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1 Introduction

Many models providing WIMP dark-matter candidates predict events at the Large Hadron
Collider (LHC), characterized by a pair of invisible particles in the final state. This very
same topology is also available in the Standard Model (SM), e.g. in dileptonic decays of
a top-quark pair: tt̄ → b`+νb̄`−ν̄. Several kinematic methods have been proposed to
determine the particle masses in such missing energy events [1]. On the other hand, to
access information beyond the mass, e.g. the spin and/or chirality of parent particles, it is
very often highly desirable, sometimes necessary, to reconstruct the parent particles’ full
momenta event by event. Such reconstruction generically suffers from the combinatorial
ambiguity of correctly assigning visible particles to the given event topology. For instance,
there are two possibilities to pair the two b-jets and the two charged leptons in the dileptonic
decay of a top quark pair, and three possibilities to group the jets into two dijets in
the gluino pair decay g̃g̃ → jjχ̃0

1jjχ̃
0
1 in supersymmetric models, χ̃0

1 denoting the LSP
neutralino. Not to mention that the possible combinations proliferate when the event
involves multi-step cascade decays and one wishes to identify the order of visible particles
in each decay chain, besides the assignment to the correct decay chain. For instance, in
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the event χ̃0
2χ̃

0
2 → ˜̀±`∓ ˜̀±`∓ → `+`−χ̃0

1`
−`+χ̃0

1, one has in total 2× 2× 2 = 8 possibilities
to assign the charged leptons to the event topology (assuming they have all the same
flavor), and even more to correctly assign jets in the cascade decay g̃g̃ → jq̃jq̃ → jjχ̃0

1jjχ̃
0
1

(3× 2× 2 = 12).

Quite generally, it is clear that minimizing combinatorial uncertainties is one of the
first steps toward an accurate reconstruction of the full parent particles’ momenta in
missing energy events.1 Actually, this problem is already relevant within the SM, with
no need to invoke new-physics events. A well-known example is that of dileptonic tt̄

events in the SM, where the reconstruction of the t and t̄ momenta is required in order to
study spin correlations in tt̄ [3–6], which in turn allow to probe the quantum structure of
the decay much more thoroughly than the information from the cross section alone does.
Broadly speaking, strategies aimed at fully reconstructing the momenta of parent particles
in missing-energy events are of obvious relevance when it comes to making the most out of
the LHC data.

In this paper, we aim to develop a model-independent way of reducing combinatorial
uncertainties for missing energy events at the LHC. We propose a new method based on the
combined use of the kinematic variable MT2 [7, 8] and of the MT2-assisted-on-shell (MAOS)
reconstruction of missing momenta [9]. All these kinematic variables are reformulated as
‘test’ variables Ti (testing the correct pairing of final-state visible particles against the
incorrect ones) and the information from the various Ti is then used combinedly, in order
to improve over the performance of each Ti separately.

We apply this strategy to the dileptonic tt̄ decay, that, as mentioned, represents a
prototype example of pair production of a parent particle of interest decaying into partly-
invisible daughters. Besides its intrinsic interest, the tt̄ decay offers a popular event topol-
ogy in SM extensions with a dark-matter candidate, rendered stable by a conserved Z2-like
symmetry. Applying our method to dileptonic tt̄, we find an efficiency of determining the
correct partition in the ballpark of 90%, and that this efficiency can be systematically
increased by introducing cuts on certain partition-insensitive kinematic variables, at the
price of an actually moderate loss in event statistics.

The organization of our paper is best summarized in the table of content. In sec-
tion 2 we start with an example of the problem at hand, and then introduce our test
variables Ti in terms of MT2 and of the MAOS algorithm, applied to the full tt̄ decay
or to its WW subsystem. We here examine the efficiency of each variable Ti in the con-
text of a parton-level analysis. In section 3, we address the issue of improving over the
efficiency of each single Ti, by devising a combined test, and introducing the above men-
tioned cut variables. In section 4, we discuss some generalizations of our method, in
particular its application to generic missing energy events producing a pair of dark mat-
ter particles in the final state. Finally, in section 5 we conclude, providing an outlook
of future work.

1For example, see the method recently proposed in ref. [2].
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Figure 1. The mb` distribution for the tt̄ event topology (2.1) with right (solid black) and wrong
(red dashed) partitions of the b quarks and charged leptons. The event generation details for this
and the rest of our plots are described in section 2.2.

2 Test variables to choose among partitions of the visible final states

2.1 An example

We will state our problem of interest in the example of tt̄ production followed by fully
leptonic W decays. The decay chain is namely

tt̄→ bW+ b̄W− → b`+ν b̄`−ν̄ . (2.1)

At the level of reconstructed objects, this process is triggered on by, e.g., requiring at least
two jets (two of which possibly b-tagged), two leptons and missing energy in the final state.
Clearly, the triggered-on objects can be partitioned in two different ways, namely

right partition ≡ {`1b1}&{`2b2} ,
wrong partition ≡ {`1b2}&{`2b1} ,

where the index labels the decay chain. In the rest of the text we will refer to the different
ways of grouping visible final states into two sets as partitions.

Our aim is to construct test variables able to distinguish the right from the wrong
final-state partitions. To this end, one may exploit suitable event variables, that namely
display certain predictable features as a function of the event kinematics — like edges,
thresholds or peaks. The main observation to take advantage of is that these features are
present, and calculable from the measured final states, provided the partition of the visible
particles is the right one, whereas they are partly or completely destroyed if the final-state
partition is incorrect.

