Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(3-Methoxyphenyl)-*tert*-butane-sulfinamide

Mrityunjoy Datta,^a Alan J. Buglass^a* and Mark R. J. Elsegood^b

^aDepartment of Chemistry, KAIST, Daejeon 305-701, Republic of Korea, and ^bChemistry Department, Loughborough University, Loughborough LE11 3TU, England

Correspondence e-mail: ajbuglass@kaist.ac.kr

Received 27 November 2009; accepted 7 December 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.042; wR factor = 0.117; data-to-parameter ratio = 15.9.

In the title compound, $C_{11}H_{17}NO_2S$, the molecules interact in a head-to-tail fashion through pairs of $N-H\cdots O$ hydrogen bonds, giving discrete centrosymmetric dimers. The N(H)S(O)'Bu fragment is disordered over two sets of positions, with the major component comprising 90.0 (2)%.

Related literature

For *N*-arylalkanesulfinamides, see: Datta *et al.* (2008, 2009). For *N*-alkylalkanesulfinamides, see: Sato *et al.* (1975); Ferreira *et al.* (2005); Schuckmann *et al.* (1978). For the synthesis, see: Stretter *et al.* (1969).

Experimental

Crystal data

C ₁₁ H ₁₇ NO ₂ S	b = 7.3076 (8)
$M_r = 227.32$	c = 12.9230 (13
Monoclinic, $P2_1/n$	$\beta = 93.2992$ (15)
a = 12.4068 (13) Å	V = 1169.7 (2)

Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) $T_{\min} = 0.911, T_{\max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.117$ S = 1.072633 reflections 166 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$ $N1X - H1X \cdots O1X^{ii}$	0.88 0.88	2.24 2.21	2.884 (2) 2.94 (2)	130 141
	4	(") 1		

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and local programs.

MD and AJB thank KAIST for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2698).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2823.Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.
- Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.
- Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
- Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.

 $0.37 \times 0.22 \times 0.20 \text{ mm}$

10627 measured reflections

2633 independent reflections

2237 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 150 K

 $R_{\rm int}=0.032$

149 restraints

 $\Delta \rho_{\text{max}} = 0.62 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

supplementary materials

Acta Cryst. (2010). E66, o109 [doi:10.1107/S1600536809052507]

N-(3-Methoxyphenyl)-tert-butanesulfinamide

M. Datta, A. J. Buglass and M. R. J. Elsegood

Comment

The molecular structure of the title compound (I) exhibits disorder of the N(H)S(O)^{*t*}Bu fragment over two sets of positions. The major component comprises 90.0 (2)% (Fig. 1), in which the *N*—C_{aryl} bond length is 1.418 (2) Å, similar to that [1.4225 (14) Å] in *N*-(4-methoxyphenyl)-*tert*-butanesulfinamide (Datta *et al.*, 2009). The corresponding bond length [1.457 (16) Å] in the minor component is longer, though far less precisely determined. This perhaps suggests weaker delocalization of electrons over N and the aromatic ring, which would correlate with the greater non-coplanarity of the aromatic ring and sulfinyl moiety in this component. In either case, however, the *N*—C_{aryl} bond is shorter than the *N*—C_{alkyl} bonds [1.470–1.530 Å] observed in structures of *N*-alkylalkanesulfinamides (Sato *et al.*, 1975; Schuckmann *et al.*, 1978; Ferreira *et al.*, 2005). The crystal packing of (I) shows head-to-tail interaction through NH···OS hydrogen bondis, forming discrete centrosymmetric dimers, as illustrated for the major component in Fig. 2. The hydrogen bonding data for both components are listed in Table 1. There is no evidence of hydrogen bonding involving the methoxy group, nor of weak CH···.OS hydrogen bonding, as observed in the packing of *N*-phenyladamantane-1-sulfinamide (Datta *et al.*, 2008).

