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Abstract: Using methods from soft-collinear and heavy-quark effective theory, a system-

atic factorization analysis is performed for the B̄ → Xsγ photon spectrum in the endpoint

region mb−2Eγ = O(ΛQCD). It is proposed that, to all orders in 1/mb, the spectrum obeys

a novel factorization formula, which besides terms with the structure H J⊗S familiar from

inclusive B̄ → Xul ν̄ decay distributions contains “resolved photon” contributions of the

form H J ⊗ S ⊗ J̄ and H J ⊗ S ⊗ J̄ ⊗ J̄ . Here S and J̄ are new soft and jet functions,

whose form is derived. These contributions arise whenever the photon couples to light par-

tons instead of coupling directly to the effective weak interaction. The new contributions

appear first at order 1/mb and are related to operators other than Q7γ in the effective

weak Hamiltonian. They give rise to non-vanishing 1/mb corrections to the total decay

rate, which cannot be described using a local operator product expansion. A systematic

analysis of these effects is performed at tree level in hard and hard-collinear interactions.

The resulting uncertainty on the decay rate defined with a cut Eγ > 1.6 GeV is estimated

to be approximately ±5%. It could be reduced by an improved measurement of the isospin

asymmetry ∆0− to the level of ±4%. We see no possibility to reduce this uncertainty

further using reliable theoretical methods.
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1 Introduction and outline

The radiative decay B̄ → Xsγ plays an important role in testing the Standard Model and

constraining its possible extensions at or beyond the TeV scale. Comparing the predictions

for the branching ratio of this decay obtained in extensions of the Standard Model with ex-

periment provides powerful constraints on the parameter space of many new-physics models

(see e.g. [1–3] for analyses in the context of the MSSM, and [4] for an overview of several

other models). The calculation of the B̄ → Xsγ branching ratio in the Standard Model

has been pushed to the next-to-next-to-leading order in renormalization-group improved

perturbation theory [5], leading to the prediction Br(B̄ → Xsγ) = (3.15 ± 0.23) · 10−4

for a cut Eγ > 1.6 GeV on the photon energy measured in the B-meson rest frame. A

dedicated analysis of cut-related effects and uncertainties gives the slightly lower value

Br(B̄ → Xsγ) = (2.98± 0.26) · 10−4 [6]. These theoretical estimates are in good agreement

with the current experimental world average Br(B̄ → Xsγ) = (3.52±0.23±0.09)·10−4 [7, 8].

The shape of the photon energy spectrum in B̄ → Xsγ decay is sensitive to non-

perturbative hadronic physics. At lowest order in the heavy-quark expansion, it is related

to a universal shape function describing the momentum distribution of the b quark inside

the B meson [9–12]. The same shape function parameterizes the leading bound-state

effects in the inclusive semileptonic decay B̄ → Xul ν̄. As a result, a precise measurement

of the photon spectrum can be used to derive useful hadronic input for the analysis of

B̄ → Xul ν̄ decay spectra, and in this way enable a precise determination of |Vub| [13,

14]. One goal of the present paper is to complete the analysis of non-perturbative effects

on the B̄ → Xsγ photon spectrum at subleading order in the heavy-quark expansion.

This will allow us to estimate the irreducible theoretical uncertainties in the calculation

of the B̄ → Xsγ branching ratio computed with a cut on photon energy, and it will

also have implications for the extraction of |Vub|. In the process, we will discuss that

certain terms in the standard formulae for the B̄ → Xsγ decay rate and photon spectrum

result from an incorrect matching procedure and thus carry unphysical sensitivity to long-

distance physics. A second goal of this paper is to properly factorize the short- and long-

distance contributions into perturbatively calculable functions and non-perturbative matrix

elements, using methods of effective field theory.

The B̄ → Xsγ decay rate and photon spectrum can be calculated using the optical

theorem, which relates them to a restricted discontinuity of the forward B-meson matrix

element of the product of two effective weak Hamiltonians,

dΓ(B̄ → Xsγ) ∝ Disc restr.

[

i

∫

d4x 〈B̄|H†
eff(x)Heff(0)|B̄〉

]

. (1.1)

The discontinuity is restricted by the requirement that the cut propagators must include

that of the photon and a strange quark. The effective weak Hamiltonian Heff consists of a

sum of local operators, whose definitions are collected in appendix A. The most important

ones are the electromagnetic and chromomagnetic dipole operators Q7γ and Q8g as well

as the current-current operator Qc
1. At the lowest order in αs and 1/mb, only the dipole

operator Q7γ contributes to the decay rate.
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Note the important fact that, unlike for semileptonic inclusive B-meson decays, the

B̄ → Xsγ decay rate cannot be written as the discontinuity of a forward matrix elements

of time-ordered products of fields. The reason is that not all cuts of the relevant Feynman

graphs correspond to the B̄ → Xsγ process. For example, diagrams with penguin contrac-

tions of the four-quark operatorQc
1 contain cuts corresponding to the decay b→ cc̄s without

a photon in the final state, which clearly do not contribute to the decay rate in (1.1). As a

result, the fields belonging to the B̄ → Xsγ amplitude are time-ordered, while those belong-

ing to the complex conjugate amplitude are anti-time-ordered. A path-integral method for

the evaluation of the cut diagrams contributing to expressions such as (1.1) is the Keldysh

(or time-loop) formalism [15, 16]. Here we will not expose the technical details of this

approach (see [17] for a concise recent discussion), but we will mention at the appropriate

places in our discussion where the anti-time-ordering of fields is important.

Theoretical calculations of the forward scattering amplitude utilize the fact that

ΛQCD ≪ mb to express the decay rate and the photon spectrum as a series of opera-

tor matrix elements suppressed by powers of 1/mb [18–20]. The photon spectrum has been

measured accurately for energies Eγ > 2 GeV, and some less accurate data is available in

the range between 1.7 and 2 GeV [21–25]. The partially inclusive rates obtained experi-

mentally are defined as integrals over the endpoint region E0 < Eγ < MB/2. The shape of

the photon spectrum in the region above 2GeV is most useful for extracting information

that can be used to determine |Vub| from B̄ → Xul ν̄ decay distributions [13, 14]. Note that

in the relevant region of phase space the variable ∆ = mb−2E0 is a hadronic scale of order

ΛQCD, which is much smaller than the hard scale mb of the process. In this “endpoint

region”, the hadronic final state Xs has large energy EX ∼ mb but small invariant mass

MX ∼
√
mb∆ ∼

√

mbΛQCD. This follows from the fact that M2
X = MB(MB−2Eγ), which

implies that the photon energy spectrum contains the same information as the hadronic

invariant mass distribution in B̄ → Xsγ decay. In this case the appropriate theoretical

description of hadronic effects involves an expansion of the forward scattering amplitude

in non-local operator matrix elements called shape functions [9, 10]. If in the future it

will be possible to lower the photon cut to a value such that mb ≫ ∆ ≫ ΛQCD (this

will require E0 < 1.6 GeV or so), then many (but not all) of the non-local matrix elements

can be expanded in matrix elements of local operators using a multi-scale operator product

expansion, consisting of a double expansion in powers of ΛQCD/mb and ΛQCD/∆ [26]. How-

ever, even in the hypothetical limit E0 → 0 some non-local effects remain, which cannot

be described using a local heavy-quark expansion in power of ΛQCD/mb.

In this paper we perform a comprehensive study of the factorization properties of

the B̄ → Xsγ photon spectrum in the endpoint region, which is more systematic than

previous analyses. Using methods of effective field theory, we propose a novel factorization

formula valid at any order in the 1/mb expansion, which is a generalization of the familiar

soft-collinear factorization formula [27–29, 31–33]

dΓ(B̄ → Xul ν̄) =

∞
∑

n=0

1

mn
b

∑

i

H
(n)
i J

(n)
i ⊗ S(n)

i (1.2)

for the differential distributions in the inclusive semileptonic decay B̄ → Xul ν̄. Here H
(n)
i
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Figure 1. Graphical illustration of the three terms in the QCD factorization theorem (1.3) for

B̄ → Xsγ decay in the endpoint region. The dashed lines represent soft interactions, which must

be power expanded and factored off the remaining building blocks to derive factorization.

are hard functions parameterizing physics at the scale mb, J
(n)
i are jet functions describing

the physics of the hadronic final state Xu with invariant mass MX ∼
√

mbΛQCD, and S
(n)
i

are soft functions incorporating hadronic physics associated with the scale ΛQCD. The soft

or shape functions are defined in terms of forward matrix elements of non-local HQET

operators on the light cone. The symbol ⊗ implies a convolution, which arises when the

soft and jet functions share some common variables.

The new element, which makes the analysis of B̄ → Xsγ decay more involved than that

of semileptonic decays, is the presence of “resolved photon” contributions, which contain

subprocesses in which the photon couples to light partons instead of connecting directly

to the effective weak-interaction vertex [34–39]. As we will show, these subprocesses probe

the hadronic substructure of the photon at a scale of order
√

2EγΛQCD. The corresponding

effects can be described by introducing new jet functions J̄
(n)
i . There is no analog of this

phenomenon in semileptonic decays, because a lepton-neutrino pair can only couple to

light partons via W -boson exchange. The factorization formula we obtain for the photon

spectrum in the endpoint region is

dΓ(B̄ → Xsγ) =

∞
∑

n=0

1

mn
b

∑

i

H
(n)
i J

(n)
i ⊗ S(n)

i (1.3)

+
∞
∑

n=1

1

mn
b

[

∑

i

H
(n)
i J

(n)
i ⊗ S(n)

i ⊗ J̄ (n)
i

+
∑

i

H
(n)
i J

(n)
i ⊗ S(n)

i ⊗ J̄ (n)
i ⊗ J̄ (n)

i

]

.

It contains “direct photon” contributions of the same form as (1.2), accompanied by single

and double resolved photon contributions that are new. Our notation is symbolic; objects

denoted by the same symbol in the various terms refer, in general, to different quantities.

Note the important fact that the new contributions appear first at order 1/mb in the

heavy-quark expansion. While the jet functions J
(n)
i are cut propagator functions dressed
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by Wilson lines, the jet functions J̄
(n)
i are given in terms of full propagator functions dressed

by Wilson lines. A graphical illustration of the factorization formula is shown in figure 1.

When the photon spectrum is integrated over an interval much larger than the endpoint

region, the direct photon contributions simplify to a series of hard coefficients multiply-

ing forward B-meson matrix elements of local operators, in analogy to what happens in

semileptonic B̄ → Xul ν̄ decay [18–20]. In particular, it follows that the corrections of

first-order in ΛQCD/mb integrate to zero, since there does not exist a local, gauge-invariant

operator that could account for such terms. An important result of our analysis is that

the resolved photon contributions do not reduce to matrix elements of local operators in

that case. Their effects on the total decay rate must still be described in terms of non-local

operator matrix elements, as illustrated with a specific example in [39].1

Resolved photon contributions can only arise from operators in the effective weak

Hamiltonian that do not contain the photon field as part of the effective, local weak inter-

actions. The most important such operators are the chromomagnetic dipole operator Q8g

and the current-current operator Qc
1. Power-suppressed contributions from other operators

can be safely neglected for phenomenological purposes. It follows that double resolved pho-

ton contributions can only arise from the operator pairs Q8g−Q8g, Q
c
1−Qc

1, and Qc
1−Q8g,

while single resolved photon contributions can also arise from the pairs Q8g − Q7γ and

Qc
1 −Q7γ . Direct photon contributions can arise from all operator pairings. Some effects

involving the conversion of the photon into light partons have been discussed previously

in the literature [34–39], and it is known (though not widely appreciated) that they fall

outside the realm of the local operator product expansion. Let us comment on the various

effects one by one:

• The perturbative analysis of the Q8g − Q8g contribution gives rise to IR-singular

contributions, which at one-loop order can be regularized by introducing a non-zero

mass for the strange quark [41]. It was argued in [34] that these singularities can be

absorbed into the photon fragmentation functions of the strange quark and the gluon.

We find that this factorization no longer holds in the endpoint region. Instead, the

IR singularities must be factored into a subleading four-quark shape function.

• The current-current operator Qc
1 can induce penguin-type transitions, in which two

charm or up quarks convert into a photon and soft gluon. Previous studies of this

effect have focused on its contribution to the total decay rate, which arises from its

interference with the matrix element of Q7γ [35–38]. In the present work we will

generalize this analysis to the case of the photon spectrum in the endpoint region.

• The square of the charm-penguin amplitude, the Qc
1−Qc

1 double resolved photon con-

tribution, has not yet been analyzed in the literature, but it is sometimes mentioned

as a potentially large source of power corrections due to the fact that the operator Qc
1

has by far the largest Wilson coefficient in the effective weak Hamiltonian. We will

1The total B̄ → Xsγ decay rate is not an infrared (IR) safe observable. What is usually meant by this

term is the rate defined with a very low cut on photon energy, and with a subtraction of duality-violating

charmonium resonance contributions [40].
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show that this contribution arises first at order 1/m2
b in the heavy-quark expansion.

Its effects on the decay rate and spectrum are therefore strongly suppressed. The

same is true for the Qc
1 −Q8g double resolved photon contribution.

• Resolved photon contributions from the Q8g−Q7γ interference term were first studied

in [39], again with regard to their impact on the total decay rate. We will complete

this study and generalize it to the case of the photon spectrum.

We begin our analysis with a review of known results for the B̄ → Xsγ photon spectrum

in section 2, indicating a couple of problematic features in the formulae routinely used in

the literature. The new factorization formula (1.3) will be derived in section 3 using a two-

step matching procedure from QCD to soft-collinear effective theory (SCET) [28, 42, 43]

and heavy-quark effective theory (HQET) [44]. In section 4 we discuss the factorization

properties of the various contributions to the B̄ → Xsγ photon spectrum, which arise

from different pairs of operators in the effective weak Hamiltonian. This includes, in

particular, a detailed discussion of the new subleading shape functions for the contributions

from operator pairs other than Q7γ −Q7γ . These have not been considered previously in

the literature, except for a particular subleading shape-function contribution to the total

B̄ → Xsγ decay rate arising from the operator pair Q7γ − Q8g [39]. In section 5 we use

the invariance of the strong interaction under the discrete symmetry PT to prove that

the subleading soft functions are real, i.e., they do not carry non-trivial strong phases.

The implications of our findings for the integrated B̄ → Xsγ decay rate are studied in

section 6. We show that the resolved photon contributions must still be described in terms

of matrix elements of non-local operators, whose effects cannot be reduced by lowering

the cutoff on the photon energy. Finally, in section 7 we study the phenomenological

implications of our results by estimating the irreducible theoretical uncertainty in the

prediction for the B̄ → Xsγ decay rate integrated over the range Eγ > 1.6 GeV. We then

summarize our results and give some conclusions. Three appendices contain our definitions

of the operators in the effective weak Hamiltonian, a summary of input parameters, and

a detailed exposition of the matching of the effective weak Hamiltonian onto operators in

SCET. Readers not interested in the technical details of our derivations should consult

section 2 and then proceed with sections 6 and 7.

Even though we only sketch the derivation of the new factorization formula in section 3,

we consider this discussion as solid as that for many other processes discussed in the

context of SCET. Still, we do not claim to have a rigorous proof of factorization. Indeed,

in our analysis we will encounter one particular contribution to the B̄ → Xsγ photon

spectrum and decay rate, for which the resulting convolution integrals derived using SCET

suffer from an ultra-violet (UV) divergence. In its current formulation, the effective theory

does not provide a systematic framework for regularizing this divergence. The problem of

divergent convolution integrals in SCET has been encountered previously in the context

of heavy-to-light form factors [45–48] and power-suppressed contributions to hadronic B-

meson decays [49, 50]. It is to some extent still an open question whether these integrals

indicate a failure of factorization, or whether they can be cured by a generalization of

the theoretical framework of SCET (an attempt in this direction was initiated in [51]).

– 6 –
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An important difference is that in all previous cases these divergences were of IR origin.

In our case, the convolution integrals diverge in the UV. Such divergences appear to be

rather generic in the description of higher-order power corrections, because the resulting

convolution integrals contain higher powers of soft momentum variables. The physical

origin of the divergence and its interpretation are entirely transparent. Still, the presence

of this effect is problematic for the consistency of SCET as a bona fide effective field theory

and calls for a cure. We will discuss a simple treatment of the divergence using a hard cutoff

on the convolution integrals. We do not claim, however, to have a systematic procedure that

would work at higher orders in perturbation theory and allow for a consistent resummation

of large logarithms. In that sense our derivation of factorization is incomplete.

2 Review of known results and preview of new ones

Let us briefly summarize what is known in the literature about the various terms in the

factorization formula (1.3). Separating the contributions from different operators in the

effective weak Hamiltonian, we write the heavy-quark expansion of the CP-averaged B̄ →
Xsγ photon-energy spectrum in the endpoint region p+ ≡ mb−2Eγ = O(ΛQCD) in the form

dΓ

dEγ
=
G2

Fα|VtbV
∗
ts|2

2π4
m2

b(µ)E3
γ

[

|Hγ(µ)|2
∫ Λ̄

−p+

dωmb J
(

mb(ω + p+), µ
)

S(ω, µ)

+
1

mb

∑

i≤j

Re
[

C∗
i (µ)Cj(µ)

]

Fij(Eγ , µ) + . . .

]

,

(2.1)

where Λ̄ = MB − mb, and the ellipses represent terms of order 1/m2
b and higher. For

convenience we have factored out two powers of the running b-quark mass (defined in the

MS scheme) and three powers of the photon energy, as this is the correct energy dependence

of the leading contribution to the spectrum.

The term in the first line of (2.1) is the leading-power contribution and is well un-

derstood theoretically. At this order the effective weak Hamiltonian for B̄ → Xsγ decay

matches onto a unique leading-order current operator in SCET. The hard matching coef-

ficient Hγ(µ) = C7γ(µ) + O(αs) for this current receives contributions from all operators

in the effective weak Hamiltonian, not just Q7γ , as soon as one goes beyond the leading

order in perturbation theory [26]. The contribution proportional to C7γ is known to order

α2
s [52, 53], while the remaining terms are known to order αs. When the effective current

operator is further matched onto HQET, a single jet function J(p2, µ) = δ(p2) + O(αs)

arises, which is given by the discontinuity of the quark propagator in light-cone gauge and

has been calculated to two-loop order in [54]. The remaining HQET matrix element defines

a single, leading-order shape function via [10]

S(ω, µ) =

∫

dt

2π
e−iωt 〈B̄(v)|h̄(tn)Sn(tn)S†

n(0)h(0)|B̄(v)〉
2MB

. (2.2)

Here v denotes the four-velocity of the B meson, and n is a light-like vector pointing along

the direction of the final-state hadronic jet. We normalize these vectors such that v2 = 1,

– 7 –



J
H
E
P
0
8
(
2
0
1
0
)
0
9
9

n2 = 0, v · n = 1, and v0 ≥ 1. The soft Wilson line Sn is defined as

Sn(x) = P exp

(

ig

0
∫

−∞

dun · As(x+ un)

)

, (2.3)

where the path-ordering symbol P means that fields with larger u values stand to the

left of those with smaller ones. The conjugate Wilson line S†
n has the opposite ordering

prescription. These definitions imply that Sn(tn)S†
n(0) = [tn, 0] is a straight line segment

connecting the points tn and 0, with gauge fields closer to the point tn standing to the left

of those closer to 0. Taking the complex conjugate of relation (2.2) and using translational

invariance, one finds that the shape function is real. The functionsHγ , J , and S incorporate

contributions associated with different scales in the problem. The hard functionHγ receives

virtual corrections of order the hard scale µh ∼ mb, while the shape function S encodes

non-perturbative hadronic physics associated with the soft scale µs ∼ p+ ∼ ΛQCD. The jet

function describes the properties of the final-state hadronic jet, whose invariant mass scales

like µhc ∼
√

mb ΛQCD in the endpoint region. This intermediate scale is the scale of (anti-

)hard-collinear virtualities. Large logarithms arising from ratios of these various scales

can be resummed to all orders in perturbation theory by solving renormalization-group

equations in the effective theory [26–28].

Beyond the leading power in the heavy-quark expansion, the proper factorization of

the various contributions to the decay rate has not yet been discussed systematically in

the literature. Such an analysis is the main goal of the present work. In phenomenological

discussions of B̄ → Xsγ decay one usually starts from expressions for the power-suppressed

terms derived in the naive parton model, i.e., by computing the inclusive decay of an on-

shell b quark [12, 41, 55]. Including only the phenomenologically relevant contributions

from operator products of Qc
1, Q7γ , and Q8g, and setting Vub = 0 for simplicity, this yields

for the first-order power corrections

F part
77 (Eγ , µ) =

CFαs(µ)

4π

(

16 ln
mb

p+
− 15

)

,

F part
88 (Eγ , µ) =

CFαs(µ)

4π

(

2

9
ln
mb p+

m2
s

− 1

3

)

,

F part
78 (Eγ , µ) =

CFαs(µ)

4π

10

3
,

F part
11 (Eγ , µ) = F part

18 (Eγ , µ) =
CFαs(µ)

4π

2

9
,

F part
17 (Eγ , µ) =

CFαs(µ)

4π

(

−2

3

)

− mbλ2

9m2
c

δ(p+) .

