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We report the optical properties of ZnO/ZnMgO multiple quantum well �MQW� structures with
different well widths grown on ZnO substrates by molecular beam epitaxy. Photoluminescence �PL�
spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well
widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results
show an efficient photogenerated carrier transfer from the barrier to the MQWs, which leads to an
increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the
wider well width. © 2010 American Institute of Physics. �doi:10.1063/1.3284959�

I. INTRODUCTION

ZnO is a promising material for the application of high
efficiency light emitting diodes with short wavelength region
for its large bandgap energy of 3.37 eV, which is similar to
GaN �3.39 eV� at room temperature.1 The large exciton bind-
ing energy of 60 meV in ZnO provides higher efficiency of
emission for optoelectronic device applications. Several
ZnO/ZnMgO multiple quantum well �MQW� structures have
been grown on various substrates such as sapphire, GaN, Si,
and so on.2–5 However, the achievement of high quality ZnO/
ZnMgO MQW structures has been somehow limited by the
use of lattice-mismatched substrates. The lattice-matching
ScAlMgO4 or ZnO substrates were also used for the growth
of ZnO/ZnMgO MQW structures.6,7 Beyond disputes, the
use of ZnO substrates solves the lattice mismatch problem,
providing much better crystal quality of ZnO/ZnMgO MQW
structures.7 However, the detailed optical characteristics and
recombination dynamics of ZnO/ZnMgO MQW structures
grown on ZnO substrates were not fully understood yet. In
this letter, we report the optical properties and carrier dynam-
ics in ZnO /Zn0.9Mg0.1O MQW structures with different well
widths grown on ZnO substrates. The characterizations were
conducted by high-resolution x-ray diffraction �XRD�, pho-
toluminescence �PL�, and time-resolved PL spectroscopic
techniques.

II. EXPERIMENTS

The ZnO /Zn0.9Mg0.1O MQWs were grown on O-face
�0001� ZnO substrates �MAHK Co., Japan� by molecular
beam epitaxy �MBE�. For better crystalline quality and flatter
surface, the bulk ZnO substrates were annealed in O2 ambi-
ent before inserting into the chamber. Prior to the growth, the
substrates were heated again in the growth chamber in O2

plasma in order to eliminate possible contaminations. Ten

periods of ZnO/ZnMgO MQWs were sandwiched between
10-nm-thick ZnMgO cap and buffer layers. ZnO well and
ZnMgO barrier layers were grown at 600 °C in the chamber.
The thicknesses of the well and barrier layers were con-
trolled by the growth time. Details of the growth procedures
were reported elsewhere.7 The thicknesses of well layer �Lw�
were set to 2 and 5 nm with a barrier thickness �Lb� of 7 nm
for two different samples �which will be denoted by W2 and
W5, respectively�. For comparison, the optical properties of
a ZnO substrate were also investigated. The structural prop-
erties were characterized by high-resolution XRD system
�PANalytical X’Pert-PRO MRD�. PL spectra were measured
by a spectrometer using the 325 nm line of a 10 mW con-
tinuous wave He–Cd laser as an excitation source.
Temperature-dependent PL spectra were acquired using
temperature-controlled cryostat in the temperature range
from 10 to 300 K. Time-resolved PL experiments were car-
ried out with a frequency-doubled, mode-locked �150 fs� Ti-
:sapphire laser system as an excitation source and a time-
correlated single photon counting system for detection.

III. RESULTS AND DISCUSSION

Figure 1 shows the �0002� �-2� scan XRD patterns of
samples W2 and W5 �ZnO/ZnMgO MQWs with well widths
of 2 and 5 nm�, as well as a reference ZnO sample �ZnO
substrate�. The strongest peak is due to ZnO substrate, and
the full width at half maximum value of symmetric �0002�
�-2� scan for the ZnO substrate is only 19 arcsec, indicating
high crystallinity of the ZnO substrate. Moreover, the appear-
ance of pronounced Pendellösung fringes arising from inter-
ference between x-ray waves reflected within the sample
structure is an indication of the high crystalline quality of
samples W2 and W5, because any interface imperfection or
compositional inhomogeneity would decrease the phase co-a�Electronic mail: yhc@kaist.ac.kr.
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herence and eliminate it. From the simulation, the Lw �Lb�
value was estimated to be �1.6�7� nm for W2 and
�5.1�7� nm for W5.