The arguably simplest and best-known example to illustrate such ideas is the invariant
mass of the visible particles, mVi , belonging to a given decay chain i. In the case of the
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event topology (2.1), the visible particles of each decay chain are a b-quark and a charged
lepton. The corresponding invariant mass distribution enjoys an upper endpoint given by
the formula

(mmax
b` )2 = m2

b +
1
2
(
m2
t −m2

W −m2
b

)
+

1
2

√(
m2
t −m2

W −m2
b

)2 − 4m2
Wm

2
b

' 153.2 GeV . (2.2)

This endpoint feature is clearly displayed by the black solid histogram in figure 1, repre-
senting the mb` distribution when correctly partitioning the final states. The same feature
does not need to hold in case mb` is calculated with the incorrect final-state partition: the
corresponding histogram is also shown as a red dashed curve. Indicating the two possible
partitions as P1 and P2, one can then construct the difference between the mb` values
calculated with either partition, namely

∆T (P2, P1) ≡ T (P2)− T (P1) , (2.3)

where

T (Pi) ≡ mb`(Pi) (2.4)

is the test variable for a given partition Pi. From our previous considerations, one can
expect that, if P1 corresponds to the right partition, PR, and P2 to the wrong one, PW ,
then ∆T (PW , PR) is expected to be larger than zero, at least for a subset of the possible
kinematic configurations of the visible final states.

We therefore introduce the following criterion for using ∆T (P2, P1) as a variable testing
the correct final-state partition in the case of dileptonic tt̄ decay:

Given a final state of 2b-jets +2`, they can be partitioned in two possible ways, to be
called P1 and P2. If ∆T (P2, P1), defined as eq. (2.3), is found to be > 0 (< 0), then P1 (P2)
may be identified as the correct partition, with a calculable probability p of misidentification.

In the sections to follow we will introduce several such test variables T (P ), and for
each of them estimate the efficiency 1 − p. We will also see that this efficiency can be
systematically improved in two directions:

(i) by introducing further kinematic cuts on the event sample, at the price of a reduced
statistics;

(ii) by combining the information from several T (P ) in a global test variable, for ex-
ample, a likelihood test with the ∆T (P2, P1) distributions interpreted as probability
distributions.

Both of the above points will be addressed in the sections starting from section 3. All the
numerical results of our paper rely on event simulations, whose details are introduced in
the next section 2.2. In the rest of section 2 we will introduce all the test variables and
discuss variations around their definitions as well as their efficiencies.
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2.2 Event generation and selection

We generated 100,000 parton-level events of top quark pair production followed by dilep-
tonic final states using MadGraph 5, with proton-proton collisions at

√
s = 7 TeV [10].

We here do not assume any contribution from physics beyond the SM. The SM predicts
σtt̄ ∼ 162 pb at next-to-next-to-leading-order [11].2 Hence the generated events correspond
to ∼ 13 fb−1. The dilepton mode gives rise to final states with two b-tagged jets, two lep-
tons, missing transverse energy. We consider the leptonic decays of the W bosons to an
electron or muon.3

We apply event selection cuts on the simulated event sample following the 0.7 fb−1

ATLAS dileptonic top analysis [13]. We namely require

• exactly two oppositely-charged leptons (ee, µµ, eµ) with pT > 25 GeV and |η| < 2.5,

• at least two jets with pT > 25 GeV and |η| < 2.5,

• dilepton invariant mass, m`` > 15 GeV,

• that events in the same-flavor lepton channels must satisfy the missing transverse
energy condition /ET > 60 GeV and |m`` −mZ | > 10 GeV,

• that events in the different-flavor channel satisfy HT > 130 GeV. The event variable
HT is defined as the scalar sum of the transverse momenta of the two leptons and
all selected jets. In analogy with [13] we instead do not require /ET or m`` cuts
in this channel.

We found that about 37% of the total simulated events pass these basic selection cuts. The
motivation for including the mentioned cuts is to have an event sample that resembles as
much as possible the actual experimental event samples in dileptonic tt̄ production. As
such, it will be our reference event sample throughout our analysis. We leave aside for the
moment the important issues of: inclusion of hadronization, QCD radiation, and modeling
of detector effects, that we will address in a forthcoming, more in-depth study [14].

2.3 Test variables: definition and discussion

2.3.1 Invariant mass of visible final states: T1 variable

Our first test variable is constructed from mb`, mentioned in the example of section 2.1. In
particular, it could be defined directly as in eq. (2.4). However, for each event one obtains
two mb` values, m(i)

b` (i = 1, 2), corresponding to the two decay chains. Combining the
two m(i)

b` values in different ways gives rises to alternative definitions of the test variable,
not all of which yield the same efficiency. We found the combination max[m(1)

b` , m
(2)
b` ]

to perform best:

max
[
m

(1)
b` , m

(2)
b`

]
(PW ) > max

[
m

(1)
b` , m

(2)
b`

]
(PR) : 80.2% . (2.5)

2The cross section was calculated with mt = 173 GeV and CTEQ6.6 parton distributions [12].
3There are small contributions from the leptonic decays of the tau, for example, τ− → µ−ν̄µντ , but here

we neglect them for the sake of discussion.
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Figure 2. Distribution for the variable ∆T1(PW , PR) (see defs. in eqs. (2.6) and (2.3)) with PW

and PR denoting the wrong and the right partition respectively. The legend in the plot indicates the
percentage of correctly partitioned events, before and after inclusion of the cut M tt̄

T (0) > 400 GeV,
to be described in section 3.2.

We correspondingly define our first test variable as follows:

T1(Pi) ≡ max
[
m

(1)
b` , m

(2)
b`

]
(Pi) , (2.6)

for a given partition Pi. The ∆T1(PW , PR) distribution is shown in figure 2.
The efficiency figure in eq. (2.5), as well as in the solid histogram in figure 2, refers to

the events that pass the basic selection cuts described in section 2.2, and actually includes
one further consideration: if one of the partitions results in mb` > mmax

b` , then the right
partition can be clearly selected because mb`(PR) ≤ mmax

b` .

2.3.2 MT2 of the whole decay chain: T2 variable

Another event variable that may be used to construct a test variable of correct partitioning
is MT2, the so-called “stransverse mass”, which is especially suited to topologies with pair-
produced particles, each decaying into partly invisible final states [7, 8]. The general event
topology that MT2 is suited for is the following:

Y Ȳ → V1(p1)χ(k1) + V2(p2)χ̄(k2) , (2.7)

where each of the Vi denotes a (set of) visible state(s), whose total four-momentum is, in
principle, entirely reconstructible, and χ, χ̄ denote invisible particles with identical mass.
The decay mode (2.1) is an example of this very event topology: Vi should be identified
with a b ` pair (for each decay chain) and χ, χ̄ with the neutrinos.