(2.4)

In this paper we adopt the scaling m2
c = O(mbΛQCD) for the charm-quark mass, meaning

that the ratio m2
c/mb remains a constant of order ΛQCD in the heavy-quark limit. Note

that the expression for F part
17 includes a non-perturbative effect proportional to the HQET

parameter λ2 = (M2
B∗ −M2

B)/4 ≈ 0.12 GeV2 [35–38], which is of the same order in power

counting as the perturbative contribution. It is related to charm-penguin diagrams with a
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soft gluon emission. If we were to adopt the alternative counting scheme wheremc = O(mb)

in the heavy-quark limit, then some of the expressions in (2.4) would change. In that case

F part
11 (Eγ , µ) =

CFαs(µ)

4π

4

9

∫ 1

0
dx (1− x)

∣

∣

∣
1− F

( z

x

)∣

∣

∣

2
,

F part
17 (Eγ , µ) = −3F part

18 (Eγ , µ) =
CFαs(µ)

4π

(

−4

3

)
∫ 1

0
dxxRe

[

1− F
( z

x

)]

,

(2.5)

where z = (mc/mb)
2, and we have defined the penguin function

F (x) = 4x arctan2

(

1√
4x− 1

)

. (2.6)

The non-perturbative contribution to F part
17 would be power-suppressed in that case and

should be dropped for consistency.

In order to account for non-perturbative effects other than those described by the λ2

term, the simplest recipe used in the literature is to replace p+ → ω + p+ in the above

expressions and convolute them with the leading-order shape function S(ω, µ), e.g.

F77(Eγ , µ) =
CFαs(µ)

4π

∫ Λ̄

−p+

dω

(

16 ln
mb

ω + p+
− 15

)

S(ω, µ) ,

F78(Eγ , µ) =
CFαs(µ)

4π

10

3

∫ Λ̄

−p+

dω S(ω, µ) ,

(2.7)

and similarly for the other terms [12, 13].

Beyond the leading order in 1/mb, the photon spectrum also receives contributions

involving more complicated soft functions, usually called subleading shape functions. So

far they have been studied only for the direct photon contribution from two insertions of

the electromagnetic dipole operator Q7γ [30–33]. In the notation of [32], one obtains at

tree level

F SSF
77 (Eγ , µ) = p+ S(−p+, µ) + s(−p+, µ)− t(−p+, µ) + u(−p+, µ)− v(−p+, µ)

− παs(µ)
[

f (s)
u (−p+, µ) + f (s)

v (−p+, µ)
]

+O
(αs(µ)

4π

)

.
(2.8)

These same functions also contribute, in other combinations, to the semileptonic B̄ → Xul ν̄

decay spectra in the endpoint region. One can think of t and v as non-local generalizations

of the B-meson matrix element of the subleading HQET chromomagnetic operator, and

of u as a non-local generalization of the matrix element of the kinetic operator. The

function s arises from an insertion of the subleading HQET Lagrangian into the matrix

element for the leading shape function in (2.2). The functions f
(q)
u and f

(q)
v arise from the

matrix elements of non-local four-quark operators. In the present paper we will encounter

other four-quark shape functions, which are unique to radiative decays. It is therefore

hopeless to try to find weighted distributions of B̄ → Xsγ and B̄ → Xul ν̄ events, in which

the subleading shape functions enter in the same combinations — a goal pursued in [56],

working at tree level and neglecting all operators in the effective weak Hamiltonian except
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Q7γ . As in all previous analyses of subleading shape-function contributions, it is sufficient

for phenomenological purposes to restrict the analysis to the tree level, since so little is

known about the functional forms of the subleading shape functions. In the language of

the factorization formula (1.3), this means that the corresponding hard and jet functions

are computed at zeroth order in αs/π. We do, however, include jet functions associated

with a factor g2 = 4παs, which can arise from tree-level hard-collinear gluon exchange. In

this work we complete the analysis of subleading shape functions for B̄ → Xsγ decay by

analyzing the contributions analogous to (2.8) for the remaining pairs of operators in the

effective weak Hamiltonian.

It would be incorrect to simply add the partonic contributions and the contributions

from subleading shape functions, such as (2.7) and (2.8), as this would lead to double

counting. In fact, since the partonic expressions (2.4) and (2.5) have not been derived

from a proper matching procedure, they secretly contain some soft contributions, which

should be subtracted and absorbed into the subleading shape functions. The explicit

expressions for F part
77 and F part

88 in (2.4), which contain parametrically large logarithms,

already hint at the fact that such a subtraction is required. The dependence of F part
88 on

the strange-quark mass is clearly a sign of an unphysical sensitivity to the IR region, which

should not be present in a short-distance coefficient function. For the case of F part
77 one

might think that the large logarithm results from a combination of hard-collinear and hard

scales, ln(mb/p+) = ln(m2
b)−ln(mb p+), in which case it would have a short-distance origin.

We will see, however, that it results from a combination of hard-collinear and soft scales,

ln(mb/p+) = ln(mb p+)− 2 ln(p+). The sensitivity to the soft scale p+ must be subtracted

and absorbed into a subleading shape function.

Our improved expressions for the coefficient functions read

F77(Eγ , µ) =
CFαs(µ)

4π

∫ Λ̄

−p+

dω

(

16 ln
mb(ω + p+)

µ2
+ 9

)

S(ω, µ) + F SSF
77 (Eγ , µ) ,

F88(Eγ , µ) =
CFαs(µ)

4π

∫ Λ̄

−p+

dω

(

2

9
ln
mb(ω + p+)

µ2
− 1

3

)

S(ω, µ) + 4παs(µ) f88(−p+, µ) ,

F78(Eγ , µ) =
CFαs(µ)

4π

10

3

∫ Λ̄

−p+

dω S(ω, µ) + 4παs(µ)Re
[

f
(I)
78 (−p+, µ) + f

(II)
78 (−p+, µ)

]

,

F17(Eγ , µ) =
CFαs(µ)

4π

(

−2

3

)
∫ Λ̄

−p+

dω S(ω, µ) +
∑

q=c,u

δq Re f17,q(−p+, µ) ,

F11(Eγ , µ) = F18(Eγ , µ) =
CFαs(µ)

4π

2

9

∫ Λ̄

−p+

dω S(ω, µ) ,

(2.9)

where we now also include the effects of up-quark loops in F17, i.e., we no longer set Vub = 0.

We have defined

δq =
Re
[

λq C1(µ) (−λ∗t )C∗
7γ(µ)

]

|λt|2 Re
[

C1(µ)C∗
7γ(µ)

] , λq = VqbV
∗
qs , (2.10)

where δc + δu = 1 by unitarity of the CKM matrix. Note that δu is of second order in
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the Wolfenstein parameter λ ≈ 0.22 and thus numerically very small. The perturbative

terms involving convolutions with S(ω, µ) are now free of IR-sensitive contributions, and

all long-distance physics resides in the shape functions.

We finish this section with an important remark, which is somewhat orthogonal to the

main thrust of this paper but nevertheless relevant. In the analysis of the B̄ → Xsγ decay

rate and photon spectrum, it is customary to adopt for the charm-quark mass a running

mass defined at a hard-collinear scale µhc ∼
√

mbΛQCD ∼ mc [57]. For instance, the default

value adopted in [5] ismc = mc(1.5GeV). This scale choice is indeed appropriate for charm-

quark mass effects residing in the jet functions entering the factorization formula (1.3). We

will be concerned with such effects in section 4.3. On the other hand, charm-quark mass

effects also enter some of the hard functions in the factorization formula, for instance via the

coefficient Hγ(µ) in (2.1) [26], or via phase-space functions such as those shown in (2.5). In

this case the charm-penguin loops are probed at virtualities of order mb, and it is therefore

appropriate to use a running mass mc = mc(µh) evaluated at a hard scale µh ∼ mb. This

can have important numerical effects, enhancing the theoretical prediction for the total

decay rate by up to 3%.

3 Schematic derivation of the factorization formula

The endpoint region of the B̄ → Xsγ photon spectrum is defined as the kinematical region

where the hadronic jet Xs has large energy compared to its invariant mass: EX ∼ mb, but

MX ∼
√

mbΛQCD. We define two light-like vectors, n and n̄, which are aligned with the

directions of the hadronic jet with total momentum PX and the photon with momentum q.

These two vectors satisfy n+ n̄ = 2v, where v is the velocity of the B meson. Specifically,

we have PX = EXn + (M2
X/4EX ) n̄ and q = Eγ n̄. In the B-meson rest frame, we may

choose nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). It is convenient to decompose 4-vectors in

the light-cone basis spanned by n and n̄,

aµ = n · a n̄
µ

2
+ n̄ · a n

µ

2
+ aµ

⊥ ≡ a
µ
+ + aµ

− + aµ
⊥ . (3.1)

We will often use the short-hand notation a ∼ (n · a, n̄ · a, a⊥). Note that by definition the

external momenta PX , q, and MBv have vanishing perpendicular components.

SCET and HQET are the appropriate effective field theories to study the factorization

properties of inclusive B-meson decay spectra in the endpoint region [28, 29, 31–33]. We

will need several types of SCET modes for our analysis, each one corresponding to a

particular physical scale relevant to the process. Indeed, once the relevant modes have

been identified, factorization follows from a sequence of simple and by now familiar steps.

High-energy scales such as the electro-weak scales mt, MW or the hard scale set by the

heavy-quark mass mb are integrated out before one enters the low-energy effective theories,

and hence there are no fields for such hard quantum fluctuations in SCET or HQET.

The expansion parameter in the factorization analysis is λ = ΛQCD/mb, where we do

not distinguish between MB , mb, EX , and Eγ , all of which are of the same order in the

endpoint region. The partons that make up the final-state hadronic jet Xs carry momenta
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that generically scale like the total jet momentum PX . In light-cone components this implies

phc ∼ mb (λ, 1,
√
λ). We will refer to modes with this scaling behavior as hard-collinear

(hc) fields. The final state as well as the initial B meson also contain soft partons with

momenta ps ∼ mb (λ, λ, λ) of order ΛQCD. The light-like photon momentum q itself does

not set a physical scale; however, partons with momenta scaling like phc ∼ mb (1, λ,
√
λ) can

convert into a photon accompanied by soft partons, which can be absorbed by the hadronic

final state or originate from the initial B meson. We will refer to modes with this scaling

behavior as anti-hard-collinear (hc). The invariant mass of a set of anti-hard-collinear

partons scales like
√

mbΛQCD. Note that processes in which a parton fragments into a

photon plus an energetic parton moving along the n̄ direction, such as those considered

in [34], are kinematically not allowed in the endpoint region. The produced energetic

parton cannot be absorbed by the low-mass final-state hadronic jet.

In this paper, we denote by ξhc and ξhc the effective SCET fields for hard-collinear and

anti-hard-collinear quarks, respectively. We define them as

ξhc = W †
n̄ ξn ∼

√
λ , ξhc = W †

n ξn̄ ∼
√
λ , (3.2)

where ξn and ξn̄ are two-component spinor fields in the effective Lagrangian, which obey

/n ξn = /̄n ξn̄ = 0. The quantities Wn̄ and Wn are the familiar (anti-)hard-collinear Wil-

son lines of SCET. Similarly, we define the hard-collinear and anti-hard-collinear gluon

fields [58]

A
µ
hc = W †

n̄ (iDµ
hcWn̄) ∼ (λ, 0,

√
λ) , A

µ

hc
= W †

n (iDµ

hc
Wn) ∼ (0, λ,

√
λ) . (3.3)

Finally, we need the soft heavy- and light-quark fields h, q ∼ λ3/2 and the soft gluon

field Aµ
s ∼ (λ, λ, λ). The effective heavy-quark field obeys /vh = h. For clarity, soft

light-quark fields will often be denoted by the flavor of the corresponding particles (q =

u, d, s, . . . ). Finally, note that in general the gluon fields have the same scaling properties as

the corresponding momenta (apart from the large components of the (anti-)hard-collinear

gluon fields, which have been “gauged away” by the introduction of the Wilson lines), and

the same is true for derivatives acting on these fields.

The effective fields defined in (3.2) and (3.3) are invariant under (anti-)hard-collinear

gauge transformations, while they transform homogeneously under soft gauge transforma-

tions [43]. An important technical step in deriving factorization formulae using SCET is the

decoupling of the soft gluons from the (anti-)hard-collinear fields. This is accomplished by

introducing the soft Wilson lines Sn(x) in (2.3) and corresponding Wilson lines Sn̄ defined

analogously with n replaced by n̄. We then perform the decoupling transformations [28, 59]

ξhc(x) = Sn(x−) ξ
(0)
hc (x) , A

µ
hc(x) = Sn(x−)A

(0)µ
hc (x)S†

n(x−) , (3.4)

and similarly for the anti-hard-collinear fields. When expressed in terms of the “sterile”

fields with superscript “(0)”, the SCET Lagrangian no longer contains interactions between

soft and (anti-)hard-collinear fields at leading order in λ.

The derivation of the factorization formula (1.3) proceeds as follows. In the first step,

the QCD matrix element of the product of the two effective weak Hamiltonians in (1.1)
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is matched onto operators in the effective theory SCET(hc, hc, s), which is the version

of SCET containing hard-collinear, anti-hard-collinear, and soft degrees of freedom. In

this step the hard functions H
(n)
i appear as Wilson coefficients capturing the effects of

hard quantum fluctuations. A priori, an operator in the effective weak Hamiltonian can be

matched onto any operator in SCET with the right quantum numbers. One finds, however,

that up to order 1/mb only a small number of effective-theory operators contribute. Many

aspects of this first matching step have been discussed in [60], where a factorization theo-

rem was derived for the exclusive decays B → K∗γ and B → ργ. Note that in the endpoint

region anti-hard-collinear partons cannot be part of the final state Xs, because this would

lead to an invariant hadronic mass MX ∼ mb, in contrast with the required scaling MX ∼
√

mbΛQCD. We therefore need insertions from the SCET Lagrangian, which convert all

anti-hard-collinear particles into a photon plus a set of soft partons. As will be discussed in

section 4, these insertions are always power suppressed. After this is done, any given contri-

bution to the decay rate is related, in position space, to a matrix element of the generic form

Disc 〈B̄(v)|h̄(x)[φs(xi) . . . ]h(0) [φhc(yj) . . . ] [φhc(zk) . . . φ
′
hc

(z′l) . . . ]|B̄(v)〉 . (3.5)

Note that we have introduced two types of anti-hard-collinear fields. The fields φhc

(φ′
hc

) only couple to the photon connected to the initial (final) B-meson state via the

weak effective Hamiltonian, see figure 1. These fields should be thought of as different

entities, which do not interact with one another (i.e., there are no interaction terms in

the effective Lagrangian coupling φhc and φ′
hc

). The reason is that the exchange of an

anti-hard-collinear particle across the two sides of the forward amplitude is forbidden

kinematically, as this would lead to a hadronic final state with mass of order mb. In other

words, anti-hard-collinear propagators are never cut.

The soft heavy-quark fields need to be part of any effective-theory operator. The three

brackets [. . . ] can contain generic products of soft, hard-collinear, and anti-hard-collinear

fields. The presence of a hard-collinear jet in the final state requires that the hard-collinear

bracket must contain at least two fields, either a pair of strange quarks or of other light

partons (gluons or quarks). In the latter case, the strange-quark pair must appear in the

soft bracket. The anti-hard-collinear bracket, on the other hand, can be empty. Recall

that any field in the effective Lagrangian scales like a positive power of
√
λ, so adding an

additional field to an operator always leads to further power suppression.

Because of the particular scaling of soft and (anti-)hard-collinear momenta, the soft

fields must be multipole expanded when they couple to (anti-)hard-collinear fields [61].

The multipole expansion is subtle if there are external momenta in the problem whose

components are nearly identical, such as n · (mbv) ≈ n · q in our case. The correct form of

the expansion must then be determined on a case-by-case basis for each operator, rather

than derived from a simple set of rules. We find that the heavy-quark fields must always

be expanded about x−, while other soft fields can depend on either x− or x+, or both.

At this point the fields belonging to the three types of modes can still interact with

each other by the exchange of soft gluons. These interactions are unsuppressed in SCET,

but they have an eikonal structure and can be removed by field redefinitions [28, 59].

The remaining power-suppressed interactions are treated as Lagrangian insertions and so
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are included as parts of the operators in (3.5). After the decoupling transformations, the

forward B-meson matrix elements needed for the calculation of inclusive decay spectra can

therefore be factorized into a B-meson matrix element of soft fields multiplying vacuum

expectation values of hard-collinear and anti-hard-collinear fields:

〈B̄(v)|h̄(x−)[φs(xi∓) . . . ]h(0)|B̄(v)〉 ×Disc 〈0|[φ(0)
hc (yj) . . . ]|0〉

× 〈0|[φ(0)

hc
(zk) . . . ]|0〉 〈0|[φ′(0)hc

(z′l) . . . ]|0〉 .
(3.6)

In this process the soft Wilson lines from (2.3) arise, which must be included as part of the

soft matrix elements. In fact, they render these non-local matrix element gauge invariant.

In the last step, we match SCET onto HQET by integrating out the (anti-)hard-

collinear fields. This can be done perturbatively, because the corresponding scales are

in the short-distance regime. The Wilson coefficients of this matching are simply the

perturbative expressions for the vacuum correlation functions of the (anti-)hard-collinear

fields. Their Fourier transforms define the momentum-space jet functions J
(n)
i and J̄

(n)
i ,

and the Fourier transforms of the soft matrix elements define the soft functions S
(n)
i :

J
(n)
i ∼

[

Disc 〈0|[φ(0)
hc (yj) . . . ]|0〉

]

F.T.
, J̄

(n)
i ∼

[

〈0|[φ(0)

hc
(zk) . . . ]|0〉

]

F.T.
,

S
(n)
i ∼

[

〈B̄|h̄(x−)[φs(xi∓) . . . ]h(0)|B̄〉
]

F.T.
.

(3.7)

If both anti-hard-collinear brackets in (3.6) are empty, the corresponding contribution to

the spectrum becomes part of the first term in the factorization formula (1.3). If only one

of them is empty, the contribution becomes part of the second term. Finally, if both anti-

hard-collinear brackets are not empty, the contribution belongs to the last term. Note that

the momentum-space functions defined above will, in general, depend on several Fourier

variables (one less than the number of space-time variables in the corresponding non-local

matrix elements), and as a result the convolutions in the factorization formula (1.3) involve

multi-dimensional integrals.

This concludes the derivation of the factorization formula. Our main focus in this work

is on the resolved photon contributions giving rise to the second and third terms in (1.3).

We will now present a detailed discussion of the matching procedure for these contributions.

4 Systematic analysis of resolved photon contributions

4.1 Matching onto SCET

As outlined in the previous section, the analysis of the B̄ → Xsγ photon spectrum in

the effective theory consists of two steps. In the first step the effective weak Hamiltonian

summarized in appendix A is matched onto operators in SCET consisting of (anti-)hard-

collinear and soft fields. The Wilson coefficients arising in this step are the hard functions

H
(n)
i in (1.3). In the second step the (anti-)hard-collinear modes are integrated out, and the

theory is matched onto HQET. The Wilson coefficients arising in this step are the jet func-

tions J
(n)
i and J̄

(n)
i . The remaining hadronic matrix elements define the soft functions S

(n)
i .

For simplicity, we will restrict ourselves to the tree-level approximation for hard quantum
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Figure 2. O(λ1/2) (top row) and O(λ) (bottom row) conversions of anti-hard-collinear particles

into a photon accompanied by soft particles. Only some representative diagrams are shown.

corrections, and to the one-loop approximation for (anti-)hard-collinear quantum fluctua-

tions associated with the leading shape function in (2.2). The Wilson coefficients of the

new subleading shape functions will be computed at tree level, but including contributions

of order g2 = 4παs resulting from tree-level (anti-)hard-collinear gluon exchange.

In constructing the possible operator basis of SCET for B̄ → Xsγ decay, we require

that the final state should contain only one anti-hard-collinear particle, which is the photon

field with momentum qµ = Eγ n̄. All the other particles in the final state, including one

strange quark, need to be either hard-collinear or soft. At least one of the particles in

the final state must be hard-collinear, either the strange quark or a gluon. Note that we

can have several anti-hard-collinear and/or soft fields be part of the possible operators,

provided that all the anti-hard-collinear particles are converted into the photon plus soft

particles via SCET Lagrangian insertions. The number of soft particles in the final state

is restricted only in the sense that adding soft fields to an operator always leads to power

suppression. From these simple requirements, it is straightforward to find the possible

SCET operator basis systematically.

Since the SCET expansion parameter is
√
λ with λ ∼ ΛQCD/mb, we need to consider

operators of leading, next-to-leading, and next-to-next-to-leading order in SCET power

counting in order to systematically analyze ΛQCD/mb-suppressed contributions to the pho-

ton spectrum [43, 47, 60]. The possible effective weak-interaction operators can then be

divided into two classes, depending on whether they contain a photon field or not. The first

class of operators leads to direct photon contributions, whereas the second class gives rise

to resolved photon contributions. In the latter case, the operators must be supplemented

with Lagrangian insertions that convert the anti-hard-collinear particles into a photon.