Experimental

Compound (I) was prepared by the method of Stretter *et al.* (1969), using *tert*-butanesulfinyl chloride (281 mg, 2 mmol) and 3-methoxyaniline (492 mg, 4 mmol) in dry ether (20 ml). After 5 h (with TLC monitoring) the colourless solid amine salt was fitered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) provided (I) as colourless crystals (430 mg, 95%), m.p. 367 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in dichloromethane:hexane (1:1) at room temperature. Spectroscopic analysis: FTIR (KBr) (cm⁻¹) 3024, 1603, 1496, 1473, 1368, 1278, 1227, 1214, 1156, 1069, 953, 834. ¹H NMR (400 MHz, CDCl₃ p.p.m. with respect to TMS) δ 7.13 (dd, J = 8.0, 8.5 Hz, 1H), 6.58–6.53 (m, 3H), 5.41 (bs, 1H), 3.75 (d, J = 0.6 Hz, 3H), 1.30 (s, 9H). ¹³C (100 MHz, CDCl₃ p.p.m. with respect to TMS) δ 160.6, 143.3, 130.2, 110.6, 108.4, 104.2, 56.4. 55.2. 22.4. EIMS m/z (%) 228 (*MH*⁺, 85), 227 (*M*⁺, 25), 213 (17), 171 (*MH*⁺ - tBu, 100), 123 (*MH*⁺ - ^tBuSO, 6), 108 (*MH*⁺ - ^tBuSONH, 12), 95 (53). To our knowledge, these are the first reported analytical data for (I).

Refinement

H atoms were located in a difference Fourier map and refined geometrically using a riding model. Methyl groups were refined with rotational freedom. Lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and $U_{iso}(H) = 1.2$ (1.5 for CH₃) times $U_{eq}(C, N)$. The minor disorder component was refined isotropically. The disorder was modelled with the aid of geometrical and displacement parameter restraints.

Figures

Fig. 1. Molecular structure of the major component of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Centrosymmetric dimer of (I) in the crystal packing of the major component, showing intermolecular hydrogen bonding. Symmetry code i = -x + 1, -y, -z + 1.

N-(3-Methoxyphenyl)-tert-butanesulfinamide

Crystal data	
C ₁₁ H ₁₇ NO ₂ S	F(000) = 488
$M_r = 227.32$	$D_{\rm x} = 1.291 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4390 reflections
<i>a</i> = 12.4068 (13) Å	$\theta = 2.2 - 27.2^{\circ}$
<i>b</i> = 7.3076 (8) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 12.9230 (13) Å	T = 150 K
$\beta = 93.2992 \ (15)^{\circ}$	Block, colourless
$V = 1169.7 (2) \text{ Å}^3$	$0.37 \times 0.22 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2633 independent reflections
Radiation source: fine-focus sealed tube	2237 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ω rotation with narrow frames scans	$\theta_{\text{max}} = 27.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)	$h = -15 \rightarrow 16$
$T_{\min} = 0.911, \ T_{\max} = 0.950$	$k = -9 \rightarrow 9$
10627 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.117$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.056P)^2 + 0.7085P]$ where $P = (F_0^2 + 2F_c^2)/3$
2633 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
166 parameters	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
149 restraints	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O1	0.54940 (10)	-0.05258 (18)	0.36978 (10)	0.0229 (3)	0.900 (2)
S1	0.50816 (3)	0.13248 (6)	0.33748 (3)	0.01938 (15)	0.900 (2)
N1	0.42312 (12)	0.2035 (3)	0.42415 (12)	0.0236 (4)	0.900 (2)
H1	0.4482	0.2281	0.4877	0.028*	0.900 (2)
C1	0.31128 (13)	0.2253 (2)	0.39789 (13)	0.0253 (4)	
C2	0.24035 (14)	0.2103 (3)	0.47687 (14)	0.0277 (4)	
H2	0.2669	0.1811	0.5453	0.033*	
C3	0.13034 (14)	0.2383 (3)	0.45550 (14)	0.0289 (4)	
O2	0.06872 (11)	0.2258 (3)	0.54029 (11)	0.0462 (4)	
C11	-0.04594 (16)	0.2441 (4)	0.52212 (19)	0.0487 (6)	
H11A	-0.0626	0.3643	0.4916	0.073*	
H11B	-0.0808	0.2325	0.5879	0.073*	
H11C	-0.0727	0.1480	0.4744	0.073*	
C4	0.08935 (14)	0.2716 (3)	0.35566 (15)	0.0300 (4)	
H4	0.0140	0.2867	0.3407	0.036*	
C5	0.16122 (16)	0.2821 (3)	0.27816 (15)	0.0384 (5)	
Н5	0.1340	0.3040	0.2090	0.046*	
C6	0.27117 (15)	0.2620 (3)	0.29758 (14)	0.0328 (4)	
H6	0.3188	0.2731	0.2429	0.039*	
C7	0.62017 (14)	0.2928 (3)	0.36663 (14)	0.0212 (4)	0.900 (2)
C8	0.57870 (17)	0.4793 (3)	0.32914 (18)	0.0314 (5)	0.900 (2)
H8A	0.5209	0.5198	0.3724	0.047*	0.900 (2)
H8B	0.5507	0.4698	0.2569	0.047*	0.900 (2)
H8C	0.6379	0.5682	0.3341	0.047*	0.900 (2)
C9	0.65533 (15)	0.2918 (3)	0.48138 (15)	0.0262 (4)	0.900 (2)