Figure 2 shows PL spectra of samples W2, W5, and a
ZnO substrate measured at 10 K. The PL spectrum of the
ZnO substrate exhibits very dominant sharp peaks at 3.361
and 3.356 eV due to donor-bound exciton �DBX� transitions.
Free excition �FX�, two-electron satellite �TES�, and
acceptor-bound exciton �ABX� transitions can be clearly dis-
tinguished at 3.377, 3.334, and 3.323 eV, respectively. Lon-
gitudinal optical �LO�-phonon replicas of FX �FX-nLO� and
LO-phonon replicas of DBX �DBX-nLO� can be seen in the
oscillatory PL spectrum with an energy periodicity about 72
meV, corresponding to LO-phonon energy of ZnO. All these
peaks are observable in samples W2 and W5, except for ZnO
FX transition which is overlapped with ZnO MQW emis-
sions. Two additional emissions from ZnO MQWs and Zn-
MgO barrier layers were observed in samples W2 and W5.
The broad weak emissions at about 3.5 eV come from the

ZnMgO barrier layers, while the strong emission from
MQWs in W2 �W5� is blueshifted to 3.387 eV �3.368 eV�
compared with bulk ZnO excitonic peak �3.356 eV� due to
quantum confinement effect. The energy of well emission of
W2 is well consistent with the reported value of
ZnO /Zn0.9Mg0.1O �Lw�1.7 nm� in other literature.2 From
the PL spectra, we found that the intensity ratio of the well to
barrier emissions �defined by Iwell / Ibarrier� for W5 is nearly
400 which is much larger than that for W2 �Iwell / Ibarrier

�25�, indicating more effective carrier transfer from the bar-
riers to the wells for sample W5.

Figure 3 shows temperature-dependent PL spectra of
samples W2, W5, and a ZnO substrate. For the reference
ZnO sample �Fig. 3�c��, the DBX transition is predominant
below 130 K, while the FX transition becomes dominant
with temperature higher than 130 K. ABX can be observed
up to 50 K and ABX-1LO up to 30 K and then both disap-
pear due to thermal ionization from bound acceptors.8 TES is
negligible with the increase of temperature. DBX-nLO tran-
sitions can be observed below 90 K and FX-nLO transitions
become dominant above 110 K. Then FX and FX-nLO tran-
sitions start to merge together. The narrow linewidth of ex-
citonic transitions indicates the high quality of the ZnO sub-
strate. For samples W2 and W5, the emissions from ZnO
substrate are negligible when the temperature is higher than
130 K, as shown in Figs. 3�a� and 3�b�. The emission from
ZnMgO layer can be resolved for temperature below 200 K
in both samples. In Fig. 3�a�, the peak energies of the ZnO
MQW-related emission indicated by closed circles show the
“S-shaped” temperature dependence9 as the temperature in-
creases from 10 to 300 K, which can be attributed to the
exciton localization caused by well-width variations and/or
alloy-potential inhomogeneities of ZnO/ZnMgO MQWs10

The temperature dependent PL spectra of W5 shown in Fig.
3�b� were rather similar to those observed in typical ZnO
epilayer. The red-shift behavior in the temperature range of
10–300 K is ascribed to band gap shrinkage effect. These
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FIG. 1. �Color online� �0002� �-2� scan XRD patterns of the ZnO/ZnMgO
MQWs with different well widths of 2 and 5 nm �W2 and W5� and a ZnO
substrate. XRD patterns have been relatively shifted in the vertical direction
for clarity.
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FIG. 2. �Color online� 10 K PL spectra from W2, W5, and a ZnO substrate.
PL spectra have been vertically shifted for clarity. “Well” and “Barrier”
denote emission from the well and barrier, respectively.
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FIG. 3. �Color online� PL spectra of �a� W2, �b� W5, and �c� a ZnO substrate
over the temperature range of 10–300 K. MQW emission peaks of W2 and
W5 �indicated by closed circle and closed rectangular, respectively�, FX
�inverted open triangle� and DBX �open circle� of the ZnO substrate. Spec-
tra have been vertically shifted for clarity.
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results indicate that two kinds of MQWs with different well
widths exhibited different exciton dynamics due to different
well-width �and other potential� fluctuations.