As our main interest is in the resolved photon contributions, we begin by systemat-

ically analyzing how anti-hard-collinear partons can be converted into a photon. These

conversions can be derived from the SCET(hc, hc, s) Lagrangian. For power counting the

photon field scales like an anti-hard-collinear field, and hence the conversion of any number

of anti-hard-collinear particles into a photon is unsuppressed as long as it is allowed by
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the rules of the leading-order SCET Lagrangian. However, each conversion involving a soft

parton costs a certain power of
√
λ. At O(

√
λ) we find the possibilities (here and below one

could add any number of anti-hard-collinear gluons on the left-hand side of the relations)

ξhc → Aem
⊥ + q , ξhc + ξ̄hc → Aem

⊥ +As , Ahc + Ahc → Aem
⊥ +As . (4.1)

Similarly, at O(λ) we have

Ahc → Aem
⊥ + q + q̄ , Ahc → Aem

⊥ +As +As . (4.2)

These five possibilities are illustrated in figure 2. In each case the last conversion, which

involves three gluon fields, is not needed for our tree-level analysis.

In the matching of the effective weak Hamiltonian onto SCET we focus on the contri-

butions of the operators Q7γ , Q8g, and Qc,u
1 . Other four-quark operators, which could be

treated in a way analogous to Qc,u
1 , give rise to negligible effects. There is a large number of

SCET operators appearing in the matching relations, all of which are listed in appendix C.

Here we will explicitly present only those operators that are needed for our tree-level anal-

ysis of resolved photon contributions. The unique leading-order operator arising in the

matching relation for Q7γ is

Q7γ(x)→ −emb

4π2
e−imbv·x ξ̄hc(x)

/̄n

2
[in · ∂ /Aem

⊥ (x)] (1 + γ5)h(x−) , (4.3)

where the derivative acting on the photon field produces a factor −n · q = −2Eγ . This

operator arises at O(λ5/2) in SCET power counting. It is shown in the first row in figure 3.

The power suppression of other operators must be evaluated in comparison with this scaling.

While at tree level onlyQ7γ matches onto the operator in (4.3), atO(αs) the other operators

contribute as well, with Wilson coefficients that can be found in [26]. From the many

operators arising at subleading power in SCET, we only need those that can give rise to

1/mb-suppressed resolved photon contributions. They must contain at least one anti-hard-

collinear field. From the matching relation for Q8g, we need the leading-order operators

Q8g(x)→
−gmb

4π2
e−imbv·x

[

ξ̄hc(x)
/̄n

2
[in · ∂ /Ahc⊥(x)] (1 + γ5)h(x−)

+ ξ̄hc(x)
/n

2
[in̄ · ∂ /Ahc⊥(x)] (1 + γ5)h(x−)

]

.

(4.4)

They are shown in the second row in figure 3. The conversions of the anti-hard-collinear

fields into the photon plus soft fields follow from (4.1) and (4.2) and give rise to power

suppression, as indicated in the figure. Finally, from the matching relation for the current-

current operators Qq
1, we need the O(λ3) operator

Qq
1(x)→ e−imbv·x ξ̄hcγ

µ(1− γ5)h(x−) ξ̄hc(x)γµ(1− γ5)ξhc(x) (4.5)

illustrated in the third row in figure 3. Here ξhc is the strange-quark field, while ξhc are fields

for the quark with flavor q = c, u in the four-quark operator. The anti-hard-collinear quark
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Q7γ : O(λ5/2)

hc

Q8g: O(λ5/2) +O(λ1/2) conversion O(λ5/2) +O(λ) conversion

hc

hc

hc

hc

Qc,u
1 : O(λ3) +O(λ1/2) conversion

hc
hc

hc

Figure 3. Relevant operators arising in the matching of the effective weak Hamiltonian onto

SCET. While many other operators exist, only those shown here contribute to the resolved photon

contributions at tree-level in perturbative matching.

pair must be converted into a photon plus a hard-collinear or soft gluon via a penguin loop,

as indicated by the second relation in (4.1) and the second graph in the first row of figure 2.

In our analysis we will also include power corrections of O(αs) to the direct photon

contributions in the factorization formula (1.3). They involve a hard-collinear loop and

give rise to a convolution of subleading jet functions with the leading shape function.

The operators Q7γ , Q8g, and Qc,u
1 can all be matched onto O(λ3) and O(λ7/2) SCET

operators containing a photon field accompanied by hard-collinear quark and gluon fields.

A complete list of the corresponding operators can be found in appendix C. A specific

example, which we will need in the analysis in section 4.5, is the unique O(λ3) four-particle

operator containing the photon field in the matching relation for the dipole operator Q8g,

which reads

Q8g(x)→
−gmb

4π2
e−imbv·x ξ̄hc(x)

1

in̄ · ←−∂
ed e /Aem

⊥ (x) [in̄ · ∂ /Ahc⊥(x)] (1 + γ5)h(x−) , (4.6)

where ed = −1/3 is the electric charge of a down-type quark in units of e. We refrain from

listing the relevant operators descending from Q7γ and Qc,u
1 here. The resulting O(1/mb)

direct photon contributions are of the form shown in figure 4, where the two diagrams on

the left show the possible operator products in SCET. In the second graph, the operator

on the right vertex represents the leading-order matching contribution given in (4.3). This

diagram therefore only arises in pairings of the form Qi − Q7γ . The graph on the right

illustrates the structure of soft fields remaining after the hard-collinear fields have been

integrated out in the second matching step. Here the dashed horizontal line represents a

Wilson line along the n direction. In this case the soft matrix element in HQET is the

leading shape function S(ω, µ).
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Figure 4. Diagrams representing the O(1/mb) direct photon contributions arising from hard-

collinear loops. The two graphs on the left represent products of SCET operators (see appendix C

for a complete list), while the graph on the right represents non-local operators built out of the soft

fields remaining after the matching onto HQET.

4.2 Analysis of the Q7γ −Q7γ contribution

We have discussed in section 2 that at order 1/mb in the heavy-quark expansion the Q7γ−
Q7γ terms in the B̄ → Xsγ photon spectrum contain a parton-model contribution of

order αs as well as a tree-level contribution from subleading shape functions. They are

given in (2.4) and (2.8), respectively. We have argued that F part
77 (Eγ , µ) contains a soft

contribution, which needs to be extracted and absorbed into the subleading shape-function

contribution to avoid double counting. We will now discuss this subtraction in more detail.

Evaluating the diagrams in figure 4 with two insertions of Q7γ , we find that they give

rise to a convolution of the leading shape function in (2.2) with a subleading jet function

Jsubl(p
2) resulting from the cuts of hard-collinear loop diagrams. This jet function is

divergent, and using dimensional regularization with d = 4− 2ǫ space-time dimensions we

obtain the bare expression [62]

Jbare
subl (p

2) = θ(p2)
d− 2

2

CFαs(µ)

4π

(

−16

ǭ
− 16 ln

µ2

p2
+ 9

)

, (4.7)

where 1/ǭ ≡ 1/ǫ− γE + ln 4π, and the factor of (d− 2) arises from the Dirac algebra in d

dimensions. Subtracting the pole term, we obtain

F
(a)
77 (Eγ , µ) =

CFαs(µ)

4π

∫ Λ̄

−p+

dω

(

16 ln
mb (ω + p+)

µ2
+ 25− 16cRS

)

S(ω, µ) , (4.8)

where the scheme-dependent constant cRS vanishes in the MS scheme, cMS = 0. The

ln(mb) term in the above result agrees with that in the parton-model inspired expression

for F77 given in (2.7). However, the p+-dependent terms and the constant accompanying

the logarithm are different in the two expressions. This difference is accounted for by the

subleading shape-function contribution F
(b)
77 (Eγ , µ) ≡ F SSF

77 (Eγ , µ) given in (2.8).

In order to show that this is indeed the case, we derive the partonic expressions resulting

from a naive, perturbative calculation of the subleading shape functions. To this end, we

need to calculate the one-loop corrections to the matrix elements of the soft operators

corresponding to the subleading shape functions ω S(ω, µ), s(ω, µ), t(ω, µ), u(ω, µ), v(ω, µ),
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as well as the tree-level matrix elements of the soft operators corresponding to fu(ω, µ) and

fv(ω, µ) between on-shell heavy-quark states with velocity v. Without loss of generality we

take v⊥ = 0, and as a result the matrix elements of the soft operators corresponding to t

and v vanish at one-loop order, since they only contain gluons with transverse polarization.

The tree-level matrix elements of the soft operators corresponding to fu and fv also vanish,

since they contain scaleless integrals over the n̄-components of the light-quark momenta.

Finally, the matrix element of the soft operator corresponding to s is non-zero only when

the heavy quarks are off shell with a non-zero n-component of the residual momentum. As

a result it does not contribute when we set the residual momentum to zero in the partonic

calculation. We are therefore left with only ω S and u. The former can be extracted from

the calculations performed in [29]. After setting v · k to zero, we find

ω Sbare(ω) = θ(−ω)
CFαs(µ)

4π

(

−4

ǭ
− 4 ln

µ2

(−ω)2
+ 4

)

. (4.9)

For the latter, one finds by explicit calculation that [62]

ubare(ω) = θ(−ω)
CFαs(µ)

4π

(

12

ǭ
+ 12 ln

µ2

(−ω)2
− 20

)

. (4.10)

Subtracting the UV poles in the MS scheme, we obtain from (2.8)

F SSF
77 (Eγ , µ)

∣

∣

pert
=
CFαs(µ)

4π

(

16 ln
µ2

p2
+

− 24

)

, (4.11)

where the subscript “pert” indicates that these are naive perturbative expressions for non-

perturbative hadronic functions. Adding to this result the naive perturbative expression

for F
(a)
77 (Eγ , µ) in (4.8) obtained by replacing S(ω, µ)→ δ(ω) yields

F
(a)
77 (Eγ , µ)

∣

∣

pert
+ F SSF

77 (Eγ , µ)
∣

∣

pert
=
CFαs(µ)

4π

(

16 ln
mb

p+
+ 1− 16cRS

)

, (4.12)

which coincides with expression for F part
77 (Eγ , µ) in (2.4) apart from the constant term.

The remaining difference has its origin in the (d − 2) prefactor in (4.7), which results

from the d-dimensional Dirac algebra. The reason is that relation (2.8) was derived in [32]

by working in d = 4 dimensions. Indeed, it is convenient to renormalize the subleading

shape functions before evaluating the traces arising from the Dirac structures specific to a

given process. Only in that case the definitions of the subleading shape functions are the

same for different processes, such as B̄ → Xsγ and B̄ → Xul ν̄ decays. However, in this case

it is crucial that the same subtraction scheme is adopted in the calculation of the subleading

jet-function contribution in (4.8). In other words, we should work in the DR subtraction

scheme [63, 64], where the Dirac algebra is performed in d = 4 dimensions, while loop

integrals are evaluated with d = 4 − 2ǫ. In this scheme cRS = 1 in (4.8) and (4.12), and

the latter expression then agrees with that in (2.4). Our final result is therefore

F77(Eγ , µ) =
CFαs(µ)

4π

∫ Λ̄

−p+

dω

(

16 ln
mb(ω + p+)

µ2
+ 9

)

S(ω, µ) + F SSF
77 (Eγ , µ). (4.13)
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This is the first equation in (2.9), which replaces the “incorrect” (in the sense of improper

factorization) result in (2.4).

Throughout this paper we set the strange-quark mass to zero, which turns out to

be an excellent approximation numerically. Let us nevertheless briefly comment on finite

strange-quark mass effects. Taking ms to be non-zero gives rise to a subleading jet function

proportional to m2
s/p

2
hc, where phc is the momentum of the hard-collinear jet containing

the strange quark [65]. If we adopt the scaling ms ∼ O(ΛQCD), this function scales as

ΛQCD/mb in the endpoint region and contributes to F77. From [65], we find that the extra

contribution is

Fms

77 (Eγ , µ) = −H̃77

∫ Λ̄

−p+

dωmb jm(ω + p+, µ)S(ω, µ) , (4.14)

where we have defined jm = 1
π ImJm

mb
. Both H̃77 = 1+O(αs) and Jm

mb
can be found in [65].

At the lowest order in αs,

jm(ω + p+, µ) =
m2

s

mb
δ′(ω + p+) +O(αs) , (4.15)

and indeed jm is suppressed by m2
s/(mbΛQCD) compared to the leading-order jet function

J(p2, µ). One could argue that for ms ≈ 100 MeV and ΛQCD ∼ 500 MeV the parameter ms

should scale as a higher power of the SCET expansion parameter λ, e.g. ms ∼ λ2. This

would imply that jm can be neglected at order ΛQCD/mb. Contributions of jm to coefficient

functions Fij other than F77 are further suppressed by hard functions H̃ij = O(αs). We

will not consider them in the following, since they are bound to be tiny.

4.3 Analysis of the Qq
1 −Q7γ contributions

Evaluating the diagrams in figure 4 for this pairing of operators, we obtain the direct

photon contribution

F
(a)
17 (Eγ , µ) =

CFαs(µ)

4π

(

−2

3

)
∫ Λ̄

−p+

dω S(ω, µ) , (4.16)

which involves a convolution of the leading shape function (2.2) with a jet function con-

sisting of the cut of a hard-collinear loop. This is the expected extension of the first term

in the expression for F part
17 (Eγ , µ) given in (2.4).

Much more interesting is the single resolved photon contribution arising from this

operator pair. As shown in the left graph of figure 5, it is obtained by combining the

O(λ3) SCET four-quark operator in (4.5), which contains two anti-hard-collinear quark

fields in addition to a hard-collinear strange quark and a heavy quark, with the leading-

power contribution (4.3) descending from Q7γ . According to the rules (4.1), the conversion

of the two anti-hard-collinear fields into a photon and a soft gluon costs a factor of λ1/2,

giving a total suppression with respect to the leading term of λ ∼ ΛQCD/mb. When the

(anti-)hard-collinear fields are integrated out in the second matching step, we obtain the

HQET diagram shown in the right graph of figure 5. Here and below, horizontal (vertical)
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s

hc
hc

Figure 5. Diagrams arising from the matching of the Qq
1−Q7γ contribution onto SCET (left) and

HQET (right). Horizontal (vertical) dashed lines denote non-localities obtained after (anti-)hard-

collinear fields have been integrated out.

dotted lines represent Wilson lines along the n (n̄) direction. The HQET matrix element

corresponding to the graph on the right in figure 5 contains a soft gluon field in addition to

the two heavy quarks. In the language of the factorization formula (1.3) this corresponds

to a single resolved contribution with a subleading shape function. For the contribution

from the operator Qc
1 we obtain

F
(b)
17,c(Eγ , µ) =

2

3
(1− δu)

∫ Λ̄

−∞

dω δ(ω + p+)

× Re

∫ ∞

−∞

dω1

ω1 + iε

[

1− F
(

m2
c − iε

2Eγ ω1

)]

g17(ω, ω1, µ) ,

(4.17)

where the CKM-suppressed parameter δu has been introduced in (2.10), and we have

defined the subleading shape function

g17(ω, ω1, µ) =

∫

dr

2π
e−iω1r

∫

dt

2π
e−iωt (4.18)

×〈B̄|
(

h̄Sn

)

(tn) /̄n(1+γ5)
(

S†
nSn̄

)

(0) iγ⊥α n̄β

(

S†
n̄ gG

αβ
s Sn̄

)

(rn̄)
(

S†
n̄h
)

(0)|B̄〉
2MB

.

The penguin function F (x) has been defined in (2.6). For 0 < x < 1/4 this function devel-

ops an imaginary part. Note that we adopt a power counting for the charm-quark mass such

that m2
c = O(mbΛQCD). The argument of the penguin function in the convolution (4.17)

then counts as O(1).

The structure of the soft Wilson lines in (4.18), which are directed either along n or n̄,

follows when the decoupling transformation is applied to the (anti-)hard-collinear fields in

SCET to remove their soft interactions from the effective Lagrangian and absorb them into

eikonal factors. The Wilson lines reflect the space-time topology of the HQET diagrams

shown on the right-hand side in figure 5. Let us label the two weak vertices by coordinates

0 (left) and x = tn+x+ +x⊥ (right), and the vertex of the soft gluon by y = rn̄+y− +y⊥.

The multipole expansion of the effective-theory fields implies that x+,⊥ and y−,⊥ can be

set to zero at this order. Gauge invariance then requires that the fields h̄(tn) and Gs(rn̄)

are joined by a Wilson line, and the rules of SCET determine that this line consists of two
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segments: a straight line [tn, 0] along the light-like direction n followed by a straight line

[0, rn̄] along the light-like direction n̄. The fields Gs(rn̄) and h(0) are joined by a straight

Wilson line [rn̄, 0] along the light-like direction n̄. Using that [tn, 0] = Sn(tn)S†
n(0) etc.,

we recover the structure of the Wilson lines in the non-local operator in (4.18). We note

for completeness that soft functions closely related to our functions g17 in (4.18) and g11
in (4.38) were introduced, in a context not related to B̄ → Xsγ decay, in [66].

There is more to the space-time structure of the soft operator that is worth pointing

out. Since hard-collinear fields in SCET carry large momentum components, the particles

created by these fields always move forward in time. As a result, after convolution with

the jet functions, the quantum fields in the definition of the subleading shape functions are

ordered in the same way as they appear in Feynman graphs [32]. The operators considered

in the present paper contain fields that propagate along the two light-like directions n and

n̄, as indicated by the dotted lines in the right graph in figure 5. If we assign coordinate 0

to the first of the weak vertices in the figure, the gluon is emitted at space-time point rn̄

with r > 0. This is ensured by the iε prescription in the jet function in (4.17), since
∫

dω1 e
−iω1r i

ω1 + iε
= 2π θ(r) . (4.19)

The gluon thus lives at a later time than the field h(0) (recall that n0 = n̄0 = +1), and

indeed it appears to the left of that field.

Another comment is in order concerning the structure of the result (4.17). From the

diagrams shown in figure 5 we derive one half times the expression (4.17) without the

real-part prescription in front of the integral and in expressions (2.1) and (2.10). The

mirror diagrams not shown in the figure, in which the two weak vertices are interchanged,

give an analogous contribution with the complex conjugate Wilson coefficients and CKM

matrix elements, the complex conjugate penguin function F ∗(r),2 the propagator factor

1/(ω1 − iε), and the soft function

g′17(ω, ω1, µ) =

∫

dr

2π
eiω1r

∫

dt

2π
e−iωt (4.20)

×〈B̄|
(

h̄Sn̄

)

(tn) (−iγ⊥α n̄β)
(

S†
n̄ gG

αβ
s Sn̄

)

(tn+ rn̄)
(

S†
n̄Sn

)

(tn) /̄n(1 + γ5)
(

S†
nh
)

(0)|B̄〉
2MB

,

which is related to the original one by complex conjugation: g′17(ω, ω1, µ) = [g17(ω, ω1, µ)]∗.

To show this, one uses translational invariance to shift all position arguments by −tn and

then changes the sign of the integration variable t. The sum of the diagrams in figure 5

plus their mirror graphs thus gives a real result, and after averaging over CP-conjugate

decay modes we obtain (4.17).

The real-part symbols in (2.10) and (4.17) refer to different kinds of complex param-

eters. The various products of Wilson coefficients and CKM factors carry, in general, CP-

violating weak phases. The convolution of the jet and soft functions, on the other hand, can

carry CP-even, strong-rescattering phases, which in principle can result either from anti-

hard-collinear loops (i.e., the jet functions J̄i) or from the soft matrix elements themselves.

2This is because the fields in the charm-quark loop of the mirror graphs are anti-time-ordered.
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(However, in section 5 we will argue that the soft functions are real.) When both types of

phases are present, a non-zero direct CP asymmetry arises. The subleading power correc-

tions investigated in this paper provide new mechanisms for generating such an asymmetry.

A more detailed exploration of their phenomenological relevance is left for further study.

The range of support of the soft functions in HQET can be derived by noting that

the light-cone projections n · pi and n̄ · pi of all parton momenta in the B meson must be

non-negative, and that the total momentum of all partons in the B meson is MBv. Since

in HQET the momentum of a heavy quark is decomposed as pb = mbv + k, where k is the

residual momentum, it follows that

∑

i6=b

n · pi + n · k = Λ̄ ,
∑

i6=b

n̄ · pi + n̄ · k = Λ̄ , (4.21)

where n · k > −mb and n̄ · k > −mb. In the heavy-quark limit mb → ∞ it follows that

−∞ < n · k ≤ Λ̄ and 0 ≤ n · pi < ∞ (for i 6= b), and similarly for n̄ · k and n̄ · pi.

In the special case of the soft function g17 in (4.18), the variable ω corresponds to the

residual-momentum component n · k of the initial-state heavy quark, while ω1 can either

correspond to the component n̄·pg of a gluon in the final-state B meson or to the component

−n̄ · pg of a gluon in the initial-state B meson. It thus follows that −∞ < ω ≤ Λ̄ and

−∞ < ω1 < ∞. This implies that the penguin-loop function F (x) is sampled over both

positive and negative values of its argument.

In principle, each of the six QCD penguin four-quark operators in the effective weak

Hamiltonian can give rise to a similar contribution, either via loops of massless quarks

(q = u, d, s) or via a charm-quark loop. (b-quark loops lead to further power suppression.)

Of these options only Qc
1 has both a large Wilson coefficient C1 ∼ 1 and a large CKM factor

VcbV
∗
cs = O(λ2), so it will give rise to the dominant effects. However, for academic reasons

we will also consider the case of the CKM-suppressed operator Qu
1 . Using that F (0) = 0,

it follows that the resolved photon contribution resulting from this operator is given by

F
(b)
17,u(Eγ , µ) =

2

3
δu Re

∫ Λ̄

−∞

dω δ(ω + p+)

∫ ∞

−∞

dω1

ω1 + iε
g17(ω, ω1, µ) . (4.22)

Note that the soft function is the same as in (4.17).