For the event topology (2.7), the MT2 variable is defined as

MT2(m̃χ) ≡ min
k̃1T+k̃2T=/p

T

[
max

{
M

(1)
T

(
p1T , k̃1T , p

2
1, m̃χ

)
, M

(2)
T

(
p2T , k̃2T , p

2
2, m̃χ

)}]
,

(2.8)
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where M (i)
T is the transverse mass [15, 16] of the decay chain i (= 1 or 2), namely(

M
(i)
T

)2
= p2

i + m̃2
χ + 2

(√
|piT |2 + p2

i

√
|k̃iT |2 + m̃2

χ − piT · k̃iT

)
. (2.9)

A few comments may help get an intuitive picture of the above definitions. First, it should
be kept in mind that what is measured in the event topology of (2.7) are the visible
particles’ momenta, pi, and the total momentum imbalance in the transverse direction,
/pT . The definition in eq. (2.8) correspondingly marginalizes over the transverse momenta
k1,2T of χ, χ̄, that are not separately measured, by taking the minimum over all the trial
momentum configurations (denoted with a tilde), whose sum equals the measured /pT .

Second, the invisible mass mχ is, likewise, unmeasured, hence MT2 is a function of
a trial value for this mass, m̃χ. In the case of the decay (2.1) mχ is of course known:
mχ = mν ≈ 0. However, the topology in eq. (2.7) applies also to several new-physics
scenarios, and in this case the physical mass mχ of the pair-produced χ is in general
unknown. An interesting feature of MT2 is the kink structure of Mmax

T2 (m̃χ) at m̃χ = mχ,
provided the p2

i value spans a certain range in each decay chain [17, 18]. An alternative
possibility for the kink structure of Mmax

T2 (m̃χ) to appear is to have the Y Ȳ system boosted
by a sizable amount of upstream transverse momentum [19, 20]. The MT2-kink method
makes it possible to measure mχ and mY simultaneously, and even if the decay chain is
not long enough to constrain all the unknowns in the event.

The property of MT2 most relevant to our discussion is that, when the input trial mass
m̃χ equals the true mass value mχ, the upper endpoint of the MT2 distribution corresponds
to the parent particle mass mY . We want to use this property to distinguish the correct
against the incorrect partition of the final-state visible particles. We note explicitly that,
in dileptonic tt̄, one can construct two kinds of MT2: M tt̄

T2 for the full tt̄ system and MWW
T2

for the WW subsystem [21–24], the visible particles being respectively b`+b̄`− and `+`−.
Since only one partition is possible in MWW

T2 , this variable cannot be used directly as a
test variable. It can however be used to construct other test variables, to be introduced in
the next section. In the rest of the present discussion we will therefore specialize to M tt̄

T2.
As already mentioned, the M tt̄

T2 distribution is bounded from above by the top quark
mass mt if the partition is the right one, whereas it is not if the partition is the wrong one.
This fact is shown in the left panel of figure 3. One can therefore define the variable

T2(Pi) ≡M tt̄
T2(Pi) , (2.10)

where we recall that Pi (i = 1, 2) denotes the two possible partitions of the 2b+ 2` visible
final states.

In the right panel of figure 3, we show the distribution of ∆T2(PW , PR) with the right
(PR) and wrong (PW ) partitions. The figure shows that the relation ∆T2(PW , PR) > 0
holds for about 80% of the events that passed just the basic selection cuts described in
section 2.2, and that this percentage reaches as much as 97% after the M tt̄

T (0) cut to be
described in section 3.2.

To conclude this section, we mention that the MT2 method of finding the right par-
tition has been proven to be useful for mass measurements and/or event reconstruction
in refs. [20, 25–35].
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Figure 3. The distributions of T2 ≡ M tt̄
T2 (left panel) and ∆T2(PW , PR) (right panel), with PW

and PR the wrong and right partitions respectively. The legend in the second panel indicates the
percentage of correctly partitioned events, before and after inclusion of the cut M tt̄

T (0) > 400 GeV,
to be described in section 3.2.

2.3.3 MAOS-reconstructed mt and mW mass: T3,4 variables

A further set of variables to test the correct partition can be constructed from the obser-
vation that the sum of final-state momenta in either decay chain must reconstruct, up to
width effects, the parent-particle’s invariant mass. The main obstacle to this, in the case of
the event topology (2.7), is the fact that the invisible momenta of the two decay chains, k1

and k2, are not measured separately, but only their sum is, and only in the transverse plane.
Systematic techniques exist however, enabling to obtain a best guess of the invisible mo-

menta k1 and k2.4 Among these techniques is the so-called MT2-assisted on-shell (MAOS)
reconstruction of invisible momenta [9]. The only assumption of the MAOS method is that
the event topology should be of the kind of eq. (2.7). Then the transverse components of
the invisible momenta, k1T , k2T , can be estimated event by event to be the location of the
minimum of the MT2 variable constructed for the event. Recall in fact that, from eq. (2.8),
MT2 is obtained from a minimization over all possible k̃1,2T configurations subject to the
constraint k̃1T + k̃2T = /pT .