supplementary materials

H9A	0.6810	0.1694	0.5015	0.039*	0.900 (2)
H9B	0.5939	0.3248	0.5220	0.039*	0.900(2)
H9C	0.7137	0.3807	0.4945	0.039*	0.900(2)
C10	0.7108 (2)	0.2247 (6)	0.3005 (2)	0.0282 (7)	0.900(2)
H10A	0.7359	0.1048	0.3258	0.042*	0.900 (2)
H10B	0.7710	0.3118	0.3054	0.042*	0.900 (2)
H10C	0.6835	0.2141	0.2281	0.042*	0.900 (2)
O1X	0.5509 (11)	0.5520 (16)	0.3695 (10)	0.032 (3)*	0.100 (2)
S1X	0.5084 (4)	0.3681 (6)	0.3374 (3)	0.0303 (15)*	0.100 (2)
N1X	0.4214 (12)	0.288 (2)	0.4216 (13)	0.026 (4)*	0.100 (2)
H1X	0.4450	0.2833	0.4871	0.032*	0.100 (2)
C7X	0.6173 (12)	0.204 (2)	0.3663 (12)	0.029 (4)*	0.100 (2)
C8X	0.5762 (16)	0.016 (2)	0.3308 (16)	0.034 (4)*	0.100 (2)
H8D	0.5135	-0.0179	0.3694	0.052*	0.100 (2)
H8E	0.6335	-0.0751	0.3436	0.052*	0.100 (2)
H8F	0.5553	0.0197	0.2565	0.052*	0.100 (2)
C9X	0.6514 (16)	0.199 (3)	0.4840 (12)	0.032 (5)*	0.100 (2)
H9D	0.6766	0.3204	0.5065	0.048*	0.100 (2)
H9E	0.7096	0.1097	0.4964	0.048*	0.100 (2)
H9F	0.5893	0.1635	0.5231	0.048*	0.100 (2)
C10X	0.7138 (19)	0.269 (4)	0.308 (2)	0.025 (8)*	0.100 (2)
H10D	0.7374	0.3893	0.3344	0.038*	0.100 (2)
H10E	0.6927	0.2793	0.2338	0.038*	0.100 (2)
H10F	0.7731	0.1813	0.3179	0.038*	0.100(2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0234 (6)	0.0218 (7)	0.0233 (6)	0.0001 (5)	0.0005 (5)	0.0005 (5)
S1	0.0152 (2)	0.0251 (2)	0.0179 (2)	0.00068 (16)	0.00179 (14)	0.00043 (17)
N1	0.0151 (8)	0.0366 (11)	0.0193 (8)	0.0024 (7)	0.0019 (6)	0.0015 (7)
C1	0.0168 (8)	0.0337 (10)	0.0254 (9)	0.0007 (6)	0.0014 (6)	0.0012 (7)
C2	0.0215 (9)	0.0385 (10)	0.0230 (8)	-0.0003 (7)	0.0009 (6)	0.0003 (7)
C3	0.0189 (8)	0.0400 (10)	0.0282 (9)	0.0001 (7)	0.0047 (7)	-0.0026 (7)
02	0.0164 (7)	0.0900 (13)	0.0327 (8)	0.0034 (7)	0.0060 (5)	0.0010 (7)
C11	0.0156 (9)	0.0850 (19)	0.0464 (12)	0.0009 (10)	0.0083 (8)	-0.0025 (12)
C4	0.0180 (8)	0.0380 (10)	0.0336 (10)	0.0047 (7)	-0.0021 (7)	-0.0017 (8)
C5	0.0284 (10)	0.0603 (14)	0.0259 (9)	0.0128 (9)	-0.0022 (7)	0.0034 (9)
C6	0.0243 (9)	0.0504 (12)	0.0241 (9)	0.0076 (8)	0.0050 (7)	0.0068 (8)
C7	0.0165 (8)	0.0226 (10)	0.0251 (9)	-0.0010 (7)	0.0064 (6)	-0.0021 (8)
C8	0.0282 (10)	0.0240 (10)	0.0431 (12)	0.0031 (8)	0.0109 (9)	0.0028 (9)
C9	0.0187 (9)	0.0324 (12)	0.0277 (10)	-0.0042 (8)	0.0026 (7)	-0.0061 (8)
C10	0.0195 (12)	0.0340 (18)	0.0321 (14)	0.0012 (10)	0.0109 (8)	-0.0028 (13)