Let us now investigate the convergence properties of the convolution integrals in (4.17)

and (4.22). In the UV region, for ω1 ≫ ΛQCD, the first integral approaches the form

of the second one, since mass effects become negligible. It follows that the convolution

over ω1 converges as long as the soft function g17 vanishes for ω1 → ±∞. In general, the

asymptotic behavior of the soft functions for large values of the ωi variables can be analyzed

using short-distance methods [29]. This shows, for instance, that the leading shape function

behaves as S(ω, µ) ∼ 1/ω modulo logarithms for ω → −∞. For the present case, naive

dimensional analysis suggests the behavior g17(ω, ω1, µ) ∝ ω1 for large ω1 but fixed ω, in

which case the convolution integral would diverge linearly. To obtain such a contribution,

however, would require a non-zero matrix element of the soft operator between two on-shell

b quarks. But this matrix element vanishes by Lorentz invariance. A non-zero contribution

is only obtained if, in addition to the heavy quarks, one adds a soft external gluon. This
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costs two orders in power counting, so that the asymptotic fall-off is at least as strong

as g17(ω, ω1, µ) ∝ 1/ω1 for ω1 → ±∞. It follows that the convolution integrals (4.17)

and (4.22) are UV convergent.

The behavior of the soft functions in the IR region cannot be derived from a perturba-

tive analysis. In the present case, however, it suffices to make the reasonable assumption

that g17(ω, ω1, µ) is non-singular at ω1 = 0. Using the expansion

1− F (x) = − 1

12x
− 1

90x2
− 1

560x3
− . . . (4.23)

valid for large x, we find that for small ω1 the convolution integral (4.17) arising from the

charm-quark loop behaves as
∫

ω1≈0

dω1

ω1 + iε

[

1− F
(

m2
c − iε

2Eγ ω1

)]

g17(ω, ω1, µ) ≈ − Eγ

6m2
c

∫

ω1≈0

dω1 g17(ω, ω1, µ) . (4.24)

For the convolution integral (4.22) arising from the up-quark loop, we find instead
∫

dω1

ω1 + iε
g17(ω, ω1, µ) = P

∫

dω1

ω1
g17(ω, ω1, µ)− iπ g17(ω, 0, µ) , (4.25)

where the symbol P denotes the Cauchy principal value of the integral. We conclude that

the convolution integrals indeed exist as long as the subleading shape function is non-

singular at ω1 = 0. Note that for the case of the up-quark loop it is important that the

integral over ω1 runs over both positive and negative values. Previous authors have already

pointed out that the up-quark loop contribution to the B̄ → Xsγ decay rate, while strongly

CKM suppressed, is described by an uncalculable long-distance contribution [35, 37, 38].

Our relation (4.25) provides a rigorous field-theoretic definition of this contribution in terms

of a well-defined, non-local soft matrix element.

For phenomenological purposes it is useful to define a new function

f17,q(ω, µ) =
2

3

∫ ∞

−∞

dω1

ω1 + iε

[

1− F
(

m2
q − iε

(mb + ω)ω1

)]

g17(ω, ω1, µ) . (4.26)

Our final expression for the Qq
1 −Q7γ contribution can then be written as

F17(Eγ , µ) =
CFαs(µ)

4π

(

−2

3

)
∫ Λ̄

−p+

dω S(ω, µ) +
∑

q=c,u

δq Re f17,q(−p+, µ) . (4.27)

Note that the argument of the penguin function entering f17,q(−p+, µ) is m2
q/[(mb −

p+)ω1] = m2
q/(2Eγ ω1), as it should be.

Our result differs from the parton-model expression given in (2.4) by the now familiar

integral over the leading shape function in the first term, and by the fact that a non-trivial

function f17,c(−p+, µ) replaces (−mbλ2

6m2
c

) δ(p+). The latter expression would be obtained

if one made the unjustified approximation of neglecting the dependence of the soft fields

in (4.18) on t and r, i.e., of evaluating all fields and Wilson lines at the origin. This

would replace

g17(ω, ω1, µ)→ 2λ2 δ(ω) δ(ω1) , (4.28)
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and from (4.26) we would then recover the parton-model expression given above. However,

there is no reason why (4.28) should provide a decent model for the soft function. All we

know is that the definition of the soft function g17 in (4.18) implies the normalization con-

dition
∫ Λ̄

−∞

dω

∫ ∞

−∞

dω1 g17(ω, ω1, µ) =
〈B̄| h̄ /̄n iγ⊥α n̄β gG

αβ
s h |B̄〉

2MB
= 2λ2 , (4.29)

where we have used a general relation derived in [67] to evaluate the matrix element of

the local quark-gluon operator in terms of the hadronic parameter λ2. Moreover, the trace

formalism of HQET [44, 67] implies that the soft function can be written as

g17(ω, ω1, µ) = Tr

[

1 + /v

2
/̄n(1 + γ5) iγ

⊥
α

1 + /v

2
Ξα⊥(v, n̄, ω, ω1, µ)

]

= 4Ξ2(ω, ω1, µ) , (4.30)

where we have used that the most general decomposition of the quantity Ξα⊥ is of the form

Ξα⊥(v, n̄, ω, ω1, µ) = iγα⊥(Ξ1+/̄nΞ2) with scalar functions Ξi ≡ Ξi(ω, ω1, µ). It follows from

this argument that the factor (1 + γ5) in (4.18) can be replaced by 1, since the part of the

trace involving γ5 vanishes. It is then easy to see that

∫ Λ̄

−∞

dω g17(ω, ω1, µ) =

∫ Λ̄

−∞

dω
[

g17(ω,−ω1, µ)
]∗

. (4.31)

One can constrain the function g17(ω, ω1, µ) further by looking at its first moments

with respect to ω and ω1. These can be related to linear combinations of HQET matrix

elements with three covariant derivatives. Such matrix elements can be expressed in terms

of two hadronic parameters, ρ1 and ρ2, via [68]

〈B̄| h̄Γαδβ iD
αiDδiDβh |B̄〉

2MB
=

1

2
Tr

(

Γαδβ
1+/v

2

[

(gαβ − vαvβ) vδ ρ1

3
+iσαβvδ ρ2

2

] 1+/v

2

)

.

(4.32)

Thus, we find

∫ Λ̄

−∞

dω ω

∫ ∞

−∞

dω1 g17(ω, ω1, µ) =
〈B̄| h̄ /̄nγ⊥α in ·D [iDα

⊥, in̄ ·D]h |B̄〉
2MB

= −ρ2 ,

∫ Λ̄

−∞

dω

∫ ∞

−∞

dω1 ω1 g17(ω, ω1, µ) =
〈B̄| h̄ /̄nγ⊥α [[iDα

⊥, in̄ ·D], in̄ ·D]h |B̄〉
2MB

= 0 ,

(4.33)

where the HQET parameter ρ2 is related to the parameter ρ3
LS introduced in [69] via

ρ3
LS = 3ρ2. The vanishing of the first moment with respect to ω1 of g17 is not a coincidence.

As we will see in section 5, g17 is in fact a real function. Relation (4.31) then implies that

all the odd moments in ω1 vanish.

As a final comment, let us add that even in the limit where the charm quark is treated

as a heavy quark, mc = O(mb), the penguin contribution to the photon spectrum must

still be described by a subleading shape function. In this limit the argument of the penguin

function in (4.17) is of order mb/ΛQCD. Expanding then the function [1 − F (x)] to first
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Figure 6. Examples of SCET diagrams giving rise to resolved photon contributions suppressed by

at least two powers of of 1/mb. The left graph arises from the pairing Qq
1−Qq

1, while the right one

contributes to the Qq
1 −Q8g term.

order in 1/x leads to3

f17,c(ω, µ)→ −mb + ω

18m2
c

∫

dt

2π
e−iωt 〈B̄|

(

h̄Sn

)

(tn) /̄n(1 + γ5) iγ
⊥
α n̄β

(

S†
n gG

αβ
s h

)

(0)|B̄〉
2MB

.

(4.34)

Integrating this expression over ω, and dropping higher power corrections, we obtain a

contribution to the total decay rate proportional to

∫ mb

−Λ̄
dp+ f17,c(−p+, µ)→ −mbλ2

9m2
c

. (4.35)

This agrees with the result found in [35–38] (the correct sign was obtained in the last ref-

erence).

4.4 Analysis of the Qq
1 −Q

q
1 and Qq

1 −Q8g contributions

The power-counting rules described in appendix C show that for these two cases there

do not exist operators arising at order 1/mb in the heavy-quark expansion that contain

soft fields other than the two heavy quarks. In particular, the diagrams shown in figure 6

contribute to the B̄ → Xsγ photon spectrum only at order 1/m2
b . This is an important

finding. Since for the case of two charm-quark loops the first diagram in the figure is

proportional to the large Wilson coefficient |C1|2 ∼ 1, it has sometimes been mentioned as

a potentially dangerous source of power corrections. It follows from our analysis that this

contribution scales as (ΛQCD/mb)
2 relative to the leading term. It is therefore expected to

be a small correction (see below).

It thus remains to calculate the leading power corrections to the direct photon term in

the factorization formula, by analyzing graphs of the type shown in figure 4. Note that here

only the first diagram on the left in this figure can contribute. After a straightforward cal-

culation (summing over q = c, u), we find once again contributions involving a convolution

of the leading shape function with a jet function consisting of the cut of a hard-collinear

3Only the first term in this expansion gives rise to a UV-convergent convolution integral.
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loop. The results are the same in the two cases and given by

F
(a)
11 (Eγ , µ) =

2Eγ

mb
F

(a)
18 (Eγ , µ) =

CFαs(µ)

4π

2

9

∫ Λ̄

−p+

dω S(ω, µ) . (4.36)

This is the obvious generalization of the parton-model results in (2.4). Note that the prefac-

tor mb/2Eγ in the result for F18 follows from the SCET calculation, and we have therefore

presented it here. In the endpoint region this factor equals 1 up to power corrections, and

it could therefore be omitted, as we have done in (2.9).

In order to substantiate the statement about the smallness of the O(1/m2
b ) double

resolved photon contribution represented by the first diagram in figure 6, we have evaluated

this graph explicitly. The result is

F
(b)
11 (Eγ , µ) = − 1

mb

∣

∣

∣

∣

λc

λt

∣

∣

∣

∣

2 2

9

∫ Λ̄

−∞

dω δ(ω + p+)

∫ ∞

−∞

dω1

∫ ∞

−∞

dω2 (4.37)

× 1

ω1 + iε

[

1− F
(

m2
c − iε

2Eγ ω1

)]

1

ω2 − iε

[

1− F ∗

(

m2
c − iε

2Eγ ω2

)]

g11(ω, ω1, ω2, µ) ,

where the 1/mb prefactor indicates the additional power suppression. We have defined the
soft function

g11(ω, ω1, ω2, µ) =

∫

dt

2π
e−iωt

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u gµν n̄

αn̄β (4.38)

×〈B̄|
(

h̄Sn̄

)

(tn)
(

S†
n̄ gG

νβ
s Sn̄

)

(tn+ un̄) Γ
(

S†
n̄Sn

)

(tn)
(

S†
nSn̄

)

(0)
(

S†
n̄ gG

µα
s Sn̄

)

(rn̄)
(

S†
n̄h
)

(0)|B̄〉
2MB

,

where Γ = /̄n(1 − γ5). This function satisfies g11(ω, ω1, ω2, µ) = [g11(ω, ω2, ω1, µ)]∗, which

implies that F
(b)
11 is real. In order to obtain an estimate of the magnitude of this contribu-

tion, we expand the penguin functions to first order using (4.23). This yields

F
(b)
11 (Eγ , µ) ≈ − 1

648

(

2Eγ

mb

)2 ∣
∣

∣

∣

λc

λt

∣

∣

∣

∣

2 mb

m4
c

∫ ∞

−∞

dω1

∫ ∞

−∞

dω2 g11(−p+, ω1, ω2, µ) , (4.39)

where the remaining double integral over the soft function scales like Λ3
QCD. For any reason-

able value of this quantity, the prefactor 1/648 and the additional 1/mb suppression render

this contribution negligible. For instance, if we model the double integral by Λ4
11 S(−p+, µ)

with some hadronic scale Λ11 ∼ ΛQCD, the contribution of this term relative to the leading

direct photon contribution in (2.1) is approximately given by

− 1

648

∣

∣

∣

∣

C1(µ)

C7γ(µ)

∣

∣

∣

∣

2(Λ11

mc

)4

≈ −2 · 10−4

(

Λ11

0.5GeV

)4

. (4.40)

4.5 Analysis of the Q8g −Q8g contribution

As we shall see, this contribution is more subtle than the remaining ones, so we will present

its calculations in more detail. As mentioned in section 4.1, the relevant matching rela-

tions for the dipole operator Q8g contains three SCET operators: the O(λ3) four-particle

operator in (4.6) containing the photon along with a hard-collinear strange quark and a
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Figure 7. Diagrams arising from the matching of the Q8g−Q8g contribution onto SCET (left) and

HQET (right). Dashed lines denote non-localities obtained after (anti-)hard-collinear fields have

been integrated out.

hard-collinear gluon, and the two leading-order operators in (4.4) containing either a hard-

collinear strange quark and an anti-hard-collinear gluon, or an anti-hard-collinear strange

quark and a hard-collinear gluon (see the second row in figure 3). After the conversion of

the anti-hard-collinear partons into a photon plus soft particles only the second operator

contributes at O(λ3), while the third one receives a stronger power suppression. Note, in

particular, that matching Q8g onto an operator containing any soft fields does not give rise

to a contribution at order 1/mb in the heavy-quark expansion. It follows that the Q8g−Q8g

term receives two contributions: a direct photon contribution from a pair of two SCET

operators of the form shown in (4.6), and a double resolved photon contribution from a

pair of two SCET operators of the form shown in the second line in (4.4), followed by

the O(λ1/2) conversions of the anti-hard-collinear quark fields into photons. The resulting

SCET diagrams are shown in the left panels in figure 7. When the (anti-)hard-collinear

fields are integrated out in the second matching step, we obtain the HQET diagrams shown

in the right panels.

The direct photon contribution involves a convolution of the leading shape function

in (2.2) with a subleading jet function consisting of the cut of a hard-collinear loop. In the

present case the jet function is divergent and needs to be regularized. Using dimensional

regularization and subtracting its 1/ǭ pole in the MS scheme, we obtain

F
(a)
88 (Eγ , µ) =

CFαs(µ)

4π

(

mb

2Eγ

)2 ∫ Λ̄

−p+

dω

(

2

9
ln
mb(ω + p+)

µ2
+

1

9
− 4

9
cRS

)

S(ω, µ) .

(4.41)

The scheme-dependent constant cRS vanishes in the MS scheme, cMS = 0. If, one the other

hand, we adopt the dimensional reduction scheme, in which the Dirac algebra is performed

in 4 rather than d = 4 − 2ǫ dimensions, then cDR = 1. We will see later that the final

answer for F88 is scheme independent.
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The double resolved photon contribution gives rise to a more complicated structure, as

the resulting soft matrix element contains four quark fields located at different space-time

points. We find

F
(b)
88 (Eγ , µ) =

8

9
παs(µ)

(

mb

2Eγ

)2∫ Λ̄

−∞

dω δ(ω+p+)

∫ ∞

−∞

dω1

ω1+iε

∫ ∞

−∞

dω2

ω2−iε
gcut
88 (ω, ω1, ω2, µ) ,

(4.42)
where we have defined the subleading shape function

gcut
88 (ω, ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt

∑

∫

Xs

×〈B̄|
(

h̄Sn

)

(tn)TA
(

S†
nSn̄

)

(tn) Γn̄

(

S†
n̄s
)

(tn+ un̄)|Xs〉 〈Xs|
(

s̄Sn̄

)

(rn̄)Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

=

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt (4.43)

× 〈B̄|
(

h̄Sn

)

(tn)TA
(

S†
nSn̄

)

(tn) Γn̄

(

S†
n̄s
)

(tn+ un̄)
(

s̄Sn̄

)

(rn̄)Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

.

As before, the Wilson lines render the soft matrix element gauge invariant. The sum over

soft intermediate states Xs with strangeness S = −1 in the first equation arises since in this

particular case the hard-collinear jet does not contain the strange quark. Note that only

color-octet partonic states contribute to the sum, not physical hadronic ones. Performing

the complete sum over states gives rise to the second equation, in which the two strange-

quark fields are not time ordered but appear in the order shown in the formula. In the

definition above

Γn̄ =
/̄n/n

4
(1 + γ5) , Γn̄ =

/n/̄n

4
(1− γ5) (4.44)

are projectors onto two-component light-quark spinors. In deriving the result (4.42) we

have simplified the Dirac structure using the identity [48]

γα
⊥

/n/̄n

4
γµ
⊥ ⊗ γ⊥µ

/̄n/n

4
γ⊥α = (d− 2)2

/n/̄n

4
⊗ /̄n/n

4
, (4.45)

where d is the number of space-time dimensions.

According to the discussion of the previous section, it follows that gcut
88 has support

for −∞ < ω ≤ Λ̄ and −∞ < ω1,2 < ∞. Note the difference in the sign of the iε terms in

the two anti-hard-collinear propagators in (4.42), which is due to the fact that the anti-

hard-collinear fields connected to the right weak vertex in the diagrams are anti-timed-

ordered. Consequently, after convolution with the jet functions the position variables r

and u in (4.43) are restricted to positive values, such that the fields in the soft 〈Xs| . . . |B̄〉
matrix elements are time ordered, while those in the 〈B̄| . . . |Xs〉 matrix elements are anti-

time-ordered, as it should be. Finally, we observe that the second equality in (4.43) implies

the relation
[

gcut
88 (ω, ω1, ω2, µ)

]∗

= gcut
88 (ω, ω2, ω1, µ) , (4.46)

and since the convolution in (4.42) is symmetric in ω1 and ω2 up to complex conjugation,

it follows that the final result is real. Contrary to (4.29) there is no useful normalization

condition for the soft function gcut
88 .
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For phenomenological purposes, it will be convenient to define a new, real function

f88(ω, µ) =
2

9

∫ ∞

−∞

dω1

ω1 + iε

∫ ∞

−∞

dω2

ω2 − iε
gcut
88 (ω, ω1, ω2, µ) , (4.47)

in terms of which the second contribution to the photon spectrum is simply

F
(b)
88 (Eγ , µ) = 4παs(µ)

(

mb

2Eγ

)2

f88(−p+, µ) . (4.48)

Note that the poles at ω1 = 0 and ω2 = 0 are regularized by the iε prescriptions, in analogy

with (4.25).

Let us briefly comment on the structure of our result in light of the general factorization

formula (1.3). The present case is our only example of a double resolved photon contribu-

tion at order 1/mb. The jet function for the hard-collinear gluon is given by the cut of the

gluon propagator, which up to trivial prefactors yields J(p2) = δ(p2) with p2 = mb(ω+p+),

in analogy with the tree-level expression for the quark jet function in (2.1). The jet func-

tions for the two anti-hard-collinear quark propagators are, up to a trivial numerator factor,

given by J̄(p2) = 1/(p2 + iε), where p2 = 2Eγ ω1,2 in the present case. Hence, the triple

convolution can be recast in the form (omitting scale dependences for brevity)
∫

dω δ(p++ω)

∫

dω1

ω1+iε

∫

dω2

ω2−iε
gcut
88 (ω, ω1, ω2) (4.49)

= H

∫

mb dω J
(

mb(p++ω)
)

∫

2Eγ dω1 J̄(2Eγ ω1)

∫

2Eγ dω2

[

J̄(2Eγ ω2)
]∗
gcut
88 (ω, ω1, ω2) ,

in agreement with the factorization formula (1.3). The hard matching coefficient H = 1 at

tree level.

Our presentation above has hidden an important subtlety. The scale dependence should

cancel (up to terms of order α2
s) in the sum of the two contributions (4.41) and (4.42), but in

order for this to happen the convolution (4.47) must contain a µ-dependent term at zeroth

order in the strong coupling. This fact is incompatible with a multiplicative renormalization

of SCET operators in the usual (convolution) sense. The resolution of this puzzle is that

the convolution integrals over the soft function themselves are not convergent. In order

to demonstrate this, we calculate the asymptotic behavior of the soft function for large

values ω1,2 ≫ ΛQCD, corresponding to highly energetic light quarks. This behavior can be

extracted using short-distance methods [29]. At leading order in perturbation theory, we

simply need to replace the light-quark fields in the definition (4.43) by a cut propagator

and perform some phase-space integrations. Working in d = 4− 2ǫ dimensions, we obtain

gcut
88 (ω, ω1, ω2, µ)

∣

∣

∣

ω1,2≫ΛQCD

=
CF

(4π)2−ǫ

θ(ω1)ω
1−ǫ
1

Γ(1−ǫ) δ(ω1−ω2)

∫ Λ̄

ω
dω′S(ω′, µ)

(

ω′−ω
)−ǫ

+. . . .

(4.50)

Corrections to this result are suppressed by powers of αs or ΛQCD/ω1,2. The limit ǫ → 0

is smooth and gives rise to a dependence gcut
88 ∝ ω1 δ(ω1 − ω2). It is then obvious that the

double convolution integral in (4.47) is logarithmically divergent in the UV region.4 When

4Note that according to (4.50) there are no UV divergences from the region of large negative values of

ω1,2. In this region the convolution integrals are cut off by non-perturbative dynamics.
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the convolution is understood in the usual sense as an integral over renormalized functions,

then this divergence is not regularized.