Once k1T and k2T are estimated by MT2, the longitudinal components of the invisible
momenta may be determined from the on-shell relations

(pi + kmaos
i )2 = m2

Y , (kmaos
i )2 = m2

χ (2.11)

where, as usual, i labels the decay chain, mY the parent particle mass, and mχ the invisible
particle mass. eqs. (2.11) amount to a quadratic equation in the longitudinal components

4For the dileptonic tt̄ decay, one of the presently most popular techniques is the neutrino weighting

method, which has been used for the top quark mass measurement [36, 37] and for studying spin correlations

in tt̄ production [38].
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of ki, hence one has in general two solutions for each decay chain, k̃±iL. Modulo this two-
fold ambiguity, and assuming mχ to be known (in our case it is mν ≈ 0), the MAOS
reconstruction thus leads to a estimate of the full invisible momenta ki. Specifically, kmaos

i

has a roughly Gaussian distribution around ktrue
i and a moderate spread, that can be

systematically improved by requiring event cuts [9].
In our case, the whole argument in the previous paragraph can be applied to the full tt̄

decay, or to the WW subsystem, because both share the same, mentioned topology (2.7).
In particular, from the MAOS momenta of the WW system, kmaos-WW

1,2 , one can construct
the invariant mass of the top quark as(

mmaos
t,i

)2 ≡ (pb,i + p`,i + kmaos-WW
i

)2
, (2.12)

whereas from the MAOS momenta of the tt̄ system, kmaos-tt̄
i , one can construct the W

boson invariant mass as (
mmaos
W,i

)2 ≡ (p`,i + kmaos-tt̄
i

)2
. (2.13)

It is clear that, if the right partition is selected and in the limit where the MAOS momenta
equal the true momenta in each decay chain, eqs. (2.12) and (2.13) should equal respectively
the true mt and mW values, up to finite decay widths. In practice, the MAOS momenta
differ in general from the true momenta. However, the MAOS invariant mass distribution
exhibits a peak structure around the true parent particle mass. Hence — to the extent
that the spread around the peak value is not too large — the above eqs. (2.12) and (2.13)
are still useful for our purpose, which is, we recall, not to measure the t or W mass, but
to single out the correct final-state partition. We show in figure 4 the mmaos

t (left panel)
and the mmaos

W (right panel) distributions calculated using the right partition (black solid
histogram) and the wrong partition (red dashed histogram).

The argument below eqs. (2.12)–(2.13) may be used to construct a test variable of
correct partition by noting that

|mmaos
t,i −mt|(PW ) > |mmaos

t,i −mt|(PR) , (2.14)

and a similar inequality holds also for mmaos
W . In reality, the notation in relation (2.14)

is incomplete, because of the mentioned discrete ambiguity in the determination of the
longitudinal components of the invisible momenta. This is a common problem for methods
attempting to reconstruct invisible momenta, and based on polynomial on-shell equations
of degree higher than one. One cannot distinguish the solutions among themselves, even
though only one solution corresponds to the true one and the others are redundant.

We construct our test variable treating these solutions in a symmetric way. We first
define a quantity

∆tm
maos
t (α) ≡ mmaos

t (pb, pl, kα)−mt (α = +, −) , (2.15)

where we omitted the chain label, and α denotes the two MAOS solutions for the invisible
momentum kmaos in that decay chain. Thence we found that∑

i=1,2;α=+,−
|∆tm

maos
t,i (α)|(PW ) >

∑
i=1,2;α=+,−

|∆tm
maos
t,i (α)|(PR) : 84.2% , (2.16)
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Figure 4. The mmaos
t (left panel) and mmaos

W (right panel) distributions for the right and for the
wrong final-state partition. The distributions include only events with real MAOS solutions for all
partitions (see text for details).

namely that the sum over chains and over k± solutions of the quantity defined in (2.15) is
smaller when calculated on the right partition than on the wrong partition in as much as
84% of the events.5 Consistently with the discussion in section 2.1, we then define our test
variable T3 as follows:

T3(Pk) ≡
∑

i=1,2;α=+,−
|∆tm

maos
t,i (α)|(Pk) . (2.17)

The whole line of reasoning below eq. (2.14) can be applied to the WW subsystem as
well. Similarly as mmaos

t in (2.15) one constructs the difference between mmaos
W and mW

and symmetrizes between decay chains and k± solutions. We obtained∑
i=1,2;α=+,−

|∆Wm
maos
W,i (α)|(PW ) >

∑
i=1,2;α=+,−

|∆Wm
maos
W,i (α)|(PR) : 86.8% , (2.18)

and we define our test variable T4 as

T4(Pk) ≡
∑

i=1,2;α=+,−
|∆Wm

maos
W,i (α)|(Pk) . (2.19)

An important difference between the mmaos
t -based method and the mmaos

W -based one
should be emphasized. Within the mmaos

t method, the choice of final-state partition enters
only when constructing the top invariant mass (see eq. (2.12)), whereas only one partition
is possible in the estimate of kmaos-WW

i . Conversely, within the mmaos
W method, the choice

5We mention that we have tried a number of alternative combinations besides
P
i=1,2;α=+,− | · |. In

particular
Q
α,β=+,− | · |,

P
i=1,2;α=+,− | · |

2, minα,β=+,−| · | and maxα,β=+,−| · |. The combination proposed

in eq. (2.16) is the one found to have the best efficiency.
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Figure 5. The distributions of ∆T3(PW , PR) (left panel) and ∆T4(PW , PR) (right panel), with
PW and PR denoting the wrong and the right partition. The legend indicates the percentage
of correctly partitioned events, before and after inclusion of the cut M tt̄

T (0) > 400 GeV, to be
described in section 3.2. The efficiency figures in the right panel take into account the complex-
MAOS-solution criterion, whereas histograms report only the events free of complex solutions. See
text for full details.

of final-state partition does come into play in the calculation of kmaos-tt̄
i (see eq. (2.13)),

namely when calculating MT2 of the tt̄ system. The important point is that wrong parti-
tions sometimes result in complex solutions for (the longitudinal components of) kmaos-tt̄

i

much more often than right partitions do,6 and this can be used as a further criterion for
identifying the right partition. From our simulation, we found that:

(a) events with at least one complex solution (in any of the partitions) occur 38.5% of
the time;

(b) most importantly, events where a complex solution appears only in the wrong parti-
tion occur 37.9% of the time — very close to the percentage in point (a).7

From the above points, it is clear that the mmaos
W method can be augmented by the

following requirement:
if the MAOS calculation returns at least a complex solution, but only for one of the

partitions, then this partition should be regarded as the wrong one.