Geometric parameters (Å, °)

O1—S1	1.4967 (14)	C8—H8B	0.9800
S1—N1	1.6652 (16)	C8—H8C	0.9800
S1—C7	1.8401 (19)	С9—Н9А	0.9800

N1—C1	1.418 (2)	С9—Н9В	0.9800
N1—H1	0.8800	С9—Н9С	0.9800
C1—C6	1.388 (3)	C10—H10A	0.9800
C1—C2	1.390 (2)	С10—Н10В	0.9800
C1—N1X	1.457 (16)	C10—H10C	0.9800
C2—C3	1.392 (2)	O1X—S1X	1.493 (12)
С2—Н2	0.9500	S1X—N1X	1.681 (13)
C3—O2	1.375 (2)	S1X—C7X	1.828 (13)
C3—C4	1.381 (3)	N1X—H1X	0.8800
O2—C11	1.435 (2)	C7X—C8X	1.528 (16)
C11—H11A	0.9800	C7X—C10X	1.528 (16)
C11—H11B	0.9800	C7X—C9X	1.555 (15)
C11—H11C	0.9800	C8X—H8D	0.9800
C4—C5	1.381 (3)	C8X—H8E	0.9800
С4—Н4	0.9500	C8X—H8F	0.9800
C5—C6	1.381 (3)	C9X—H9D	0.9800
С5—Н5	0.9500	C9X—H9E	0 9800
С6—Н6	0.9500	C9X—H9F	0.9800
C7—C9	1 522 (3)	C10X—H10D	0.9800
C7—C8	1 526 (3)	C10X—H10E	0.9800
C7—C10	1 534 (3)	C10X—H10F	0.9800
С8—Н8А	0.9800		0.9000
	108.28 (0)		100.5
$O_1 = S_1 = O_1$	106.28 (9)	100 - 100	109.5
N1 S1 C7	100.04(8)	C^{7} C^{9} H^{9}	109.5
NI = SI = C / CI = NI = SI	99.44 (9) 121.54 (12)	$C/-C9\Pi9B$	109.5
C1 = N1 = S1	121.34 (13)	119A - C9 - 119B	109.5
S1 N1 H1	119.2		109.5
SI = NI = III	119.2		109.5
C_{0}	119.34 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{0} C_{1} N_{1}	122.38 (10)	$C_{1} = C_{10} = H_{10} R_{10}$	109.5
$C_2 \rightarrow C_1 \rightarrow N_1$	117.00 (13)	$H_{10A} = C_{10} = H_{10B}$	109.5
C_{0} C_{1} $N_{1}X$	114.7(0) 119.7(6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = C_1 = N_1 X$	119.7(0)		109.5
C1 = C2 = C3	119.80 (10)	H10A - C10 - H10C	109.5
$C_1 = C_2 = H_2$	120.1	OIX SIX NIX	109.5
$C_3 = C_2 = H_2$	120.1	O1X = S1X = N1X	111.5 (8)
02 - C3 - C4	124.38 (10)	01A - 51A - C/A	100.8(8)
62 - 63 - 62	114.36(10) 121.02(17)	NIX = SIX = C/X	97.7(0)
$C_4 - C_5 - C_2$	121.03(17) 117.06(16)	CI_NIX_BIA	127.0 (11)
$C_{3} = C_{11} = C_{11}$	100 5		116.5
02 - C11 - H11P	109.5	SIA = NIA = HIA	110.3 112.0(15)
	109.5	$C_{0X} = C_{1X} = C_{10X}$	112.9(13) 100.8(14)
$\begin{array}{c} 111111111111111111111111111111111111$	109.5	$C_{0X} = C_{1X} = C_{0X}$	109.0(14) 109.2(16)
	109.5	$C^{0}X$ $C^{7}X$ $C^{1}X$	108.3(10) 107.4(11)
H11B_C11_ H11C	109.5	$C_{0A} - C_{A} - S_{1A}$	107.4(11) 106.6(14)
$C_5 - C_4 - C_3$	107.5	$C_{10} - C_{1} - S_{1} - S_{$	100.0(14) 111.8(11)
C5-C4-H4	121.0	$C_{X} = C_{X} = S_{X}$	109.5
C_{3} C_{4} H_{4}	121.0	C7X - C8X - H8E	109.5
CJ CT-11T	141.0	UIN -CON-HOL	107.5