On the other hand, our explicit expression (4.50) shows that the convolution integral

would be regularized by the dimensional regulator if the limit ǫ → 0 was taken after the

convolutions have been evaluated. In that case we obtain a 1/ǫ pole from the UV-divergent

convolution integral, which needs to be subtracted in the MS scheme. We thus proceed

as follows: we introduce a hard cutoff ΛUV and split up the convolution integral in a

low-momentum region defined by ω1, ω2 < ΛUV and a high-momentum region defined by

the complement. In the high-momentum region we can replace the soft function by the

perturbative expression (4.50) up to higher-order terms in αs and power-suppressed con-

tributions. We then evaluate the high-momentum contribution to the double convolution

integral before taking the limit ǫ→ 0. In doing so, we must remember to reinstate a factor

(1− ǫ)2 from the Dirac algebra, see (4.45), and a factor µ2ǫ from the conversion of the bare

coupling constant g2 into the renormalized coupling 4παs(µ). In this way, we obtain

f88(ω, µ) =
2

9

[

(1− ǫ)2 µ2ǫ

∫ ∞

−∞

dω1

ω1 + iε

∫ ∞

−∞

dω2

ω2 − iε
gcut,bare
88 (ω, ω1, ω2)

]

MS subtracted

=
2

9

∫ ΛUV

−∞

dω1

ω1 + iε

∫ ΛUV

−∞

dω2

ω2 − iε
gcut
88 (ω, ω1, ω2, µ)

− CF

72π2

∫ Λ̄

ω
dω′ S(ω′, µ)

(

ln
ΛUV(ω′ − ω)

µ2
+ 2− 2cRS

)

,

(4.51)

where cRS is the same scheme-dependent constant as in (4.41). This expression is indepen-

dent of the auxiliary scale ΛUV, which for consistency should be taken to be several times

ΛQCD, so that perturbation theory can be trusted. In the above result the dependence on

the factorization scale of dimensional regularization is explicit, and it is now evident that

the sum of the two contributions (4.41) and (4.42) is both scale and scheme independent.

Indeed, we find

F88(Eγ , µ) =
CFαs(µ)

4π

(

mb

2Eγ

)2(2

9
ln

mb

ΛUV
− 1

3

)
∫ Λ̄

−p+

dω S(ω, µ)

+
8

9
παs(µ)

(

mb

2Eγ

)2 ∫ ΛUV

−∞

dω1

ω1 + iε

∫ ΛUV

−∞

dω2

ω2 − iε
gcut
88 (−p+, ω1, ω2, µ) .

(4.52)

The large logarithm ln(mb/ΛUV) in the first term results from the ratio of the hard-collinear

scale mb(ω + p+) in (4.41) and the soft (yet perturbative) scale ΛUV(ω + p+) contained

in the function f88(−p+, µ) in (4.48). Resumming these large logarithms would require

solving evolution equations in the effective theory. In the case of UV-divergent convolution

integrals, the derivation of such equations is an open problem.

Note that our result (4.52) is insensitive to the mass of the strange quark, as it should

be. This is in contrast with the parton-model expression derived in [41] and shown in (2.4).

The IR regulator ms introduced in the parton-model calculation is replaced in real QCD

by a subleading shape function, i.e., by a hadronic matrix element of a non-local operator.

We have checked that one recovers the parton-model expression for F88 if one calculates the
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soft matrix element in perturbation theory, i.e., if one assumes the validity of (4.50) also at

small values of ω1,2 and introduces ms as an IR regulator, which replaces ω−ǫ
1 (ω′−ω)−ǫ →

[ω1(ω
′ − ω) −m2

s]
−ǫ in this formula. Of course, such a treatment cannot be justified due

to the non-perturbative nature of QCD at low energies.

It was argued in [34] that the IR-sensitive terms in the Q8g − Q8g contribution to

the B̄ → Xsγ photon spectrum can be absorbed into photon fragmentation functions of a

strange quark or gluon. While no formal proof of this assertion was given in that paper,

it is likely to be true in the kinematic region away from the endpoint, where the splitting

processes s → γ + s and g → γ + g can be treated using the collinear approximation.

In the language of SCET this means that the partons after the splitting are still anti-

hard-collinear fields, and hence the photon energy cannot be near the endpoint. In the

endpoint region, on the other hand, these partons are soft, and they do not factorize from

the remaining soft matrix element. Hence, in this region the non-perturbative physics

is encoded in a complicated subleading four-quark shape function rather than a simpler

fragmentation function.

4.6 Analysis of the Q7γ −Q8g contribution

Evaluating the diagrams in figure 4 for this operator pair, we find the direct photon con-

tribution

F
(a)
78 (Eγ , µ) =

CFαs(µ)

4π

mb

2Eγ

10

3

∫ Λ̄

−p+

dω S(ω, µ) , (4.53)

which generalizes the parton-model result in (2.4). The case of the Q7γ −Q8g interference

term is special in that, even though the parton-model expression for F part
78 (Eγ , µ) does not

indicate any problematic feature that would call for non-trivial soft contributions, there

actually do exist some O(1/mb) effects that are described by subleading shape functions.

Moreover, these effects remain non-local even for the total decay rate [39].

In order to study the resolved photon contributions, we must combine either one of

the two SCET operators in (4.4) arising from the matching relation for Q8g with the

leading-order operator in (4.3) descending from Q7γ (see also figure 3). In both cases, the

conversion of the anti-hard-collinear fields gives rise to one or more soft quark fields. The

relevant SCET diagrams are depicted in the left panels in figure 8, while the corresponding

soft graphs resulting after the second matching step are shown in the right panels. In the

first case, the second soft quark is generated by an insertion of a subleading term in the

SCET Lagrangian.

Evaluating the first contribution in detail, we find

F
(b)
78 (Eγ , µ) =

16

3
παs(µ)

mb

2Eγ
Re

∫ Λ̄

−∞

dω δ(ω + p+)

∫ ∞

−∞

dω1

ω1 + iε

∫ ∞

−∞

dω2

ω2 − iε
×
[

ḡ78(ω, ω1, ω2, µ)− ḡcut
78 (ω, ω1, ω2, µ)

]

.

(4.54)

The soft function ḡ78 arises when the hard-collinear strange-quark line in the left diagram

in the first row of figure 8 is cut, while the function ḡcut
78 originates from the cut through

the hard-collinear gluon line. In this latter case the soft strange-quark line must also be
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Figure 8. Diagrams arising from the matching of the Q7γ−Q8g contribution onto SCET (left) and

HQET (right). Dashed lines denote non-localities obtained after (anti-)hard-collinear fields have

been integrated out.

cut. Specifically, we define the corresponding subleading shape functions as

ḡ78(ω, ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt

×〈B̄|
(

h̄Sn

)

(tn)TA Γn

(

S†
ns
)

(un)
(

s̄Sn̄

)

(rn̄) Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

, (4.55)

and

ḡcut
78 (ω, ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt

∑

∫

Xs

×〈B̄|
(

h̄Sn

)

(tn)TA Γn

(

S†
ns
)

((t+ u)n)|Xs〉 〈Xs|
(

s̄Sn̄

)

(rn̄) Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

=

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt (4.56)

×〈B̄|
(

h̄Sn

)

(tn)TA Γn

(

S†
ns
)

((t+ u)n)
(

s̄Sn̄

)

(rn̄) Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

,

where Γn̄ was introduced in (4.44), and Γn is defined in the same way as Γn̄ but with n and

n̄ interchanged. One half of the contribution shown in (4.54), but without the real part

prescription, arises from the original diagrams, while the mirror diagrams not shown in

the figure give the complex conjugate of the above expressions. The two results combined

give a real result, as indicated in (4.54). Note that there is no need to insert a time-

ordering symbol in front of the light-quark fields in the definition of ḡ78 in (4.55), since
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after convolution with the jet functions the integration variables r and u are restricted to

take positive values, and hence the light-quark fields have a space-like separation. In the

second equation in (4.56), on the other hand, the fields are not time ordered because the

non-local four-fermion operator arises upon performing a sum over intermediate states, as

shown in the first equation.

Consider next the contribution shown in the second row of figure 8. In this case the

soft light-quark pair can carry any flavor. We obtain

F
(c)
78 (Eγ , µ) = 4παs(µ)

mb

2Eγ
Re

∫ Λ̄

−∞

dω δ(ω+p+)

∫ ∞

−∞

dω1

∫ ∞

−∞

dω2
1

ω1−ω2+iε
(4.57)

×
[(

1

ω1 + iε
+

1

ω2 − iε

)

g
(1)
78 (ω, ω1, ω2, µ)−

(

1

ω1 + iε
− 1

ω2 − iε

)

g
(5)
78 (ω, ω1, ω2, µ)

]

,

where we have defined the subleading shape functions

g
(1)
78 (ω, ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt

×〈B̄|
(

h̄Sn

)

(tn)
(

S†
nSn̄

)

(0)TA /̄n(1 + γ5)
(

S†
n̄h
)

(0)T
∑

q eq

(

q̄Sn̄

)

(rn̄) /̄nTA
(

S†
n̄q
)

(un̄)|B̄〉
2MB

,

g
(5)
78 (ω, ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u

∫

dt

2π
e−iωt (4.58)

×〈B̄|
(

h̄Sn

)

(tn)
(

S†
nSn̄

)

(0)TA /̄n(1 + γ5)
(

S†
n̄h
)

(0)T
∑

q eq

(

q̄Sn̄

)

(rn̄) /̄nγ5 T
A
(

S†
n̄q
)

(un̄)|B̄〉
2MB

,

where the sum extends over light quark flavors (q = u, d, s), and eq denote the quark

electric charges in units of e. One half of the contribution shown in (4.57), but without

the real part prescription, arises from the original diagrams, while the mirror diagrams not

shown in the figure give the complex conjugate of the above expressions.

In these definitions the light-quark fields are time-ordered, as indicated by the T

symbols. That this is the appropriate ordering can be seen as follows. After convolution

with the jet functions, for the terms containing the propagator 1/(ω1 + iε) in the second

line of (4.57) the integration variables r and u are restricted to the range r > u > 0.

These terms correspond to the Feynman graph shown on the left in the second row of

figure 8, in which q̄(rn̄) should appear to the left of q(un̄). For the terms containing the

propagator 1/(ω2 − iε) the integration variables are restricted to the range u > r > 0.

These terms correspond to the analogous Feynman graph with the opposite direction of

the fermion arrow on the light-quark line, for which q̄(rn̄) should appear to the right of

q(un̄). Hence, the proper ordering is indeed the ordering according to (light-cone) time. On

the other hand, arguments along the lines discussed in [70] suggest that the time-ordering

prescription is, in fact, not required for forward matrix elements and fields at light-like

separation. We assume in what follows that the T symbol can be dropped in (4.58).

Very little is known about the complicated four-quark shape-functions defined

in (4.55), (4.56), and (4.58). Following the general arguments presented in section 4.2,

we conclude that the soft functions ḡ78 and g
(1,5)
78 have support for −∞ < ω ≤ Λ̄ and

−∞ < ω1,2 < ∞. However, in the case of ḡcut
78 we must require that ω1,2 > 0. Note also
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the symmetry property

∫ Λ̄

−∞

dω
[

g
(1,5)
78 (ω, ω1, ω2, µ)

]∗

=

∫ Λ̄

−∞

dω g
(1,5)
78 (ω, ω2, ω1, µ) , (4.59)

which follows from the definitions of the soft functions in (4.58).

The fact that in the case of g
(1,5)
78 the operators involve light quarks of all flavors offers a

strategy for modeling their matrix elements between B-meson states. Unlike the case of the

four-quark operators encountered for gcut
88 , ḡ78, and ḡcut

78 , here it is possible to (very roughly)

estimate the matrix element by inserting the vacuum intermediate state between the two

light-quark fields. The “vacuum-insertion approximation” (VIA) is used extensively in the

study of local four-quark operator matrix elements, and we see no reason why it should

work less accurately for non-local operators. Following [39], we then obtain

∫ Λ̄

−∞

dω g
(1,5)
78 (ω, ω1, ω2, µ)

∣

∣

∣

VIA
= −espec

F 2(µ)

8

(

1− 1

N2
c

)

φB
+(−ω1, µ)φB

+(−ω2, µ) , (4.60)

where espec denotes the charge of the spectator quark inside the B meson, i.e., espec = 2/3

for B±, and espec = −1/3 for B0 and B̄0. The quantity F (µ) is the HQET matrix element

corresponding to the asymptotic value of the product fB

√
MB in the heavy-quark limit [71].

Finally, φB
+(ω, µ) is the leading light-cone distribution amplitude of the B meson [72]. It

is a real function with support for ω > 0, which vanishes at ω = 0 and asymptotically falls

off like 1/ω modulo logarithms [73]. Useful forms for this function have been derived based

on QCD sum rules [72, 74, 75], the relativistic quark model [76], and model-independent

moment relations obtained using the operator-product expansion [73, 77]. The support of

φB
+(ω, µ) implies that only negative values of ω1 and ω2 give rise to non-zero contributions

in (4.60), which is in accordance with the fact that q̄ (q) describes an anti-quark in the

initial (final) state.

To conclude this analysis, we define the phenomenological functions

f
(I)
78 (ω, µ) =

4

3

∫ ∞

−∞

dω1

ω1+iε

∫ ∞

−∞

dω2

ω2−iε
[

ḡ78(ω, ω1, ω2, µ)−ḡcut
78 (ω, ω1, ω2, µ)

]

,

f
(II)
78 (ω, µ) =

∫ ∞

−∞

dω1

∫ ∞

−∞

dω2
1

ω1−ω2+iε
(4.61)

×
[(

1

ω1+iε
+

1

ω2−iε

)

g
(1)
78 (ω, ω1, ω2, µ)−

(

1

ω1+iε
− 1

ω2−iε

)

g
(5)
78 (ω, ω1, ω2, µ)

]

.

In the VIA, we obtain

∫ Λ̄

−∞

dω f
(II)
78 (ω, µ)

∣

∣

∣

VIA
= −espec

F 2(µ)

8

(

1− 1

N2
c

)

{

1

λ2
B(µ)

+2πi

∫ ∞

0
dω

[

φB
+(ω, µ)

]2

ω

}

,

∫ Λ̄

−∞

dωRe f
(II)
78 (ω, µ)

∣

∣

∣

VIA
= −espec

F 2(µ)

8

(

1− 1

N2
c

)

1

λ2
B(µ)

, (4.62)

where λB =
∫∞

0 dω φB
+(ω, µ)/ω denotes the first inverse moment of the B-meson light-cone

distribution amplitude [49]. In terms of the functions f
(I,II)
78 , the direct and resolved photon
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contributions to the B̄ → Xsγ photon spectrum can be summarized as

F78(Eγ , µ) =
CFαs(µ)

4π

mb

2Eγ

10

3

∫ Λ̄

−p+

dω S(ω, µ)

+ 4παs(µ)
mb

2Eγ
Re
[

f
(I)
78 (−p+, µ) + f

(II)
78 (−p+, µ)

]

.

(4.63)

5 Constraints from PT invariance

In the expressions presented in the previous section there are four potential sources of

complex phases: weak (CP-violating) phases from the CKM matrix elements and the

Wilson coefficients, and strong (CP-conserving) phases from the new jet functions J̄i and

the various subleading shape functions. The CKM phases are non-zero only for theQq
1−Q7γ

contributions (with q = c, u), where they are suppressed by two powers of the Cabbibo

angle. The Wilson coefficients are real in the Standard Model, although they can be

complex in many of its extensions (see e.g. [78]).

A unique property of the resolved photon contribution is that the new jet functions J̄i

are given in terms of full propagators (dressed by Wilson lines) and not by cut propagators.

As a result, these functions are in general complex and give rise to strong phases. Since

the relevant scale of the jet functions is
√

2Eγ ΛQCD, which is perturbative in the endpoint

region, these strong phases are calculable in perturbation theory. The other potential source

of strong phases are the soft functions, whose phases are of a non-perturbative nature. In

studying the effects of the resolved photon contributions on the rate and CP asymmetry in

B → Xsγ decay, it is important to obtain some handle on these non-perturbative phases.

In order to do so, we employ the invariance of strong-interaction matrix elements under

parity (P ) and time reversal (T ).

Under the combined transformation PT , a spinor field ψ(x) transforms as

PT ψ(x)PT = ΛPT ψ(−x), where in the Weyl representation of the Dirac matrices

ΛPT = −γ0γ1γ3 up to an irrelevant phase factor. The soft Wilson line Sn(x) in (2.2) trans-

forms into Sn(−x).5 Finite-length Wilson lines, as they appear in the definitions of the soft

functions, transform as PT [tn, 0]PT = PT Sn(tn)S†
n(0)PT = Sn(−tn)S†

n(0) = [−tn, 0].
Finally, the external B-meson states transform as PT |B̄(v)〉 = −|B̄(v)〉. Also, because the

time-reversal transformation is anti-linear, matrix elements get complex conjugated under

application of PT . Consider now the definition of the soft function g17 in (4.18). Using the

fact that the position-space strong-interaction matrix element is PT invariant, we find that

g17(ω, ω1, µ) =

∫

dr

2π
e−iω1r

∫

dt

2π
e−iωt (5.1)

×〈B̄|
(

h̄Sn

)

(−tn) /̄n(1− γ5)
(

S†
nSn̄

)

(0) iγ⊥α n̄β

(

S†
n̄ gG

αβ
s Sn̄

)

(−rn̄)
(

S†
n̄h
)

(0)|B̄〉∗
2MB

,

where we have used that Λ†
PT /̄n iγ⊥α ΛPT = /̄n iγ⊥α and Λ†

PT /̄nγ5 iγ
⊥
α ΛPT = −/̄nγ5 iγ

⊥
α . How-

ever, we have already argued after (4.30) that the term containing γ5 vanishes. Hence,

5Strictly speaking the lower limit of integration is also changed from −∞ to +∞, but this provides an

equally valid definition of the same object.

– 36 –



J
H
E
P
0
8
(
2
0
1
0
)
0
9
9

PT transforms the position-space matrix element into the complex conjugate of the same

matrix element with all position arguments xi replaced by −xi. By taking the complex

conjugate of relation (5.1) and reversing the sign of the integration variables r and t, it

then follows that g17(ω, ω1, µ) is a real function.

An analogous argument can be presented for the soft functions ḡ78 in (4.55) and g
(1,5)
78

in (4.58), where it is important however that we can avoid the time-ordering prescription

for the soft light-quark fields. The HQET trace formalism can be used to show that in

the definitions of these matrix elements only even numbers of γ5 matrices can give rise to

non-vanishing contributions, and then the Dirac structures are in all cases even under PT .

More specifically, in analogy to (4.30) we can write

ḡ78(ω, ω1, ω2, µ) = Tr

[

1 + /v

2
ΓA Ξ1(v, n̄) ΓB

1 + /v

2
Ξ2(v, n̄)

]

+ Tr

[

γ5
1 + /v

2
ΓA Ξ3(v, n̄)

]

Tr

[

Ξ4(v, n̄) ΓB
1 + /v

2
γ5

]

,

(5.2)

where ΓA = Γn and ΓB = Γn̄, and for brevity we have suppressed the dependence of

the coefficient functions Ξi on ω, ω1, ω2, and µ. A similar expression, but with different

matrices ΓA and ΓB, holds for g
(1,5)
78 after a Fierz transformation. The most general Lorentz-

invariant decompositions of the functions Ξi involve products of up to four /v, /̄n, and γα
⊥

matrices, where all transverse indices must be contracted. No γ5 matrices appear in this

decomposition. Note also that the relation n+ n̄ = 2v allows us to eliminate /n in favor of

/v and /̄n. With only two independent external vectors v and n̄, however, it is impossible to

saturate the four indices of an ǫαβγδ symbol, and hence only even numbers of γ5 matrices

in the product structure ΓA ⊗ ΓB can give rise to non-zero traces. For the case of ḡ78
considered above, it follows that we can replace 16Γn⊗Γn̄ → /̄n/n⊗ /̄n/n− /̄n/nγ5⊗ /̄n/nγ5. Both

of these product structures are even under PT . In the case of g
(1)
78 and g

(5)
78 , we find similarly

that /̄n(1 + γ5)⊗ /̄n→ /̄n⊗ /̄n and /̄n(1 + γ5)⊗ /̄nγ5 → /̄nγ5 ⊗ /̄nγ5. Once again, these product

structures are even under PT . It follows that the functions ḡ78, g
(1)
78 , and g

(5)
78 are all real.

Let us finally consider the functions ḡcut
88 in (4.43) and ḡcut

78 in (4.56), which are defined

in terms of sums over intermediate states |Xs〉, which without loss of generality can be

chosen to be eigenstates of PT with eigenvalues ±1. After summing over the polarizations

of the intermediate states and integrating over their momenta, we find that each term in

the sum over states can be written as a product of two traces, in analogy to the second

term in (5.2). The same arguments as above then show that ḡcut
88 and ḡcut

78 are real.