6Right partitions can also yield complex solutions, but only because of occasional failure of the numerical

minimization in the MT2 calculation, that we find to be the case only for a very small subset of all events

(about 0.6%). We used a modified version of the Mt2::Basic Mt2 332 Calculator algorithm of the Oxbridge

MT2 / Stransverse Mass Library [39].
7Besides, we found: (i) events where a complex solution appears in both the right and the wrong partition

(0.4% of the total events). Of course for this kind of events the information from mmaos
W is unusable; (ii)

events where a complex solution appears only in the right partition (0.2% of the total events). Events (i)

and (ii) explain the difference between the percentages in points (a) and (b).
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In the following we will refer to this statement as the complex-MAOS-solution criterion.
This requirement has a probability of mistakenly discarding a correctly paired event as small
as 5 per mil, as can easily be deduced from the above items. Note that this criterion is
already taken into account in the 86.8% efficiency figure reported in eq. (2.18) and should
be regarded as part and parcel of the ∆T4 method.

The whole discussion between eq. (2.16) and the previous paragraph is illustrated in
the plots of figure 5, that report the distributions for ∆T3(PW , PR) and ∆T4(PW , PR)
(we recall the reader that ∆T is defined in eq. (2.3)). In particular, the efficiency figures
in eqs. (2.16) and (2.18) correspond to the solid-line histograms, namely those before the
M tt̄
T (0) cut to be introduced in section 3.2 (see figure legend).

A careful reader may have noted that, in the ∆T4 panel, the percentage of events
in the positive semiaxis looks, and in fact is, smaller that the corresponding efficiency
(percentage of correctly partitioned events) indicated in the legend. This is especially true
for the histogram after the M tt̄

T (0) cut. The reason is the fact that the T4-method efficiency
is calculated as the sum of the ∆T4 > 0 criterion and, when applicable, of the complex-
MAOS-solution criterion, that by itself belongs to the T4-method, as already mentioned.
Schematically, the total T4-method efficiency, εT4 , splits up as follows:

εT4 = C · εC +R · εR , (2.20)

where C is the percentage of events with complex solutions, R is the percentage of events
free of complex solutions (C+R =100%), εC denotes the efficiency of the complex-MAOS-
solutions method and εR the efficiency of the ∆T4 > 0 method. For the events passing the
M tt̄
T (0) cut, we found R = 31% and εR ' 90%. The R subset is the only one displayed in

the dashed histogram on the right panel of figure 5, and the efficiency εR is the percentage
of this histogram lying in the positive semiaxis. More importantly for the overall method
efficiency εT4 in eq. (2.20) is to note that C = 1 − R = 69% and that εC ' 99%, to
be compared with C = 38.5% (and εC basically the same) before the cut. These figures
demonstrate that, after the cut, wrongly partitioned events tend to display complex MAOS
solutions way more often than before the cut. This behavior is actually expected: if the T4

variable, constructed with wrongly partitioned kinematics, may produce complex solutions,
they will tend to proliferate if the kinematics gets more boosted, as is the case after the
cut. The bottom line is that, from the point of view of the overall T4-method efficiency, an
increase in the number of events with complex solutions C is an advantage, because the
complex-MAOS-solution criterion has by itself an efficiency εC of nearly 100% of picking
up the correct partition.

To conclude this section, we note explicitly that the previous discussion refers to events
at parton level, as assumed throughout this paper. Of course, effects such as momentum
smearing may well destabilize the above conclusions. However, it seems reasonable to
believe that the main effect of smearing will not be to have complex solutions migrate from
the wrong to the right partition, but rather to increase the number of events where both
the right and wrong partitions consist of only complex solutions. Such events represented
only 0.6% of our total events (see point (b) above), and we simply did not use the T4

variable for such events. It is possible that this fraction of events increases, maybe even
substantially, when including mismeasurement effects. Rather than simply disposing of
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the T4 variable for these events, one may instead consider introducing some more general
complex-solution criterion than the one advocated in this section. One such criterion may
be to choose as the true partition the one whose MAOS solution has, for instance, the
largest real part. It is worth mentioning that the issue of complex solutions in event
reconstruction has been recently discussed in detail in ref. [40], and the argument in the
present paragraph is inspired by the main messages in that paper. We leave the question
of the utility and efficiency of our thus-reformulated complex-MAOS-solution criterion to
forthcoming work [14] where smearing effects will be taken into account.

3 Improving the method efficiency

3.1 Correlations and combinations of the test variables

In the previous section we have shown that each of the introduced test variables Ti is able
to find the correct final-state partition in & 80% of the total events that pass the basic
selection cuts. Already at the end of section 2.1 we have emphasized that the overall method
efficiency may be systematically improved by combining the Ti and/or by introducing
appropriate kinematic cuts. We will now address these two possibilities in turn.

First of all, the possibility that combining the Ti does indeed allow to increase the
overall method efficiency relies on the Ti being as weakly correlated as possible. Hence,
we should first address the question of how large these correlations are. For the reader’s
convenience, we recall that our Ti are defined in eqs. (2.6), (2.10), (2.17) and (2.19) and that
we also introduced a complex-MAOS-solution criterion at the end of section 2.3.3. Two-
dimensional plots of the ∆Ti(PW , PR)−∆Tj(PW , PR) correlations are shown in figure 6.
These plots do not include events with complex solutions.