supplementary materials

C6—C5—C4	122.33 (17)	H8D—C8X—H8E	109.5
С6—С5—Н5	118.8	C7X—C8X—H8F	109.5
С4—С5—Н5	118.8	H8D—C8X—H8F	109.5
C5—C6—C1	119.20 (17)	H8E—C8X—H8F	109.5
С5—С6—Н6	120.4	C7X—C9X—H9D	109.5
С1—С6—Н6	120.4	С7Х—С9Х—Н9Е	109.5
С9—С7—С8	112.73 (17)	Н9Д—С9Х—Н9Е	109.5
C9—C7—C10	111.27 (18)	C7X—C9X—H9F	109.5
C8—C7—C10	110.95 (19)	H9D—C9X—H9F	109.5
C9—C7—S1	111.54 (13)	H9E—C9X—H9F	109.5
C8—C7—S1	105.49 (13)	C7X—C10X—H10D	109.5
C10-C7-S1	104.40 (18)	C7X—C10X—H10E	109.5
С7—С8—Н8А	109.5	H10D-C10X-H10E	109.5
С7—С8—Н8В	109.5	C7X—C10X—H10F	109.5
H8A—C8—H8B	109.5	H10D-C10X-H10F	109.5
С7—С8—Н8С	109.5	H10E-C10X-H10F	109.5
H8A—C8—H8C	109.5		
O1—S1—N1—C1	-113.14 (17)	N1X—C1—C6—C5	-152.9 (8)
C7—S1—N1—C1	136.38 (17)	O1—S1—C7—C9	-59.63 (15)
S1—N1—C1—C6	-26.5 (3)	N1—S1—C7—C9	52.62 (15)
S1—N1—C1—C2	154.05 (16)	O1—S1—C7—C8	177.66 (12)
S1—N1—C1—N1X	-104.9 (15)	N1—S1—C7—C8	-70.09 (14)
C6—C1—C2—C3	-2.1 (3)	O1—S1—C7—C10	60.64 (17)
N1-C1-C2-C3	177.31 (18)	N1—S1—C7—C10	172.89 (16)
N1X—C1—C2—C3	149.0 (8)	C6—C1—N1X—S1X	-10.0 (16)
C1—C2—C3—O2	-177.99 (17)	C2-C1-N1X-S1X	-162.5 (9)
C1—C2—C3—C4	3.4 (3)	N1—C1—N1X—S1X	105 (2)
C4—C3—O2—C11	1.7 (3)	O1X—S1X—N1X—C1	125.7 (13)
C2—C3—O2—C11	-176.92 (19)	C7X—S1X—N1X—C1	-122.9 (14)
O2—C3—C4—C5	179.45 (19)	O1X—S1X—C7X—C8X	-178.2 (12)
C2—C3—C4—C5	-2.1 (3)	N1X—S1X—C7X—C8X	66.7 (13)
C3—C4—C5—C6	-0.5 (3)	O1X—S1X—C7X—C10X	-57.0 (15)
C4—C5—C6—C1	1.6 (3)	N1X—S1X—C7X—C10X	-172.0 (15)
C2—C1—C6—C5	-0.3 (3)	O1X—S1X—C7X—C9X	61.2 (14)
N1—C1—C6—C5	-179.7 (2)	N1X—S1X—C7X—C9X	-53.9 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1 ⁱ	0.88	2.24	2.884 (2)	130.
N1X—H1X…O1X ⁱⁱ	0.88	2.21	2.94 (2)	141.
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$.				

Fig. 1

Fig. 2