In conclusion, we find that all of the subleading shape functions are real. The strong

phases mentioned in the introduction to this section thus arise only from the new jet

functions J̄i. Given that the soft functions are real, it now follows from (4.31), (4.46),

and (4.59) that
∫

dω g17(ω, ω1, µ) is an even function of ω1, and that gcut
88 (ω, ω1, ω2, µ) and

∫

dω g
(1,5)
78 (ω, ω1, ω2, µ) are symmetric under the exchange of ω1 and ω2.
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6 Partially integrated decay rate

In the various parts of section 4, we have derived explicit expressions for the direct

and resolved photon contributions to the coefficient functions Fij(Eγ , µ) entering the

master formula for the B̄ → Xsγ photon spectrum in (2.1). The results are given

in (4.13), (4.27), (4.36), (4.52), and (4.63). For phenomenological purposes, it is most

interesting to study the partial B̄ → Xsγ decay rate

Γ(E0) ≡
∫ MB/2

E0

dEγ
dΓ

dEγ
, (6.1)

obtained by integrating the photon spectrum over a region E0 < Eγ < MB/2. Provided

that ∆ ≡ mb − 2E0 is much larger than ΛQCD, the direct photon contributions to this

integrated rate can be calculated in terms of local operator matrix elements [26] using a

combined expansion in powers of ∆/mb and ΛQCD/∆. In the limit E0 → 0 one obtains the

total decay rate, and ∆ = mb; however, the rates measured experimentally are obtained

with values of E0 larger than 1.7 GeV, so that ∆ < 1.25 GeV.

An important feature of the resolved photon contributions studied in this work is that

they do not reduce to local operator matrix element in the limit ∆≫ ΛQCD. Rather, the

corresponding contributions to the integrated decay rate must still be described in terms

of matrix elements of non-local operators. This implies that the corresponding theoretical

uncertainties do not reduce significantly as the cutoff E0 is taken out of the endpoint region.

We will now illustrate this by deriving expressions for the first-order power corrections to

the integrated decay rate

Γ(E0) =
G2

Fα|VtbV
∗
ts|2

32π4
m2

b(µ)m3
b

[

|Hγ(µ)|2 [1 +O(αs)]

+
1

mb

∑

i≤j

Re
[

C∗
i (µ)Cj(µ)

]

F̄ij(∆, µ) + . . .

]

,

(6.2)

valid for ∆ ≫ ΛQCD. Here mb denotes the pole mass of the b quark. The dots represent

terms of order 1/m2
b and higher, which we ignore. The integrated coefficient functions are

obtained as

F̄ij(∆, µ) =

∫ ∆

−Λ̄
dp+ Fij(Eγ , µ) , (6.3)

where p+ = mb − 2Eγ . As will be explained below, with the exception of gcut
88 the non-

perturbative soft functions have support for values ω = O(ΛQCD).6 In the limit ∆≫ ΛQCD,

the ω integrals in the definitions of the subleading shape function can then be performed

over the entire range from−∞ to Λ̄, and this leads to simplifications. However, the integrals

over the remaining ωi variables cannot be simplified.

6We ignore radiative tails of these functions, which can exhibit power behavior and extend to larger ω

values. These effects only contribute at higher orders in αs.
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For the direct photon contributions, we need the integrals

∫ ∆

−Λ̄
dp+

∫ Λ̄

−p+

dω S(ω, µ) ≈ ∆ ,

∫ ∆

−Λ̄
dp+

∫ Λ̄

−p+

dω ln
mb(ω + p+)

µ2
S(ω, µ) ≈ ∆

(

ln
mb∆

µ2
− 1

)

,

(6.4)

where the approximate expressions on the right are valid up to corrections of order αs(∆)

and (ΛQCD/∆)2, both of which are known [26]. It follows that the direct photon terms

contribute to (6.2) at order ∆/mb in power counting and can be computed using a local

operator-product expansion. In the formal limit E0 → 0 these terms are promoted to

O(1) contributions.

Let us now discuss what happens to the subleading shape-function contributions to

the integrated decay rate. For the operator pair Q7γ −Q7γ , the subleading shape-function

contributions also reduce to matrix elements of local operators, as discussed in detail in [30–

33]. From (4.11)–(4.15) it follows that

F̄77(∆, µ) =
CFαs(µ)

4π
∆
(

16 ln
mb

∆
+ 1
)

. (6.5)

Note that, at order 1/mb, the non-zero strange-quark mass effect discussed in section 4.2

integrates to zero in the partially integrated decay rate (at tree level in αs), as long as

∆ ≫ ΛQCD. Similarly, for the operator pairs Qq
1 − Q

q
1 and Qq

1 − Q8g, only direct photon

contributions contribute at order 1/mb, and we obtain

F̄11(∆, µ) = F̄18(∆, µ) =
CFαs(µ)

4π

2

9
∆ . (6.6)

The remaining contributions, all of which contain resolved photon terms, are more

interesting. For the operator pairs Qq
1 −Q7γ , we obtain

F̄17(∆, µ) =
CFαs(µ)

4π

(

−2

3

)

∆+
2

3
(1−δu)Re

∫ ∞

−∞

dω1

ω1+iε

[

1−F
(

m2
c−iε
mb ω1

)]

h17(ω1, µ) ,

(6.7)

where

h17(ω1, µ) =

∫ Λ̄

−∆
dω g17(ω, ω1, µ) ≈

∫ Λ̄

−∞

dω g17(ω, ω1, µ)

=

∫

dr

2π
e−iω1r 〈B̄|

(

h̄Sn̄

)

(0) /̄n iγ⊥α n̄β

(

S†
n̄ gG

αβ
s Sn̄

)

(rn̄)
(

S†
n̄h
)

(0)|B̄〉
2MB

.

(6.8)

The integral over p+ in (6.3) eliminates the δ(ω+p+) distribution in (4.17), and integrating

the soft function g17(ω, ω1, µ) in (4.18) over ω then eliminates the t-integral and sets t = 0,

so that part of the non-localities of the operator are eliminated. However, the gluon field

is still smeared out on the n̄ light-cone. Note that there is no contribution from the up-

quark penguin loop to the integrated rate. As noted in section 5, the integral over ω of
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g17(ω, ω1, µ) is symmetric in ω1, so that the integral over F
(b)
17,u in (4.22) vanishes.7 In

the approximation where the penguin function is expanded to first order using (4.23), one

would obtain

F̄17(∆, µ) ≈ CFαs(µ)

4π

(

−2

3

)

∆− (1− δu)
mbλ2

9m2
c

, (6.9)

which equals the integral over the partonic expression in (2.4), where we had neglected the

small correction proportional to δu.

For the case of the pair Q7γ −Q8g, we obtain

F̄78(∆, µ) =
CFαs(µ)

4π

10

3
∆ + 4παs(µ)Re

∫ ∞

−∞

dω1

ω1 + iε

∫ ∞

−∞

dω2

ω2 − iε
h

(5)
78 (ω1, ω2, µ) , (6.10)

where in analogy with (6.8) we have introduced

h
(5)
78 (ω1, ω2, µ) =

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u (6.11)

×〈B̄|
(

h̄Sn̄

)

(0)TA /̄nγ5

(

S†
n̄h
)

(0)
∑

q eq
(

q̄Sn̄

)

(rn̄) /̄nγ5 T
A
(

S†
n̄q
)

(un̄)|B̄〉
2MB

.

Note that the contribution from g
(1)
78 vanishes, since the integral over ω of this function is

symmetric under the exchange of ω1 and ω2. Likewise, the contributions from the functions

ḡ78 and ḡcut
78 to the integrated decay rate cancel each other. This follows from the fact that

the two non-local operators in (4.55) and (4.56) coincide for t = 0. In the VIA we obtain

F̄78(∆, µ)
∣

∣

∣

VIA
=
CFαs(µ)

4π

10

3
∆− παs(µ)

2
espec

(

1− 1

N2
c

)

F 2(µ)

λ2
B(µ)

. (6.12)

The second term coincides with the result derived first in [39].

Finally, for the case of the operator pair Q8g −Q8g, we find from (4.52)

F̄88(∆, µ) =
CFαs(µ)

4π

(

2

9
ln

mb

ΛUV
− 1

3

)

∆

+
8

9
παs(µ)

∫ ΛUV

−∞

dω1

ω1 + iε

∫ ΛUV

−∞

dω2

ω2 − iε
hcut

88 (∆, ω1, ω2, µ) ,

(6.13)

where

hcut
88 (∆, ω1, ω2, µ) =

∫ Λ̄

−∆
dω gcut

88 (ω, ω1, ω2, µ) . (6.14)

Naively, we would expect that for ∆≫ ΛQCD this function becomes independent of ∆ and

reduces to the expression

hcut
88 (ω1, ω2, µ)

?
=

∫

dr

2π
e−iω1r

∫

du

2π
eiω2u (6.15)

×〈B̄|
(

h̄Sn

)

(0)TA
(

S†
nSn̄

)

(0) Γn̄

(

S†
n̄s
)

(un̄)
(

s̄Sn̄

)

(rn̄)Γn̄

(

S†
n̄Sn

)

(0)TA
(

S†
nh
)

(0)|B̄〉
2MB

,

7It has been pointed out in the past that up-quark penguin loops might give rise to an O(ΛQCD/mb)

uncertainty in the integrated rate for B̄ → Xdγ decay [38], where unlike in B̄ → Xsγ they are not CKM

suppressed. Applying our analysis to B̄ → Xdγ shows that this contribution actually vanishes, removing

that source of uncertainty in the integrated decay rate. Note that the same is not true for the CP asymmetry

in B̄ → Xdγ decay, where the corresponding contribution is proportional to h17(0), which is non-zero in

general. We further comment on B̄ → Xdγ decay in the conclusions.
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in which case the second term in (6.13) would be strictly positive. However, in the present

case the limit t→ 0 in (4.43) is singular, since then the separation between the two light-

quark fields s and s̄ becomes light-like. As a result, the integral over ω in (6.14) diverges

linearly as ∆ is raised to infinity, and hence it must be evaluated at large but finite ∆.

In other words, unlike for the other soft functions, the support of the function gcut
88 is not

restricted to values ω = O(ΛQCD) but extends to large negative values of ω. This is in

accordance with the asymptotic behavior derived in (4.50).

The convolutions of the soft functions with anti-hard-collinear jet functions in the

results given above cannot be expressed in terms of local operator matrix elements, but

rather define unknown hadronic parameters of order ΛQCD. These are the sources of

genuine, first-order power corrections to the integrated decay rate, which are not reduced

by lowering the cutoff E0 on the photon energy.

7 Phenomenological implications

The results of the previous sections can be used to quantify the effect of the resolved photon

terms on the B̄ → Xsγ photon spectrum, as well as on the decay rate and CP asymmetry.

In this paper we will restrict our attention to the decay rate integrated over a sufficiently

wide energy range. The photon spectrum and CP asymmetry will be studied in a future

publication.

In order to estimate the irreducible theoretical uncertainty from these new non-local

effects on the integrated decay rate, we define the function

FE(∆) =
Γ(E0)− Γ(E0)|OPE

Γ(E0)|OPE
(7.1)

where E0 is the lower cutoff on the photon energy, and ∆ = mb − 2E0. This definition is

such that the true decay rate Γ(E0) is obtained from the theoretical expression Γ(E0)|OPE

obtained using a local operator product expansion by multiplying it with [1 + FE(∆)].

Note that Γ(E0)|OPE refers to the formula used in previous calculations of the B̄ → Xsγ

rate, see e.g. [5]. The function FE(∆) corresponds to the relative theoretical error made in

these calculations due to the neglect of non-local power corrections from resolved photon

contributions.

To the order we are working, we obtain

FE(∆) =
1

mb

{

[

F̄77(∆, µ)− CFαs(µ)

4π
∆
(

16 ln
mb

∆
+ 1
)

]

+
C1(µ)

C7γ(µ)

[

F̄17(∆, µ) +
CFαs(µ)

4π

2

3
∆ +

mbλ2

9m2
c

]

+
C8g(µ)

C7γ(µ)

[

F̄78(∆, µ)− CFαs(µ)

4π

10

3
∆

]

+

(

C8g(µ)

C7γ(µ)

)2 [

F̄88(∆, µ)− CFαs(µ)

4π
∆

(

2

9
ln
mb∆

m2
s

− 5

9

)]

}

+ . . . ,

(7.2)
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where we have assumed that the Wilson coefficients are real (like in the Standard Model)

and neglected effects proportional to Vub. Note that the terms in the first line on the right-

hand side vanish due to the relation (6.5). We can express the various other contributions

in terms of suitably defined hadronic parameters of order ΛQCD, using the expressions

for the quantities F̄ij(∆, µ) derived in the previous section under the assumption that

∆ ≫ ΛQCD. Making explicit the dependence on the Wilson coefficients and factors of the

strong coupling g2 = 4παs, we arrive at

FE(∆) =
C1(µ)

C7γ(µ)

Λ17(m
2
c/mb, µ)

mb
+
C8g(µ)

C7γ(µ)
4παs(µ)

Λspec
78 (µ)

mb

+

(

C8g(µ)

C7γ(µ)

)2 [

4παs(µ)
Λ88(∆, µ)

mb
− CFαs(µ)

9π

∆

mb
ln

∆

ms

]

+ . . . ,

(7.3)

where

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ ∞

−∞

dω1

ω1

[

1−F
(

m2
c−iε
mb ω1

)

+
mb ω1

12m2
c

]

h17(ω1, µ) ,

Λspec
78 (µ) = Re

∫ ∞

−∞

dω1

ω1+iε

∫ ∞

−∞

dω2

ω2−iε
h

(5)
78 (ω1, ω2, µ) , (7.4)

Λ88(∆, µ) = e2s

[
∫ ΛUV

−∞

dω1

ω1+iε

∫ ΛUV

−∞

dω2

ω2−iε
2hcut

88 (∆, ω1, ω2, µ)− CF

8π2
∆

(

ln
ΛUV

∆
−1

)]

.

In the case of Λ17 and Λ88 we have factored out the appropriate powers of the quark

electric charges. Because of the sum over light-quark flavors in (6.11), the parameter Λspec
78

receives contributions proportional to any one of the light-quark charges. The resulting

hard breaking of isospin symmetry implies that its value will be different for charged and

neutral B mesons, even in the limit of exact isospin symmetry of the strong interaction.

We will show in section 7.2 that, in certain approximation schemes, Λspec
78 is proportional

to the electric charge of the spectator quark in the B meson.

Note that the parameters m2
c/mb and ∆ entering the arguments of Λ17 and Λ88 count

as O(ΛQCD). The dependence on the strange-quark mass in (7.3) arises only because the

function FE(∆) is defined as the deviation from the partonic rate Γpart(E0). The true de-

cay rate Γ(E0) in (7.1) is independent of ms. Note also that the result for Λ88 is formally

independent of the UV cutoff ΛUV, and that it is the only hadronic parameter in (7.3)

that depends on the quantity ∆. In the formal limit where the cut on the photon energy is

removed, ∆→ mb, the linear growth (modulo logarithms) of the parameter Λ88 with ∆ im-

plies that the corresponding contribution to FE(∆) is promoted from a power-suppressed to

a leading-order effect. Indeed, it is well known that in this limit there exists a leading-power,

non-perturbative Q8g−Q8g contribution related to the photon fragmentation off a strange

quark or gluon [34]. For practical applications this observation is irrelevant. We will argue

in section 7.3 that, for realistic values of E0 outside the endpoint region, the dependence

of Λ88 on ∆ is very weak, and therefore the function FE(∆) is almost equal to a constant.

Without further information about the soft functions, the Λij parameters are expected

to be of order ΛQCD apart from the electric charges factored out in (7.4). This would lead

to very large effects of up to 30% on the decay rate. Fortunately, it is possible to constrain
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the values of Λ17 and Λspec
78 by means of simple considerations, as we will now discuss.

The input parameters used for the estimates in the following discussion are collected in

appendix B. The accuracy of our calculations is such that we are insensitive to the scale

dependence of the subleading soft functions and the corresponding hadronic parameters.

Even though we have indicated their µ dependence in the formulae given above, to properly

control this dependence would require to extend our calculations to the next order in the

expansion in powers of αs(µ).

7.1 Analysis of the Qc
1 −Q7γ contribution

In order to obtain a reasonable estimate for the parameter Λ17, we first collect everything

we know about the function h17(ω1, µ) defined below (6.8). As proved in section 6, this

function must be real, and the symmetry relation (4.31) then implies that it is an even

function of ω1. It follows that all odd moments of h17 vanish. Moreover, from (4.29) the

normalization of h17 is fixed to 2λ2. About the higher even moments nothing definite

is known, but we can expect them to be proportional to an appropriate power of ΛQCD

times a not too large numerical factor. Finally, as a soft function, h17 should not have any

significant structures, such as peaks or zeros, outside the hadronic energy range.

The first functions that come to mind are an exponential and a Gaussian,

h17(ω1, µ) =
λ2

σ
e−

|ω1|
σ , or h17(ω1, µ) =

2λ2√
2πσ

e−
ω2
1

2σ2 , (7.5)

for which all even moments are finite. As long as σ ≪ 4m2
c/mb ≈ 1.1 GeV, which with the

power counting adopted in this paper is formally of order ΛQCD, then for all relevant ω1

values the argument of the penguin function F (x) entering the definition of Λ17 in (7.4) is

much larger than 1/4, which is the radius of convergence for the Taylor expansion given

in (4.23). It is then a good approximation to expand the penguin function [1 − F (x)] to

O(1/x3). The first term in this expansion corresponds to the non-perturbative correction

identified in [35], which was already included in the partonic result and subtracted in (7.4).

It therefore does not contribute to FE(∆). The next term gives rise to an odd moment of

h17 and thus vanishes. The third term in the expansion contributes the amount

Λexpanded
17 = − ec

280

m3
b

m6
c

λ2 〈ω2
1〉 (7.6)

to Λ17. Here 〈ω2
1〉 denotes the (normalized) variance of the function h17(ω1, µ), which

equals 2σ2 for the exponential form and σ2 for the Gaussian. For a typical hadronic

scale σ = 0.5 GeV this gives Λexpanded
17 = −6.9 MeV and −3.4 MeV, respectively. Here and

below we have used the input parameters collected in appendix B. The corresponding

contributions to the decay rate are very small, below 0.5% in magnitude.

It is interesting that, due to a weaker numerical suppression, certain 1/mb corrections

to Λ17 can give a contribution of comparable size. They arise from the fact that the first

moment of the function g17(ω, ω1, µ) with respect to ω does not vanish, see (4.33). In order
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to calculate the resulting power-suppressed term, we replace the first relation in (7.4) by

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ Λ̄

−∞

dω

∫ ∞

−∞

dω1

ω1

×
{

(

mb + ω

mb

)3 [

1− F
(

m2
c − iε

(mb + ω)ω1

)]

+
mb ω1

12m2
c

}

g17(ω, ω1, µ) ,

(7.7)

where the factor (mb+ω
mb

)3 appears because of the prefactor E3
γ in (2.1). Expanding now the

penguin function to first order yields

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ Λ̄

−∞

dω

∫ ∞

−∞

dω1

ω1

{

−
(

1 +
ω

mb

)4 mb ω1

12m2
c

+
mb ω1

12m2
c

+ . . .

}

g17(ω, ω1, µ) ,

(7.8)

where the dots represent higher-order terms in the expansion of the penguin function,

which in particular give rise to the contribution (7.6). The expression shown above yields

a 1/mb-suppressed contribution to the parameter Λ17, which we denote by δΛ17. It is

proportional to the normalized first moment of the function g17 with respect to ω, which

according to (4.29) and (4.33) is given by 〈ω〉 = −ρ3
LS/(6λ2) ≈ 0.24 GeV. We obtain

δΛ17 =
2ρ3

LS

27m2
c

≈ −(9.8 ± 5.2)MeV , (7.9)

which is formally a power correction proportional to Λ2
QCD/mb to the result in (7.6). Here

ρ3
LS = 3ρ2 corresponds to the spin-orbit term of the HQET Lagrangian introduced in (4.33).

In practice, it turns out that (7.6) provides a reasonable approximation only as long

as σ < 0.3 GeV. Performing the convolution integral in (7.4) exactly, we find that for

both model functions in (7.5) the resulting value of |Λ17| is maximized for certain values

of σ, which depend on the functional form of h17. Using the input parameters collected

in appendix B, we obtain (Λexp
17 )max = −4.6 MeV for σ = 0.51 GeV with the exponential

model, and (ΛGauss
17 )max = −8.1 MeV for σ = 0.77 GeV with the Gaussian model. Note

that the maximum values are smaller in magnitude than those one would derive from (7.6)

with these values of σ.

The above estimates do not provide a conservative bound on the size of the hadronic

parameter Λ17. A significantly larger effect can be obtained if the soft function g17(ω, ω1, µ)

exhibits a tail outside the region |ω1| ≪ 4m2
c/mb. In analogy with the leading-order shape

function, we expect that the function g17 exhibits a radiative tail proportional to 1/ω1

for large ω1. But even at the non-perturbative level, it is conceivable that a significant

contribution to the integral results from the region of larger ω1 values. Consider, as an

example, the model

h17(ω1, µ) =
2λ2√
2πσ

ω2
1 − Λ2

σ2 − Λ2
e−

ω2
1

2σ2 , (7.10)

which for Λ and σ of order ΛQCD satisfies all requirements one would reasonably impose on

the soft function. The solid curve in figure 9 shows this function evaluated with σ = 0.5 GeV

and Λ = 0.425 GeV. It features regions of positive and negative values and hence is less
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Figure 9. Model function h17(ω1, µ) from (7.10) in units of GeV, with σ = 0.5GeV and Λ =

0.425GeV (solid line); weight function under the convolution integral in the definition of Λ17 in (7.4)

in units of GeV−1 (long-dashed line); weight function including 1/mb corrections, obtained by the

substitution ω → 〈ω〉 in (7.7) (short-dashed line). See text for explanations.

constrained at larger ω1 by the fact that the normalization is fixed to 2λ2. Having values

of either sign is not problematic, because there is no probabilistic interpretation of the

subleading soft functions. The long-dashed line in the figure shows the weight function

under the convolution integral in the definition of Λ17 in (7.4), including the charge factor ec.