The following comments are in order. First, it is apparent that T1 and T2 have a quite
strong correlation. This is because the mb` value is directly used in the calculation of MT2,
that is a monotonically increasing function of mb`. Further, the MAOS-related variables,
T3 and T4, are expected to have some degree of correlation with respectively T1 (related
to mb`) or T2 (related to M tt̄

T2). Arguments in support of this statement go as follows.
Concerning the T3 − T1 correlation, mmaos

t was defined as

(mmaos
t )2 = m2

b` + 2
(√

(mb`)2 + |pb`|2|kmaos-WW | − pb` · kmaos-WW
)
,

whence the dependence on mb` is apparent. With regards to the T4−T2 correlation, recall
instead that the mb` value was used when calculating kmaos-tt̄, in turn necessary for mmaos

W .
However, in practice, these correlations turn out to be rather weak, and this occurs because
of the nontrivial structure of the MAOS solutions. For example, if M tt̄

T2 is calculated from
a balanced configuration, mmaos

t can also be written as

(mmaos
t )2 = m2

b` + 2
(√

(mb`)2 + |pT,b`|2|kT | cosh(ηb` − ην)− pT,b` · kT
)

=
(
M tt̄
T2

)2
+ 2
√

(mb`)2 + |pT,b`|2|kT | [cosh(ηb` − ην)− 1] , (3.1)

for given kT values. Therefore, we can regard each of {T3, T4} vs. each of {T1, T2} as
approximately uncorrelated.
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Figure 6. Plots of the correlations between ∆Ti(PW , PR) and ∆Tj(PW , PR). The color code refers
to the number of events in each plot pixel.

In principle, one can merge the information from the various Ti even in presence
of correlations among them, e.g. by constructing a likelihood function (not to mention
more sophisticated pattern-finding techniques such as neural networks). The exploration
of optimal ways of using the combined information from all the Ti is of course beyond the
scope of the present paper. Besides, it should be emphasized that each of the introduced
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variables can actually be defined in a number of variations. One may adopt the approach
of considering all these variations and using their information in a joint way, that properly
takes into account correlations. This approach would also offer a way to improve the
method efficiency. We refrain from entertaining such approach in this paper, which is
devoted to the discussion of the main ideas behind each variable.

Here we limit ourselves to show that even a very simple combination of the test vari-
ables results in an appreciable improvement of the overall method efficiency. We choose
{T2, T3, T4} as a set of independent test variables. Then, the arguably simplest algorithm
to find the right partition by using these variables in a combined test is as follows:

0. Calculate T2, T3 and T4 for the two possible partitions: P1 and P2;

1. If T1(Pi) > mmax
b` or T2(Pi) > mt, regard Pi as the wrong partition;

2. If T4(Pi) results in complex MAOS solutions, whereas no complex solutions are
present for the other partition, regard Pi as the wrong partition;

3. If none of the above criteria is met, then choose P1(P2) as the right partition if the
majority of ∆Ti(P2, P1) > 0 (< 0).8

Point 1 corresponds to the already mentioned, and well-known, observation that mb` and
M tt̄
T2 have a physical upper bound at mmax

bl and mt respectively, if the partition is the
correct one. Point 2 is the complex-MAOS-solution criterion enunciated at the end of
section 2.3.3. As also discussed there, this method selects the right partition for 98.4% of
the events with at least one complex solution. According to our simulation, the combined
algorithm 0-3 described above returns the right partition for 89% of the full data set, which
we find an already remarkable improvement over the single-variable efficiency.

3.2 Improving by cuts on kinematic variables

Up to this point, we have not introduced any event selection cuts, except for the basic
cuts described in section 2.2, that, we checked, have only a marginal impact on the Ti
efficiencies. Although the previous section shows that a method efficiency of 90% or even
larger is arguably obtainable by just a wise combination of the Ti, we would like to show
in this section that improvements are possible also by imposing appropriate kinematic
variable cuts. This of course comes at the price of losing (some) event statistics.

First, we note that the property of the test variables of being larger when evaluated
with the wrong partition becomes more marked as the final states are more energetic.
Intuitively, the larger the magnitude of the input kinematics, the more spread becomes the
distribution of the variable, if it is calculated with the wrong partition. On the other hand,
the distribution calculated with the right partition enjoys the same physical endpoints
independently, of course, of the input kinematics. So, for a more boosted subset of events,
one expects ∆Ti(PW , PR) to be larger than zero more often. To single out such event subset,

8A more refined approach along the lines of point 3 is to construct a function of the Ti, e.g.,
Q
i Ti or a

linear combination of Ti’s, and choose one partition using the criterion f(Ti)(PW ) > f(Ti)(PR). We found

this kind of approach to also improve efficiency. The likelihood function is just one of such functions.
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Figure 7. (Left panel) Combined method efficiency vs. loss in statistics with the inclusion of an
inclusive cut. The x-axis represents the efficiency of the combined method described in section 3.1
whereas the y-axis reports the number of events that passed one of the inclusive cuts, listed with
different line/color codes in the legend. Events are normalized to the event subset that passed the
basic selection cuts discussed in section 2.2. (Right panel) Same as the left panel, but for the T2

variable only, rather than the combined method, on the x-axis.

one may enforce cuts on appropriate kinematic variables, and parametrically improve the
method efficiency as the cut gets stronger.

For the dileptonic tt̄ process, a well-known set of ‘partition-insensitive’ kinematic vari-
ables — which namely treat all the visible particles on an equal footing, hence they are
free of combinatorial ambiguities — is represented by:

• M tt̄
T (0),

• m2
V ≡ (pb1 + pb2 + p`1 + p`2)2,

• Meff =
∑

i piT + |/pT |,
• HT =

∑
i piT , where i = b1, b2, `1, `2,

• M tt̄
TGen,

where M tt̄
T (0) is the transverse mass of the full tt̄ system with mνν = 0 [34, 41, 42],(
M tt̄
T (0)

)2 ≡ m2
V + 2

(√
|pT |2 +m2

V |/pT | − pT · /pT
)

with p ≡
∑
i=b, `

pi , (3.2)

and M tt̄
TGen is the smallest value of M tt̄

T2 obtained over all possible partitions [25]. One can
impose these cuts in addition to the basic event selection cuts of section 2.2. In the left
panel of figure 7, we show the flow of method efficiency vs. loss in statistics as one makes
the cuts harder. See figure caption for full details.
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The figure shows that the most effective cut variable is M tt̄
T (0). One can reach 90%

method efficiency (i.e. get the right partition 90% of the times) with just a 4% loss in event
statistics. The efficiency rises to 99% when roughly halving the statistics. For the sake of
completeness, we also mention that, for the quoted efficiencies of 90%, 95% and 99%, the
cut value is respectively M tt̄

T (0) > 277, 343 and 404 GeV.
Because, for some event topologies to be described in the next section, the MAOS-

based variables T3 and T4 are not usable, but the MT2-based variable T2 still is, we also
show in the right panel of figure 7 a plot of efficiency gain vs. statistics loss for the T2

variable alone.