Figures 4�a� and 4�b� show power-dependent PL spectra
for samples W2 and W5 at 10 K by varying excitation power
over three orders of magnitude. We observed almost no shift
in the PL peak energy for both samples W2 and W5. It has
been reported that the transition from quantum confinement
regime to quantum confined Stark effect regime occurs in
ZnO /Zn0.9Mg0.1O MQW grown on Al2O3 substrates when
the well width is about two times of exciton Bohr radius
��2 nm� of ZnO bulk.2 The internal electric field is deter-
mined from the sum of spontaneous and strain-induced pi-
ezoelectric polarizations between the well and the barrier. In
case of ZnO/ZnMgO QWs, theoretical studies have shown
negligible quantum confined Stark effect when both Mg
composition and Lw are small.3 The negligible internal
field effect can be explained by the cancellation of spontane-
ous and piezoelectric polarizations between the well and
the barrier in the ZnO/ZnMgO QW structures.3 From the
power-dependent PL spectra, we observed no PL peak
shift of MQW emission in both samples W2 and W5, indi-
cating a negligible built-in electric field effect in the
ZnO /Zn0.9Mg0.1O MQWs grown on ZnO substrates by
MBE.10

Figure 5 shows time-resolved PL decay curves moni-
tored at the well and the barrier emission peaks for samples
W2 and W5, together with the decay curve detected at DBX
peak of a ZnO substrate and the corresponding instrument
response function profile. The decay time of DBX transition
from a ZnO substrate is about 180 ps. Insets of Fig. 5 show
time-resolved PL decay curves of the well emissions for
samples W2 and W5 at the condition of direct excitation �i.e.,
excitation below the barrier bandgap energy� and indirect
excitation �i.e., excitation above the barrier bandgap energy�.
For both samples, the temporal profiles of the luminescence
from the wells exhibit a slower rise time and a longer decay

time for indirect excitation compared to direct excitation.
Especially for sample W5, we observed a prolonged rise time
��63 ps� and a longer decay time ��169 ps� of the well
emission under the indirect excitation condition, as com-
pared to the direct excitation case for which the rise time and
the decay time of the well emission were �38 and �160 ps,
respectively. Furthermore, the higher intensity ratio of the
QW to barrier emissions �as shown in Fig. 2� and the faster
decay time of the barrier emission ��22 ps� were simulta-
neously observed for sample W5. These results are sugges-
tive of the efficient carrier transfer process from the barriers
to the wells for sample W5. On the other hand, the rise time
difference between the indirect and direct excitation condi-
tions for sample W2 is �13 ps, which is much smaller than
the case of sample W5 ��25 ps�. Together with the rela-
tively smaller intensity ratio of the QW to barrier emissions
of sample W2, we can conclude that the carrier transfer ef-
ficiency from the barriers to the wells is smaller for sample
W2 compared to W5. We can interpret this in terms of the
saturation of the localized states in sample W2 due to smaller
density of states in MQWs with narrower well width.11 Al-
though the different barrier decay time between samples W2
and W5 ��55 and �22 ps, respectively� may also be partly
influenced by different material qualities and small Mg com-
position discrepancy of ZnMgO alloys, the carrier transfer
process would be the dominant reason for the shorter barrier
decay time of sample W5. For time-resolved PL analysis, the
built-in internal field effect between the well and barrier
regions10 can be almost negligible as shown in power-
dependent PL experiments �Fig. 4�.
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FIG. 4. �Color online� Excitation power-dependent PL spectra of �a� W2 and
�b� W5 measured at 10 K.
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FIG. 5. �Color online� Time-resolved PL decay curves of �a� W2, �b� W5,
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the well emissions of W2 and W5 under the direct excitation condition
�dotted lines� and the indirect excitation condition �solid lines�.

033513-3 Li et al. J. Appl. Phys. 107, 033513 �2010�

Downloaded 19 Apr 2013 to 143.248.118.125. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



IV. CONCLUSION

We have investigated the optical transitions and carrier
dynamics of ZnO/ZnMgO MQW structures with different
well widths grown on lattice-matched ZnO substrates. The
structural investigation of samples employing XRD tech-
nique confirmed good abruptness of MQW interfaces. The
temporal profiles of the luminescence from the wells for both
samples W2 and W5 exhibited a slower rise time and a
longer decay time under indirect excitation condition com-
pared to the direct excitation case. The larger difference of
rise time of the well emission under direct and indirect exci-
tation conditions together with the higher intensity ratio of
the QW to barrier emissions indicated that the carriers gen-
erated in the barrier can be effectively transferred to the
MQW region for ZnO/ZnMgO MQWs with the wider well
width of 5 nm.
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