With the above parameter choices for the soft function, we obtain Λ17 = −42 MeV. By using

another set of values, a correction with the opposite sign and of the same magnitude can

be obtained. For example, taking σ = 0.5 GeV and Λ = 0.575 GeV we find Λ17 = 27 MeV.

If we include the 1/mb corrections as shown in (7.7), using (mb + ω) → (mb + 〈ω〉) =

(mb − ρ3
LS/6λ2), we find −62 MeV and 21 MeV, respectively. Of course, these are just

illustrative values, and one could obtain even larger negative or positive values by reducing

the separation between σ and Λ, which however will also increase the value of the soft

function at ω1 = 0. Nevertheless, based on these considerations, it seems to us that

− 60MeV < Λ17 < 25MeV (7.11)

is a reasonably conservative range, which we will adopt for our analysis below. While

this allows for a value significantly larger in magnitude than the naive estimate (7.6), it

nevertheless strongly suggests that Λ17 is considerably smaller in magnitude than ΛQCD.

Note that the effect of a value of Λ17 near the extreme values indicated above would be

of the same magnitude as the effect of the leading-order, non-perturbative correction [35]

resulting from the term proportional to λ2 in the expression for F part
17 in (2.4), which

corresponds to −mbλ2/(9m
2
c) ≈ −48 MeV.
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7.2 Analysis of the Q7γ −Q8g contribution

It is instructive to analyze this contribution using the language of flavor symmetry of the

strong interaction. Due to the weighting by the quark electric charges, the relevant four-

quark operator in (4.58) is a pure SU(3) octet, which can be decomposed into two parts

corresponding to isospin I = 0, 1. The Wigner-Eckart theorem implies that

Λspec
78 =

1

6
Λ

(8)
I=0 ±

1

2
Λ

(8)
I=1 =

1

6

(

Λ
(8)
I=0 − Λ

(8)
I=1

)

+ espec Λ
(8)
I=1 , (7.12)

where the upper (lower) sign in the first equation refers to charged (neutral) B mesons, and

as before espec denotes the electric charge of the spectator quark in units of e. In the limit of

unbroken SU(3) flavor symmetry, it follows that Λ
(8)
I=0 = Λ

(8)
I=1, since both parameters arise

from the matrix element of the same SU(3) octet operator. Hence, in this limit we obtain

Λspec
78

∣

∣

SU(3)
= espec Λ

(8)
I=1 . (7.13)

Interestingly, the VIA discussed in section 4.6 also predicts that Λspec
78 is proportional

to espec [39], and we can use this fact to obtain a model estimate of the relevant SU(3)

reduced matrix element. From (4.62), we read off

Λ
(8)
I=1

∣

∣

VIA
= Λ

(8)
I=0

∣

∣

VIA
= −

(

1− 1

N2
c

)

F 2(µ)

8λ2
B(µ)

∈ [−386MeV,−35MeV] , (7.14)

where in the last step we have used the parameter ranges discussed in appendix B.

According to (7.12), the isospin-averaged decay rate [Γ(B̄0 → Xsγ)+Γ(B− → Xsγ)]/2

depends only on Λ
(8)
I=0, while the isospin difference [Γ(B̄0 → Xsγ) − Γ(B− → Xsγ)] is

proportional to Λ
(8)
I=1. While a priori these two non-perturbative parameters are unrelated,

we have just shown that they coincide both in the SU(3) flavor-symmetry limit and in the

VIA. It was first pointed out in [79] that, in the limit of exact SU(3) flavor symmetry, the

isospin-averaged decay rate can be related to the isospin asymmetry,

∆0− =
Γ(B̄0 → Xsγ)− Γ(B− → Xsγ)

Γ(B̄0 → Xsγ) + Γ(B− → Xsγ)
, (7.15)

without employing the VIA. This asymmetry has been measured by the BaBar Collab-

oration using two different experimental methods. For the “sum-over-exclusive-modes

method” with Eγ > 1.9 GeV, they find ∆0− = (−0.6 ± 5.8 ± 0.9 ± 2.4)% [23], where

the errors are statistical, systematic, and due to the production ratio B̄0/B−, respectively.

For the “recoil method” with Eγ > 2.2 GeV, they obtain instead ∆0− = (−6±15±7)% [80],

where the errors are statistical and systematic, respectively. The naive average of these

two results is ∆0− = (−1.3 ± 5.9)%. To the order we are working, the parameter Λ
(8)
I=1 is

related to ∆0− via

Λ
(8)
I=1

∣

∣

exp
= −C7γ(µ)

C8g(µ)

mb

2παs(µ)
∆0− ≈ (59± 268)MeV , (7.16)

where in the last step we have used the average experimental result with its large uncer-

tainty given above. This value is consistent with the prediction (7.14) obtained in the VIA

within errors, even though the central value has the opposite sign.
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Allowing for SU(3) flavor-symmetry breaking at the level of 30%, i.e. Λ
(8)
I=0 = (1 ±

0.3)Λ
(8)
I=1, we finally obtain

Λspec
78 = (espec ± 0.05)Λ

(8)
I=1 ≈ −4.5GeV (espec ± 0.05)∆0− , (7.17)

which is meant as a range, not an error bar. This formula implies that, within the quoted

uncertainty, the isospin asymmetry also determines the flavor-averaged value of Λspec
78 .

For the corresponding contribution to the flavor-averaged value of the function FE(∆),

we obtain

Favg
E (∆)

∣

∣

78
= −(1± 0.3)

∆0−

3
, (7.18)

which adds SU(3)-breaking effects to the estimate derived in [79]. Note that this relation

is independent of the values of the Wilson coefficients and other theoretical parameters.

Due to the current large experimental uncertainties in the measurement of the isospin

asymmetry, it is difficult to give a reliable estimate for Λspec
78 . Based on (7.14) and (7.16), we

expect that the parameter Λ
(8)
I=1 is negative (assuming that the VIA is sufficiently reliable

to predict the sign correctly), but since the experimental value allows for the entire range

in (7.14) at the level of two standard deviations, we cannot restrict that range further at

present. A future, more accurate measurement of ∆0− could improve the situation.

7.3 Analysis of the Q8g −Q8g contribution

Unfortunately, we have very little useful information about the soft function hcut
88 enter-

ing the definition of the hadronic parameter Λ88 in (7.4). Its asymptotic behavior for

large values of ω1 and ω2 can be derived from (4.50), and it ensures that Λ88 is indepen-

dent of the UV cutoff ΛUV. Note that the second term in the definition of Λ88, which

contains the logarithm of ΛUV/∆, is bound to give a very small contribution to Λ88, be-

cause (CF e
2
s∆)/(8π2) < 3 MeV is very small for realistic values E0 ≥ 1.6 GeV. We thus

expect that the hadronic parameter Λ88 receives its dominant contributions from values

ω1,2 = O(ΛQCD), for which no useful constraints on the soft function hcut
88 exist. For the

same reason, we expect that the linear growth of Λ88 for large ∆ is a numerically irrelevant

effect. It then follows that the function hcut
88 (∆, ω1, ω2, µ) is approximately equal to the

function hcut
88 (ω1, ω2, µ) shown in (6.15), even though this relation is not strictly valid. As

mentioned earlier in the paragraph following that equation, this form would imply that the

contribution to Λ88 resulting from the double integral in (7.4) were strictly positive.

In summary, we expect that the hadronic parameter Λ88(∆, µ) is, to a good approx-

imation, independent of ∆ and given by a positive, non-perturbative constant of order

e2s ΛQCD:

Λ88(∆, µ) ≈ e2s Λ(µ) , Λ(µ) > 0 . (7.19)

We have backed up this expectation by using different models for the soft function hcut
88 , for

example by writing it as a product of two functions f1(ω1) f2(ω2) and using various models

such as exponentials or Gaussians. A particularly simple example is provided by functions

hcut
88 (ω1, ω2, µ) that are symmetric in both ωi variables and have support for ωi = O(ΛQCD).

In this case the third relation in (7.4) implies Λ(µ) ≈ 2π2hcut
88 (0, 0, µ), and the value at the
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origin scales like hcut
88 (0, 0, µ) ∼ ΛQCD. For our numerical analysis, we will consider the

rather generous range 0 < Λ(µ) < 1 GeV. Even for the largest value, the suppression by

the charge factor e2s = 1/9 in (7.19) renders the effect of this term on the decay rate to be

very small.

7.4 Summary of phenomenological estimates

We are now in a position to study the implications of our analysis for the function FE(∆)

in (7.3). Using the parameter values collected in appendix B, we obtain from (7.11)

and (7.19) the contributions

FE

∣

∣

17
∈ [−1.7,+4.0]% ,

FE

∣

∣

88
∈ [−0.3,+1.9]% .

(7.20)

The value of FE |88 depends slightly on ∆ and is obtained using ∆ = 1.45 GeV, corre-

sponding to a cut at E0 = 1.6 GeV. For the case of FE |78, we consider the charge-averaged

contribution and quote separately the theoretical estimate obtained using the VIA and

the experimental estimate derived from the measurement of the isospin asymmetry. In

the latter case we allow for 30% SU(3) violation, as indicated in (7.18), and take the 95%

confidence level experimental range. This yields

FE

∣

∣

VIA

78
∈ [−2.8,−0.3]% ,

FE

∣

∣

exp

78
∈ [−4.4,+5.6]% (95% CL) .

(7.21)

In order to obtain a conservative estimate of the combined theoretical analysis, we

adopt a Baysean approach and add up the various contributions using the scanning method.

In this way, we arrive at our final result

− 4.8% < FE(∆) < +5.6% (VIA for Λspec
78 ) , (7.22)

where we have used the theoretical estimate for FE |78. When the experimental estimate is

used instead, the range is expanded to

− 6.4% < FE(∆) < +11.5% (Λspec
78 from ∆0−) . (7.23)

We emphasize that the estimates in this sections should be considered as ranges, within

which we expect the actual values of FE to lie, without making a statement about the

most likely values within these ranges.

If in the future a more precise value of the isospin asymmetry can be measured, this

could be used to reduce the uncertainty range somewhat. If, for example, we assume

that the true isospin asymmetry lies in the center of the interval predicted by the VIA,

∆0− = +4.6%, then in the absence of experimental uncertainties we would derive FE |exp
78 ∈

[−2.0,−1.1]%, where the remaining uncertainty stems from the unknown effects of SU(3)

breaking. In this “ideal” case, the combined result would be

− 4.0% < FE(∆) < +4.8% (ideal case) . (7.24)

We do not see a possibility to reduce this uncertainty in the foreseeable future, given

that no theoretical tools exist to constrain the non-local matrix elements defining the soft
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functions entering the various resolved photon contributions studied in this paper. We

therefore consider the range in (7.24) as the irreducible theoretical uncertainty affecting

any theoretical prediction of the B̄ → Xsγ branching ratio.

8 Conclusions

The inclusive radiative decay B̄ → Xsγ is used extensively in constraining extensions of

the Standard Model. For example, it provides very stringent constraints on extended Higgs

sectors in type-II 2-Higgs-doublet models and supersymmetric models. The theoretical pre-

diction for the corresponding branching ratio is at a stage of precision where the remaining

perturbative uncertainties are estimated to be of order 3% [5]. The limiting theoretical

uncertainty arises from non-perturbative effects outside the realm of the local operator

product expansion [39]. It is therefore important to analyze these effects in a systematic

fashion. In this paper, we have for the first time provided a complete analysis of non-local

1/mb corrections to the B̄ → Xsγ photon spectrum and decay rate, working at tree level

in perturbation theory. Compared to inclusive semileptonic B decays, non-perturbative

effects in radiative decays are much more complicated to analyze. First of all, one must

consider the contributions of many different operators in the effective weak Hamiltonian,

not just one operator. More importantly, however, new types of non-local effects arise due

to the hadronic substructure of the photon. Because photon conversion into light partons

is a genuinely long-distance process, the decay B̄ → Xsγ is not a truly inclusive process,

for which an expansion in local operators would apply. Indeed, from a conceptual point of

view, it is as complicated as the semi-inclusive decay B̄ → Xsh, with h denoting a specific

light hadron. No analogous effects arise in semileptonic processes, since the conversion of

heavy W bosons into light partons is a short-distance process.

Effective field theories, such as soft-collinear and heavy-quark effective theory, provide

the necessary tools to analyze inclusive B decays into light partons in the kinematical

region of low hadronic invariant mass and large recoil energy, in which the hadronic final

state is made up of a jet of collinear partons. For B̄ → Xsγ this is the endpoint region,

where the photon has large energy Eγ ≈ mb/2 in the B-meson rest frame. Effective field

theories are systematic, taking into account all possible contributions to a given decay

amplitude and describing them in terms of well-defined, field-theoretic objects. This is

especially important for radiative B decays, where the diagrammatic approach used in the

previous decade has missed the largest source of non-perturbative uncertainty [39].

In this paper, we have shown that the B̄ → Xsγ photon spectrum in the endpoint

region obeys the novel factorization formula (1.3). The first term in this formula has the

structure familiar from semileptonic B decays. At each order in the 1/mb expansion, it

features products of hard functions Hi and jet functions Ji convoluted with soft functions

Si. We refer to this term as the direct photon contribution, since the photon couples directly

to the weak vertex in a local interaction. The two remaining terms in the factorization

formula describe resolved photon contributions, in which the photon couples indirectly to

the weak vertex via conversion into light partons. The partonic substructure of the photon

is described in terms of a new class of jet functions J̄i. These new terms appear first at
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order 1/mb and arise from the contribution of operators other than Q7γ in the effective

Hamiltonian. The new soft functions Si entering the resolved photon terms contain non-

localities in two light-cone directions. Only one non-locality is removed when the photon

spectrum is integrated over energy to obtain the total decay rate.8 As a result, we find

that even the total decay rate receives non-local corrections of order ΛQCD/mb. The new

jet functions J̄i, which are defined in terms of propagators dressed by Wilson lines, are

complex quantities carrying calculable, perturbative strong-interaction phases. The soft

functions, on the other hand, were shown to be real in by the use of heavy-quark symmetry

and the invariance of the strong interaction under parity and time reversal. The impact

of the new strong phases on CP violation in B̄ → Xsγ decay will be considered in a

future publication.

Phenomenologically the most important operators in the effective weak Hamiltonian

are Q7γ , Q8g, and Qc
1. We have explicitly evaluated the 1/mb corrections to the B̄ → Xsγ

photon spectrum arising from these operators, at tree-level in hard and hard-collinear inter-

actions. This includes important contributions involving a hard-collinear gluon exchange,

which carry a factor g2 = 4παs. Our results are summarized in relations (2.9), which replace

the relations (2.4) used in previous analyses of B̄ → Xsγ decay. The systematic methodol-

ogy offered by the effective field-theory approach resolves a couple of puzzling features of

the expressions (2.4), such as the appearance of the strange-quark mass in the expression

for F part
88 , or of large logarithms in the expressions for F part

77 and F part
88 . We point out that

these features result from an improper separation of short- and long-distance physics. In

our improved expressions (2.9), all long-distance physics is parameterized by well-defined

hadronic matrix elements (the soft functions), while the logarithms entering the short-

distance perturbative contributions contain O(1) ratios of scales. At order 1/mb, we find

resolved photon contributions arising from the operator pairings Q8g − Q8g, Q7γ − Q8g,

and Qc
1 − Q7γ in the squared decay amplitude. We also prove that the resolved photon

contributions arising from the Qc
1 −Qc

1 and Qc
1 −Q8g operator pairings are suppressed by

two powers of 1/mb. Detailed analyses of the resolved photon contributions were presented

in section 4, which constitutes the main technical part of the paper.

The non-perturbative soft functions, which are needed to describe the photon spectrum

at order 1/mb in the heavy-quark expansion, introduce new sources of hadronic uncertain-

ties in the description of the photon spectrum in the endpoint region. These functions

can neither be extracted from experiment, nor can they be computed using lattice gauge

theory (since they involve operators containing fields separated by light-like distances),

and unfortunately they are not much restricted by constraints on their normalization and

moments. Hence, there is a vast freedom in constructing phenomenological models for the

soft functions, which often depend on several convolution variables. The resulting uncer-

tainties will impact any extraction of |Vub| via a combination of inclusive semileptonic and

radiative decays. They will also affect the extraction of heavy-quark parameters such as

mb, Λ̄, µ2
π etc. from moments of the B̄ → Xsγ photon spectrum. A dedicated analysis of

the resulting uncertainties will be presented elsewhere.

8As before, by “total” rate we mean the rate defined with a lower cut E0 on the photon energy that lies

far outside the endpoint region, i.e., mb − 2E0 ≫ ΛQCD.
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Our most important phenomenological result concerns the non-local power corrections

to the B̄ → Xsγ decay rate defined with a cut Eγ ≥ E0, where E0 is chosen to be far outside

the endpoint region, mb − 2E0 ≫ ΛQCD. In this region the direct photon contributions

reduce to local matrix elements, and deviations from the naive model of a free heavy-quark

decay start at order 1/m2
c and 1/m2

b and are calculable in terms of well-known heavy-quark

parameters. The resolved photon contributions, on the other hand, are still expressed in

terms of non-local operators, whose matrix elements are of order 1/mb. Their contributions

to the integrated rate can be parameterized in terms of three non-perturbative parameters,

Λ17, Λspec
78 , and Λ88, as shown in (7.3). In (7.4), these parameters are expressed in terms of

convolutions of calculable jet functions with non-perturbative soft functions. Needless to

say, it is very difficult to estimate the values of these hadronic parameters. Nevertheless,

we have provided arguments suggesting that all three parameters are much smaller than

the naive expectation ∼ ΛQCD. For the most important case of Λ17, a detailed modeling

of the corresponding soft function, taking into account the normalization conditions and

moment relations we have derived in (4.29) and (4.33), suggests that Λ17 is significantly

smaller in magnitude than ΛQCD, see (7.11). For the second-most important case of Λspec
78 ,

we have provided two different arguments, based on the vacuum insertion approximation

and on SU(3) flavor symmetry, suggesting that to a good approximation this hadronic

parameter is proportional to the electric charge of the light spectator inside the B meson,

see (7.13). While the parameter Λ
(8)
I=1 entering in this relation can indeed be of order ΛQCD

— see (7.14) and (7.16) — the weighting by the spectator charge reduces the corresponding

contribution to the isospin-averaged decay rate by a factor (eu + ed)/2 = 1/6. Finally, as

shown in (7.19), the parameter Λ88 is suppressed by a charge factor e2s = 1/9, and its value

is therefore bound to be much smaller than ΛQCD. Our final estimates for the hadronic

uncertainty from non-local 1/mb corrections in the theoretical prediction for the B̄ → Xsγ

decay rate defined with the cut Eγ > 1.6 GeV has been given in (7.22) and (7.23). It

depends on whether the contribution from Λspec
78 is estimated using the vacuum insertion

approximation or the current experimental value of the isospin asymmetry ∆0−. We have

emphasized that even a precision measurement of the isospin asymmetry would not help

to reduce the uncertainty by a significant amount. Relation (7.24) shows that in this ideal

case an irreducible uncertainty of about 4–5% remains. At present, we do not see any hope

to reduce this error using well-controlled theoretical methods.

The analysis presented in this paper applies without alteration, apart from some ob-

vious substitutions, to the decay B̄ → Xdγ. First, one needs to change the definition

of λq to VqbV
∗
qd and replace ms in (4.14) and (4.15) by md ≈ 0. Second, one has to re-

place the s-quark fields by d-quark fields in the definitions of the soft functions fu and fv

contributing to F SSF
77 (Eγ , µ) in (2.8), and in the definitions of ḡ78 and ḡcut

78 contributing

to F
(b)
78 (Eγ , µ) in (4.54). Notice, however, that none of these functions contribute to the

integrated decay rate.
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A Effective weak Hamiltonian

We use the form of the effective weak Hamiltonian for B̄ → Xsγ decay as presented

in [49], i.e.

Heff =
GF√

2

∑

q=u,c

λq

(

C1Q
q
1 + C2Q

q
2 +

∑

i=3,...,6

CiQi + C7γ Q7γ + C8g Q8g

)

, (A.1)

where λq = VqbV
∗
qs, and the Wilson coefficients depend on the scale µ at which the operators

are renormalized. The explicit form of the operator basis is

Qq
1 = (q̄b)V −A (s̄q)V −A , Qq

2 = (q̄ibj)V −A (s̄jqi)V −A ,

Q3 = (s̄b)V −A

∑

q (q̄q)V −A , Q4 = (s̄ibj)V −A

∑

q (q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑

q (q̄q)V +A , Q6 = (s̄ibj)V −A

∑

q (q̄jqi)V +A ,

Q7γ =
−emb

8π2
s̄σµν(1 + γ5)F

µνb , Q8g =
−gmb

8π2
s̄σµν(1 + γ5)G

µνb ,

(A.2)

where i and j are color indices, and for the penguin operators a summation over quark

flavors q = u, d, s, c, b is implied. We use the short-hand notation (q̄b)V ∓A ≡ q̄γµ(1∓ γ5)b

etc. Our sign convention is such that iDµ = i∂µ +g T aAa
µ +e eqAµ, where T a are the SU(3)

color generators, and eq are the quark electric charges in units of e.