4 Generalizations of the method

4.1 Case of chain-assignment as well as ordering ambiguities

From the discussion so far, our method of finding the right partition can be promptly
generalized, in particular to topologies relevant for new physics scenarios. Among the
most popular such event topologies is the one in eq. (2.7), that is, pair-production of heavy
particles, decaying into a set of visible particles plus a pair of invisible particles (possibly,
dark-matter candidates). We here sketch this generalization, leaving full details to future
work [14]. For the sake of discussion, we here focus on identical decay chains, but the
argument presented below can be extended also to the case of non-identical decay chains.

The first observation to make is that the decay of heavy parent particles can be in
one step or multiple steps, depending on the mass spectrum and couplings of the new
particles. The T1 and T2 variables of sections 2.3.1 and 2.3.2 can be defined, and applied
to find the right partition of the visible particles, even in the case of a one-step decay, e.g.,
gluino-pair production, followed by the three-body decay g̃ → qqχ̃0

1 in R-parity conserving
supersymmetric models. On the other hand, to utilize the MAOS-based variables T3 and
T4, the decay process should be at least in two steps, as e.g. the dileptonic tt̄ process is.
For instance, if mq̃ < mg̃, gluino-pair production will be dominantly followed by two-step
decays, i.e., g̃ → qq̃ → qqχ̃0

1. In terms of event topology, the cascade decay processes of
interest to this discussion can be generalized as

Y Ȳ → V1(p1)X1 + V ′1(p′1)X ′1 → V1(p1)V2(p2)X2 + V ′1(p′1)V ′2(p′2)X ′2

→ · · · → V1(p1) · · ·Vn(pn)χ(k1) + V ′1(p′1) · · ·V ′n(p′n)χ̄ (k2) , (4.1)

for mY > mX1 > mX2 > · · · > mχ and mȲ > mX′1
> mX′2

> · · · > mχ̄. This decay is
also sketched in figure 4.1. The rest of the present discussion will also assume mXi = mX′i

,
albeit this requirement is renounceable with appropriate modifications of the method.

The second observation is that, in the context of this general event topology, there is,
when partitioning the visible particles, an additional type of combinatorial ambiguity with
respect to dileptonic tt̄. It is the ordering ambiguity, corresponding to the fact that V (′)

a is
produced before V (′)

a+1 (a = 1, · · · , n − 1). Of course, there is still, as in dileptonic tt̄, the
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Figure 8. The decay process of eq. (4.1). The momenta pi and p′i are assumed to be measurable,
while ki give rise to missing transverse momentum.

combinatorial ambiguity of pairing the visible particles into two sets, i.e., distinguishing
{Va} from {V ′a}. Then, the total number of partitions of the visible particles is

N=(number of pairings)×(number of orderings in one chain)2 = 2nCn
2
×(n!)2 , (4.2)

if the visible particles are not distinguishable among each other, as is the case for jets
(barring taggings etc.). Then, one can calculate the MAOS invariant masses of 2n parent
particles (Y, X1, · · · , Xn−1, Ȳ , X

′
1, · · · , X ′n−1), such that n MAOS-based test variables

are defined. We will label them as Tmaos
a (a = 0, · · · , n − 1), for a given partition Pj

(j = 1, · · · , N) and MAOS momenta kmaos (we recall that the MAOS determination of
the invisible momenta consists in general of several solutions, collectively indicated as
kmaos). Thence, one can define:

Tmaos
a (Pj , kmaos) ≡

∑
c=1,2;α=+,−

|∆Xam
maos
Xa (pa c, kαc )|(Pj) , (4.3)

where

∆Xam
maos
Xa (pa c, kαc ) ≡ mmaos

Xa (pa c, kαc )−mXa (4.4)

with pa 1 ≡
∑n

j=a+1 pj , pa 2 ≡
∑n

j=a+1 p
′
j , and X0 = Y . These correspond to the T3 and

T4 variables discussed in section 2.3.3. Actually, each Tmaos
a (Pj , kmaos) can be obtained in

different ways, since the MAOS momenta kmaos can be calculated from nC2 subsystems.
In order to account for them in a symmetric way, one may define Tmaos

a as

Tmaos
a (Pj) ≡

∑
∀kmaos

Tmaos
a (Pj , kmaos) . (4.5)
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Each Tmaos
a variable can then be used to decide on the right partition: this partition is

likely to have the smallest Tmaos
a value than all the other partitions, irrespective of whether

combinatorial ambiguities concern the pairing or the ordering of the visible particle sets.
The T1 and T2 variables are also usable because one can calculate several subsystem

T1’s and T2’s. For example, in the event topology (4.1), the subsystem T2, or briefly T sub
2 ,

can be defined as T Y Ȳ2 , T
X1X′1
2 , · · · , TXn−1X′n−1

2 , such that T Y Ȳ2 ≤ mY , T
X1X′1
2 ≤ mX1 ,

· · · , TXn−1X′n−1

2 ≤ mXn−1 for the right partition. By sequentially testing the partitions in
the order Y Ȳ → · · · → Xn−1X

′
n−1 systems, at each step selecting the partition with the

smallest T sub
2 , one can find the most likely partition for the full system.

We finally observe that the information from the above test variables can be merged
into a combined method in various ways. The simplest algorithm may be

(i) Calculate all the test variables as explained above. If TXaX
′
a

1 > mmax
Va+1···Vn = mmax

V ′a+1···V ′n
or TXaX

′
a

2 > mXa for a = 0, · · · , n− 2 or there are more complex MAOS solutions in
a given partition Pj than in any other partition, one should regard Pj as the wrong
one.

(ii) If the above procedure fails to pick up one partition, one may select the right partition
Pj from the requirement that it gives the smallest value of Ti (with respect to the
other partitions) for the largest number of test variables.

