∗t
−3/2
b )

)(

∂Tsk∂TsiW
)

+
1

2

(

K̂ij
k (∂T ∗

sj
W ∗)− (K̂ij

k K̂j + δik)(W
∗t

−3/2
b )

)(

∂TsiW
)

+ h.c.

+
1

4

(

K̂ij
k K̂iK̂j − K̂k

)
∣

∣

∣
Wt

−3/2
b

∣

∣

∣

2

= 0,

∂tbVF = 0 : K̂ij(∂TsiW )(∂T ∗

sj
W ∗)− 2

(

K̂ijKj(∂TsiW )(W ∗t
−3/2
b ) + h.c.

)

+
3

4

(

K̂ijK̂iK̂j − 3K̂ + 3ξα′

)
∣

∣

∣
Wt

−3/2
b

∣

∣

∣

2

= 0. (B5)

In our field basis, tsk∂Tsk∂TsiW = −(aitsi)δki∂TsiW . We would like to find the solution in the

large volume limit. Such limit corresponds to ajtsj ≫ O(1), and |tsi∂2TsiW | ≫ |∂TsiW |. Then

the solution can be evaluated perturbatively as follows.

∂TsiW = −aiAie−aiTsi =
1

2
(1− ǫi)K̂i(Wt

−3/2
b ),

∑

j

(

K̂ijK̂j

ti

)

ǫj =
1

aitsi

(

2−
∑

j,k

K̂jk
i K̂jK̂k

2K̂i

)

(

1 +O(ǫi)
)

,

ξα′ = K̂

(

1 +
∑

ij

(

2K̂ijK̂iK̂j

9K̂

)

ǫi +O(ǫ2i )

)

. (B6)

Notice that there is no sum for an index i. We assume that Ai and the vacuum value of K̂i are

of order one. However, the gravitino mass m3/2 = eK/2W = (W0t
−3/2
b )(1 +O(t

−3/2
b )) would be

around TeV so that it is hierarchically much smaller than one. From the first equation of (B6),

aitsi = 2 ln
MPl

|m3/2|
− 2 ln

K̂i(1− ǫi)

2|aiAi|
= 2 ln

MPl

|m3/2|
+O(1). (B7)

aitsi are universal at the leading order. On the one hand, due to the scaling behavior of K̂

given by (B3), it is easily identified that
∑

ij K̂
ij
k K̂iK̂j = K̂k. Then, the F -terms of the small
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moduli can be obtained as

F Tsi

tsi
= − 1

tsi
eK/2KTsiJ̄DJ̄W

∗ =
∑

j

(

K̂ijK̂j

tsi

)

ǫ∗j (W
∗t

−3/2
b )

=
m∗

3/2

ln |MP l/m3/2|

(

3

4
+O

(

1

ln |MPl/m3/2|
,
K̂loop

K̂

))

, (B8)

where K̂loop stands for the perturbative correction to K̂ which breaks the no-scale form of

Kähler potential.
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