B Input parameters

Here we collect the input parameter values used in the numerical analysis in section 7. As

our default choice for the factorization scale µ entering the Wilson coefficients, the strong

coupling constant, and the various hadronic quantities, we take the hard-collinear scale

µ = 1.5 GeV, which is indeed a scale of order
√

mbΛQCD. This is an appropriate scale

choice, given that we neglect RG evolution effects.

The b-quark mass enters our expressions either via the photon energy (Eγ ≈ mb/2

near the peak of the spectrum) or as the heavy-quark expansion parameter. It is therefore

appropriate to adopt a low-scale subtracted heavy-quark mass, such as the mass defined in

the shape-function scheme [29]. Specifically, we use mb = 4.65 GeV. The charm-quark mass
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enters as a running mass in charm-penguin diagrams with a soft gluon emission, which are

characterized by a hard-collinear virtuality. We therefore use mc = mc(µ) defined in the

MS scheme, with µ = 1.5 GeV fixed as described above. This corresponds to the choice

adopted in [5], and following these authors we set mc(µ) = 1.131 GeV. Finally, for the

strange-quark mass we take ms = mb/50, which is the value commonly adopted in the

literature on B̄ → Xsγ decay.

We also need input values for some HQET matrix elements. The parameters λ2 and

ρ3
LS are extracted from a global fit to B̄ → Xcl ν̄ experimental data by the Heavy Flavor

Averaging Group (HFAG) [7]. Unfortunately, in many cases these and other parameters

are extracted from a combined fit to B̄ → Xcl ν̄ and B̄ → Xsγ, an approach that was

criticized in [81]. Only recently HFAG has started quoting also values obtained using only

semileptonic data. The most recent results are λ2 = (0.12±0.02) GeV2 and ρ3
LS = (−0.17±

0.09)GeV3 [82]. For simplicity, we always use the central values for these quantities. For the

first inverse moment of the B-meson light-cone distribution amplitude, we take the range

250MeV < λB < 750MeV, which covers predictions obtained using QCD sum rules and

other methods [72–77]. Finally, to the level of accuracy of our calculations, the parameter

F can be extracted from the relation F = fB

√
MB , and using fB = (193 ± 10) MeV [83]

we obtain 0.177GeV3 < F 2 < 0.217GeV3.

C NNLO matching of Heff to SCET

In this appendix we present the matching of the effective weak Hamiltonian operators Q7γ ,

Q8g, andQc,u
1 onto SCET up to NNLO in the expansion parameter

√
λ, with λ ∼ ΛQCD/mb.

Although there is a large number of possible operators, only some of them are needed in

practice. One subset, which was presented already in section 4.1, is needed for the study of

the resolved photon contributions at tree level. Another subset is needed for the analysis

of the power corrections to the direct photon contributions at O(αs). In the first part of

this appendix we perform the matching at tree level. In the second part we include also

the contribution of one-loop quantum fluctuations.

C.1 Tree-level matching

We begin with the current-type operators Q7γ and Q8g. At LO, with a scaling of λ5/2, the

operator Q7γ is the only one which gives a contribution to B̄ → Xsγ. The contribution

of the operator Q8g begins at NLO, i.e. O(λ3). We then perform the tree-level matching

of Qc,u
1 , whose contribution begins at the NNLO, O(λ7/2). For simplicity, we denote LO,

NLO, and NNLO operators by superscripts (0), (1), and (2), respectively.

C.1.1 Matching of Q7γ

The operator Q7γ in the weak Hamiltonian is given by

Q7γ = −emb

8π2
s̄σµν(1 + γ5)F

µνb = −emb

4π2
s̄ [i/∂ /Aem

⊥ ] (1 + γ5)b , (C.1)

where it is assumed that the photon is real, i.e., it is transversely polarized. The tree-

level matching of Q7γ can be read off from [43]. As was done there, we separate Q7γ into
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“A” and “B” terms, according to whether they contain hard-collinear gluon fields or not.

Suppressing the − emb

4π2 e
−imb v·x factor, Q7γ is matched onto the operators

Q
(0)
7γA = ξ̄hc

/̄n

2
[in · ∂ /Aem

⊥ ] (1 + γ5)h ,

Q
(1)
7γA = ξ̄hc

/̄n

2
[in · ∂ /Aem

⊥ ] (1 + γ5)x
µ
⊥Dµh+ ξ̄hc [i/∂⊥ /Aem

⊥ ] (1 + γ5)h ,

Q
(2)
7γA = ξ̄hc

/̄n

2
[in · ∂ /Aem

⊥ ] (1 + γ5)

[

n · x
2

n̄ ·Dh+
xµ
⊥x

ν
⊥

2
DµDνh+

i /D

2mb
h

]

+ ξ̄hc [i/∂⊥ /Aem
⊥ ] (1 + γ5)x

µ
⊥Dµh+ ξ̄hc

/̄n

2

i
←−
/∂⊥

in̄ · ←−∂
[i/∂⊥ /Aem

⊥ ] (1 + γ5)h ,

(C.2)

and

Q
(1)
7γB = ξ̄hc

[in · ∂ /Aem
⊥ ]

mb
g /Ahc⊥(1 + γ5)h ,

Q
(2)
7γB = −ξ̄hc

/̄n

2
[in · ∂ /Aem

⊥ ] (1 + γ5)
1

in̄ · ∂ g n ·Ahch+ ξ̄hc
[in · ∂ /Aem

⊥ ]

mb
g n ·Ahc(1− γ5)h

+ ξ̄hc
[in · ∂ /Aem

⊥ ]

mb
g /Ahc⊥(1 + γ5)x

µ
⊥Dµh

− ξ̄hc
/̄n

2
[in · ∂ /Aem

⊥ ] (1 + γ5)
1

in̄ · ∂
(i/∂⊥ g /Ahc⊥)

mb
h

− ξ̄hc
/̄n

2
g /Ahc⊥

1

in̄ · ←−∂
[i/∂⊥ /Aem

⊥ ] (1 + γ5)h ,

(C.3)

where the covariant derivative Dµ only contains soft fields. Note that the hard-collinear

fields are not sterile (see the discussion in section 3), so they still couple to soft gluons.

C.1.2 Matching of Q8g

The operator Q8g in the weak Hamiltonian is given by

Q8g = −gmb

8π2
s̄σµν(1 + γ5)G

µνb . (C.4)

We can discard the non-abelian part of Gµν , since we only work to first order in g. A priori,

we can match the s quark onto either a hard-collinear or anti-hard-collinear quark and the

gluon onto a hard-collinear or anti-hard-collinear gluon. We do not consider matching the

s quark onto a soft particle, since it will only give rise to a contribution beyond NNLO.

Also, the gluon and the s quark cannot both be anti-hard-collinear, since the necessary

conversions would lead to a suppression beyond NNLO. The three remaining cases will be

considered in turn.

For the case of an anti-hard-collinear gluon and hard-collinear s quark in Q8g, the

conversion of the anti-hard-collinear gluon onto a photon is O(λ) in power counting. This

process is illustrated in figure 10. In this case Q8g is matched onto a single operator (again

suppressing the overall − g mb

4π2 e
−imb v·x factor):

Q
(2)

8g, hc gluon
= ξ̄hc

/̄n

2

[

in · ∂ /Ahc⊥

]

(1 + γ5)h , followed by O(λ) conversion. (C.5)
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SCET LSCET,O(λ)

hc

hc
+

hc

s s

hc
−→

Figure 10. Graphical illustration of the tree-level matching procedure for a Q8g contribution,

showing how a resolved photon contribution arises after a SCET Lagrangian insertion.

SCET

+ −→

Figure 11. Graphical illustration of the tree-level matching procedure for the operator Q8g for the

case when the s quark is matched onto a hard-collinear field.

This is the first example of an operator that gives rise to a resolved photon contribution.

The conversion is displaced along the light cone by the anti-hard-collinear propagator.

For the case of a hard-collinear gluon in Q8g, we have to distinguish between the

different scaling of the components of Gµν . We will need the following components of

σµν G
µν :

O(λ1/2) : 2
/n

2
[in̄ · ∂ /A⊥]

O(λ) : 2 [i/∂⊥ /A⊥ − i∂⊥ ·A⊥] +

(

/n

2

/̄n

2
− /̄n

2

/n

2

)

[in̄ · ∂ n ·A]
(C.6)

If the s quark is matched onto a hard-collinear field, we need to have the anti-hard-

collinear photon emitted from the b or s quark lines, as shown in figure 11. This would

match onto SCET operators that contain both a hard-collinear gluon and an anti-hard-

collinear photon suppressed by mb for the b-quark line, and by n̄ · ∂ for the s-quark line.

We also need to consider the three possibilities for Gµν and the multipole expansion of the
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heavy-quark field. In total we have

Q
(1)
8g,hc quark = ξ̄hc

1

in̄ · ←−∂
ede /Aem

⊥ [in̄ · ∂ /Ahc⊥] (1 + γ5)h ,

Q
(2)
8g,hc quark = ξ̄hc

1

in̄ · ←−∂
ede /Aem

⊥ [in̄ · ∂ /Ahc⊥] (1 + γ5)x
µ
⊥Dµh

− ξ̄hc
i
←−
/∂ ⊥

in̄ · ←−∂
/̄n

2mb
[in̄ · ∂ /Ahc⊥]ede /Aem

⊥ (1 + γ5)h

+ ξ̄hc
1

in̄ · ←−∂
ede /Aem

⊥

/̄n

2
[i/∂⊥ /Ahc⊥ − i∂⊥ ·Ahc⊥] (1 + γ5)h

− ξ̄hc [i/∂⊥ /Ahc⊥ − i∂⊥ ·Ahc⊥]
/̄n

2mb
ede /Aem

⊥ (1 + γ5)h

+ ξ̄hc
1

in̄ · ←−∂
ede /Aem

⊥

/̄n

2

[

i

2
n̄ · ∂ n ·Ahc

]

(1 + γ5)h

+ ξ̄hc
/̄n

2mb

[

i

2
n̄ · ∂ n ·Ahc

]

ede /Aem
⊥ (1 + γ5)h .

(C.7)

If the s quark is matched onto an anti-hard-collinear field, it can only be converted

to an anti-hard-collinear photon and a soft s quark. The conversion costs us λ1/2, so the

lowest-order operator possible is O(λ3). Considering all the possible structures for Gµν

and the multipole expansion, we find

Q
(1)

8g, hc quark
= ξ̄hc

/n

2
[in̄ · ∂ /Ahc⊥] (1 + γ5)h , followed by O(λ1/2) conversion,

Q
(2)

8g, hc quark
= ξ̄hc

/n

2
[in̄ · ∂ /Ahc⊥] (1 + γ5)x

µ
⊥Dµh , followed by O(λ1/2) conversion, (C.8)

+ξ̄hc [i/∂⊥ /Ahc⊥ − i∂⊥ ·Ahc⊥] (1 + γ5)h , followed by O(λ1/2) conversion,

+ξ̄hc

/n

2

[

i

2
n̄ · ∂ n ·Ahc

]

(1 + γ5)h , followed by O(λ1/2) conversion.

C.1.3 Matching of Qq
1

To simplify the notation we write the operator as Qq
1 = s̄Γ1q q̄ Γ2b, where Γ1 ⊗ Γ2 =

γµ(1 − γ5) ⊗ γµ(1 − γ5). At tree level, the light quarks can only be matched onto hard-

collinear or anti-hard-collinear fields. A matching of any of the light quarks onto even one

soft field would lead to a suppression of O(λ4). As a result, Q1 is matched at NLO, before

taking into account any conversions. When there is more than one anti-hard-collinear

quark field, no conversion is allowed at tree-level. Hence, we are left with the following

cases (suppressing the e−imb v·x factor).

s̄ = ξ̄hc, q = ξhc, q̄ = ξ̄hc: We need to consider an attachment of one anti-hard-

collinear photon emitted either from the heavy or one of the hard-collinear quark lines.

This leads to four possible O(λ7/2) operators:

− ξ̄hcΓ1
/̄n

2mb
ede /Aem

⊥ h ξ̄hcΓ2ξhc + ξ̄hc ede /Aem
⊥

/̄n

2

1

in̄ · ←−∂
Γ1h ξ̄hcΓ2ξhc

+ ξ̄hcΓ1h ξ̄hc ede /Aem
⊥

/̄n

2

1

in̄ · ←−∂
Γ2µξhc − ξ̄hcΓ1h ξ̄hcΓ2

/̄n

2
ede /Aem

⊥

1

in̄ · −→∂
ξhc .

(C.9)
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s̄ = ξ̄hc, q = ξ
hc

, q̄ = ξ̄hc and s̄ = ξ̄hc, q = ξhc, q̄ = ξ̄
hc

: In this case we need to

convert the anti-hard-collinear quark to a photon via ξhc → Aem
⊥ + q and ξ̄hc → Aem

⊥ + q̄,

which is O(λ1/2). Therefore, we can only have

ξ̄hcΓ1h ξ̄hcΓ2ξhc , followed by O(λ1/2) conversion,

ξ̄hcΓ1h ξ̄hcΓ2ξhc , followed by O(λ1/2) conversion.
(C.10)

s̄ = ξ̄
hc

, q = ξhc, q̄ = ξ̄hc: Supplemented with SCET Lagrangian for ξ̄hc → Aem
⊥ + q̄,

only one NNLO operator is possible:

ξ̄hcΓ1h ξ̄hcΓ2ξhc , followed by O(λ1/2) conversion. (C.11)

C.2 Loop matching

We now perform the matching including the contributions of loops. These are only relevant

for Q1, where the two up-type quarks are contracted and a number of gauge bosons are

emitted from the internal lines. The contribution of three gauge bosons would lead to

further power or loop suppression, so we only need to consider one or two bosons.

The one gauge boson loops are easy to analyze. In the NDR scheme only Q5 and Q6

give a non zero contribution. Furthermore, this contribution only modifies the coefficients

Q7γ and Q8g to Ceff
i [84], with

Ceff
7γ = C7γ +

6
∑

i=1

yiCi , Ceff
8g = C8g +

6
∑

i=1

ziCi , (C.12)

where yi, zi depend on the scheme. They vanish in the ’t Hooft-Veltman scheme, while

in the NDR scheme the non zero ones are y5 = −1/3, y6 = −1, z5 = 1. The effective

coefficients are regularization-scheme invariant. The contribution of the one-boson loop

would therefore be to change C7γ,8g to Ceff
7γ,8g.

A more involved contribution arises for the loops with two external bosons, which is

the main focus in this subsection. These can only be one photon and one gluon. Two

external gluons would lead to further power or loop suppression.

As usual, the b quark is matched onto the heavy quark field h. Since there is already

a photon in the operator, the s quark cannot be anti-hard-collinear. On the other hand, a

soft s quark would lead to power suppression, so it must be hard-collinear. There are two

possibilities for the gluon emitted from the loop: it can either be hard-collinear or it can

be soft. If the gluon is hard-collinear, the loop momentum is hard. If the gluon is soft, the

loop momentum is anti-hard-collinear. For the first case, a photon and a hard-collinear

gluon, we need to calculate the loop diagram in QCD in order to perform the matching.

For the second case, a photon and and a soft gluon, one would need the tree-level matching

of Q1 onto the operator of (4.5). The conversion of the two anti-hard collinear quarks to

a photon and a soft gluon would be calculated in SCET. Alternatively, one can calculate

the process in QCD and use the fact that the two calculations are equivalent, since only

one momentum region, anti-hard-collinear, contributes in this case.

We have explicitly calculated the appropriate QCD one-loop diagram, arising from the

four-quark operator (s̄iΓ2qj) (q̄kΓ1bl). Alternatively, the result can be read off from the
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two gluon calculation in [85], where one of the gluons is replaced by a photon. Using the

notation of [85] the amplitude is given by

A =
e eq
4π

g

4π
(T a)mns̄mΓ2AµνΓ1bnǫ

∗µ
1 (q1)ǫ

∗a ν
2 (q2)δijδkl , (C.13)

where

Aµν = [(4r − 1)F (r)− 4r]

[

mq

2r
gµν −

qµqν
mq

]

+ [F (r)− 1] iǫραµν (qρ
1 − q

ρ
2) γ

αγ5

+
2r

m2
q

[F (r)− 1] [qµiǫρσανq
ρ
1q

σ
2 − qνiǫρσαµq

ρ
1q

σ
2 ] γαγ5 − F (r)

mq
iǫρσµνq

ρ
1q

σ
2 γ

5 .

(C.14)

Here mq and eq are the mass and charge of the quark in the loop, q1, ǫ1 (q2, ǫ2) are the

momentum and polarization of the photon (gluon), r = m2
q/q

2−iǫ, q2 = (q1+q2)
2, and F (r)

is the penguin function defined in (2.6). Alternatively, one could write in a gauge-invariant

notation

Aµνǫ
∗µ
1 (q1)ǫ

∗a ν
2 (q2) = [(1− 4r)F (r) + 4r]

1

2mq
FµνGa

µν +
F (r)

2mq
G̃a

ρµF
ρµiγ5

+ [1− F (r)]
2

q2

(

Ga
µαF̃

µβ + FµαG̃
a µβ
)

iqαγβγ5 .

(C.15)

Here we are using the convention

F̃µν = −1

2
ǫµναβFαβ (ǫ0123 = −1) (C.16)

and the fact that for an external gluon q2 · ǫ∗a2 = 0.

C.2.1 Matching with Aem
⊥hc

and Agluon
s

The diagram with an anti-hard-collinear photon and a soft gluon emitted from the internal

line already contributes at O(λ7/2). Since As
gluon scales homogeneously ∼ (λ, λ, λ), it is

natural to use the gauge invariant form for the resulting operators, rather than decomposing

the gauge fields into their light-cone components. Furthermore, only the axial part of Aµν

in (C.14) yields a non-zero result, as the Γi in (C.13) are the usual V −A Dirac structures,

when matching Q1. Therefore we only need

Aµνǫ
∗µ
1 (q1)ǫ

∗a ν
2 (q2) =

2

q2

(

Ga
µαF̃

µβ + FµαG̃
a µβ
)

iqαγβγ5[1− F (r)]

≈ 2

q2

(

Ga
µαF̃

µβ
)

iqαγβγ5[1− F (r)] ,

(C.17)

which follows from the fact, that qαFµα vanishes at the lowest order in λ.

For Q1 the loop can consist of any up-type quark that is not integrated out in the

weak effective Lagrangian. When matching onto SCET the u quark should be taken to be

massless, so we can replace F (m2
u/q

2) by 0. For charmed quarks we have m2
c ∼ mbΛQCD,

which is of the same order as q2. As a result, F (m2
c/q

2) should not be expanded for

c quarks.
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In position space, we find that at NNLO the Qq
1 operators are matched onto

Q
u (2)
1 (x) =

( eeu
4π2

)

ξ̄hc(x)T
aγβ(1−γ5)h(x)e

−imbv·x

×
∫

d4q1
(2π)4

d4q2
(2π)4

ei(q1+q2)x 1

(q1+q2)2+iǫ
i(qα

1 +qα
2 )gGa

µα(q2) ǫ
µβρσFρσ(q1) ,

Q
c (2)
1 (x) =

( eec
4π2

)

ξ̄hc(x)T
aγβ(1−γ5)h(y)e

−imbv·x

∫

d4q1
(2π)4

d4q2
(2π)4

ei(q1+q2)x (C.18)

× 1

(q1+q2)2+iǫ

[

1−F
(

m2
c

(q1+q2)2
−iǫ

)]

i(qα
1 +qα

2 )gGa
µα(q2) ǫ

µβρσFρσ(q1) ,

where we show explicitly the dependence of the momentum-space Fρσ andGa
µα on q1 and q2.

C.2.2 Matching with Aem
⊥hc

and Agluon
⊥hc

In this case q2 is hard, i.e. q2 ∼ m2
b . Therefore F (m2

q/q
2) can be expanded around zero

for charm quarks as well as for up quarks. The first order correction resulting from this

expansion gives a power suppressed contribution, so we can just set F (m2
q/q

2) to zero.

Depending on the polarization of the gluon field we can get either an NLO or an NNLO

operator. We need to also include corrections from the multipole expansion of the heavy-

quark field and subleading matching on the hard-collinear quark. In total we find that Qq
1

is matched onto (suppressing an overall factor
eeqg
4π2 e

−imb v·x)

Q
q (1)
1 = ξ̄hc

/̄n

2
ǫ⊥µν [A

ν
hc⊥ n · ∂Aem µ

⊥ ] (1 − γ5)h ,

Q
q (2)
1 = ξ̄hc ǫ⊥µν [Aem

⊥ · ∂⊥A
ν
hc⊥] γµ

⊥(1− γ5)h

+
1

2
ξ̄hc ǫ⊥µν [A

em ν
⊥ n̄ · ∂ n ·Ahc] γ

µ
⊥(1− γ5)h

− ξ̄hc
i
←−
/∂ ⊥

in̄ · ←−∂
ǫ⊥µν [A

em µ
⊥ n̄ · ∂A

ν
hc⊥] (1− γ5)h

+ ξ̄hc
/̄n

2
ǫ⊥µν [A

ν
hc⊥n · ∂Aem µ

⊥ ] (1− γ5)x
µ
⊥Dµh ,

(C.19)

where ǫ⊥µν = 1
2ǫαβµν n̄

αnβ.
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