We again emphasize that the efficiency of each Ti and of the combined method can be
further improved by imposing cuts on ‘partition-insensitive’ variables, as discussed in sec-
tion 3.2.

Concrete examples of this generalized method will be the gluino pair-production and
decay discussed above, and the pair-production of the second lightest neutralino χ̃0

2, which
decays to `+`−χ̃0

1. We will consider in more details these new physics processes for certain
benchmark points in future work [14].

4.2 Comments about the method’s dependence on mass information

We would like to conclude this section about generalizations with a few remarks about the
question of the method’s dependence on the knowledge of the mass of the pair-produced
states, mY , or that of the invisible daughters, mχ.9 As a first remark, we emphasize again
that, of our proposed Ti, the variables T1 as well as T2 do not use the information on mY

at all. On the other hand, this information appears necessary for constructing the MAOS-
based variables T3 and T4, at least according to the way they were defined in section 2.3.3.
In order to be able to use the variables T3,4 at all, one would therefore seem to need mY

and mχ to have been measured already.
It is worth observing that, in many scenarios of new physics, the mass measurements

in question are not expected to be affected by combinatorial ambiguities. This holds in
particular in the case of the topologies of interest for our method, where one can construct
the event variable MT2. In fact, if, in absence of combinatorial ambiguities, mY may be

9We thank the Referee for triggering this discussion.
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estimated from the endpoint of MT2, then, in presence of combinatorial ambiguities, the
same estimate can be performed using MTGen [25] instead, i.e. the smallest MT2 value for
all possible partitions, which enjoys the same endpoint position as MT2 constructed with
the right partition.10 In cases where the production cross-section is so small, or background
contamination so high, that the mass information cannot practically be extracted along
the above lines, one can consider using a modified version of our MAOS-based variables,
wherein the parametric dependence on the true value of mY is disposed of. To make an
example, in place of the T3 definition, given in eq. (2.17), one may instead use the quantity

T̃3(Pk) ≡ |mmaos
t (chain 1)−mmaos

t (chain 2)| , (4.6)

which should be close to zero if the partition is the correct one, whereas it can be much
larger if the partition is wrong. Hence, again, ∆T̃3(PW , PR) is expected to prefer positive
values. We note explicitly that the notation in eq. (4.6) is, similarly as in eq. (2.14),
incomplete, in that the MAOS solution obtained from the on-shell relations (2.11) is not
unique (see discussion below those relations). On the other hand, on the r.h.s. of eq. (2.11),
one does not necessarily have to choose the parent particle mass. One has in general the
following choices [34]

• MAOS1: mY [9]

• MAOS2: MT2 = min
~pχ1,T

+~pχ2,T
=/~pT max{M (1)

T ,M
(2)
T }

• MAOS3: M (i)
T , with i = 1, 2 labeling the decay chain.

The advantage of MAOS3 is that it allows to have a unique MAOS solution for each
event, thereby allowing use of the T̃3 variable as defined in eq. (4.6). In fact, we found the
performance of ∆T̃3 comparable to that of ∆T3, as defined in section 2.3.3. The reason why
we defined our MAOS-based variables according to the MAOS1 scheme is mostly simplicity.

The other unknown mass besides mY is mχ, upon which all the Ti variables bear
dependence. While the necessity to input some mχ value seems inescapable, we are actually
quite confident that our method would perform rather well even in the case where the mχ

mass is yet to be measured at the moment of having to solve the combinatorial problem.
We make the following considerations in support of this statement. First, as already
mentioned in the general MT2 discussion in section 2.3.2, an estimate, perhaps an accurate
one, of mχ may be obtained from the MT2 kink [17–20], which however requires sufficient
statistics. Even in absence of such statistics, and in presence of combinatorial ambiguities,
the uppermost part of the MTGen(mχ) plot in the mχ vs. mY plane may provide a rough
idea of the mχ mass. It is worth emphasizing that a rough input value for mχ may well be
sufficient in many scenarios. It is so at least in the case where mχ � mY : it can be shown
in fact [43] that, in this limit, MAOS solutions have corrections going as m2

χ/m
2
Y and are,

therefore, largely insensitive to the specific value chosen for mχ, so long as the mentioned
mass hierarchy holds at least approximately.

10The use of MTGen was also invoked in section 3.2 as a partition-insensitive cut variable.
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Clearly, all the issues mentioned in this section deserve further investigation, which is
best carried out within specific new-physics benchmark points. This lies outside the scope
of the present paper, mainly meant to propose our method and to apply it to the simplest
yet relevant SM example we could think of, namely tt̄ production. We will however return
to all these issues in a forthcoming paper [14].

5 Conclusions and outlook

In this paper, we have proposed a novel method to resolve combinatorial ambiguities in
hadron collider events involving two invisible particles in the final state. This method
is based on the kinematic variable MT2 and on the MAOS reconstruction of invisible
momenta, that are reformulated as test variables Ti, namely testing the correct combination
against the incorrect ones. The efficiency of each single Ti in the determination of the
correct combination can then be systematically improved in two directions: by combining
the information from the different Ti and by introducing further cuts on suitable, partition-
insensitive, variables. In this sense, our method is completely scalable.

All the above program is illustrated in the specific, and per se interesting example of
top anti-top production, followed by a leptonic decay of the W on both sides. We however
emphasize that, by construction, our method is also directly applicable to many topologies
of interest for new physics, in particular events producing a pair of undetected particles,
that are potential dark-matter candidates.

Our method opens a whole spectrum of generalizations and by-product issues, on which
work is in progress [14]. The most urgent include:

• Addressing whether and how the method is affected by the inclusion of effects such
as QCD radiation, hadronization and signal degradation due to detector effects. The
main challenge of this problem is that, after hadronization, the assignment of a
‘parton’ to a given decay chain or to a certain position within the decay chain is no
more well-defined. As such, it requires separate thought.

• Generalizing the method to the combinatorial uncertainty due to the ordering of the
visible particles in the decay chain, uncertainty which is not present in dileptonic tt̄.
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