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Abstract: We demonstrate ultrafast coherent control of multiphoton
absorption in a dynamically shifted energy level structure. In a three-level
system that models optical interactions with sodium atoms, we control
the quantum interference of sequential 2 + 1 photons and direct three-
photon transitions. Dynamic change in energy levels predicts an enormous
enhancement of |7p〉-state excitation in the strong-field regime by a
negatively chirped pulse. In addition, the |4s〉-state excitation is enhanced
symmetrically by nonzero linear chirp rates given as a function of laser
peak intensity and laser detuning. Experiments performed by ultrafast
shaped-pulse excitation of ground-state atomic sodium verifies the various
strong-field contributions to |3s〉-|7p〉 and |3s〉-|4s〉 transitions. The result
suggests that for systems of molecular level understanding adiabatic control
approach with analytically shaped pulses becomes a more direct control
than feedback-loop black-box approaches.
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1. Introduction

In modern laser optics, light is not only a viewing tool, but also a tool for controlling quan-
tum objects and light-induced phenomena [1]. Light with programmed spectral and temporal
shapes can be used for quantum-mechanical control of an object by altering the dynamics of
the amplitude (probability distribution) and/or the phase (quantum coherence) of the quantum
wave function, a method referred to as ”quantum control” or ”coherent control” [2, 3, 4]. The
coherent preparation of light has been considered relatively easy compared with that of matter;
therefore, in a light-matter interacting system, the quantum states of the matter are controlled
by controlling the coherent nature of the interacting light [5]. Thus, both laser development and
light control play important roles in the study of coherent control. Recently, ultrafast lasers,
which produce coherent superposition of broadband frequency components in optical regions,
have been widely used under various conditions for coherent control experiments. (For a general
review, see Ref. [6].) For example, the challenge of optimizing various light-matter interactions
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has been addressed with designed laser pulses by either solving the Schrödinger equation or
by feedback adaptation [2, 7]. Feedback adaptive coherent control, or closed-loop control, was
first demonstrated with photo-dissociation by Gerber and coworkers [8]. Also, in the same year,
Meschulach and Silberberg optimized two-photon absorption by designing ultrafast, short op-
tical control pulses [9]. Both of these methods for ultrafast coherent control have been applied
to the optimization of nonlinear processes (e.g., second-harmonic generation, third-harmonic
generation [10, 11], and multiphoton absorption [12, 13, 14]), nonlinear Raman spectroscopy
(CARS) [15], in-vivo fluorescence microscopy [16], and coherent manipulation of Rydberg
atoms [17] and cole atoms [18].

In particular, ultrafast coherent control in multiphoton absorption has been studied widely
in the weak-field regime because the Hamiltonian for the given light-matter interaction is
relatively simple to solve analytically. As the energy-level structure of the matter remains
unchanged in the weak-field interaction regime, analytic forms are obtained from pertur-
bation theory. For example, multiphoton processes with pulses of π phase step, sinusoidal
phase [13, 14, 18], and linear chirping [19, 20, 21] have been considered. However, fur-
ther enhancement of the optical processes requires a study in the strong-field interaction
regime [22, 23], in which strong-field effects, such as the dynamic Stark shift and power
broadening, must be considered. It is now well known that the control schemes devised in
the weak-field regime are not always directly applicable to strong-field coherent control, al-
though there are exceptions. For example, power broadening can be compensated in part by
the solution of the weak-field regime [24]. Recently, there have been many studies on strong-
field coherent control. For the optimization of strong-field two-photon absorption, Weinacht
and coworkers proposed strong-field atomic phase matching [25], and the Silberberg group
phenomenologically studied strong-field two-photon absorption using spectro-temporal two-
dimensional maps [26]. There was an attempt to maximize two-photon absorption using the
piecewise linear chirped pulse [27]. For selection of the desired state among accessible states,
the selective population of dressed states was demonstrated based on adiabatic passages and
photon locking [28]. In terms of selective excitation in alkali atoms, the population inversion in
the sodium three-level system has been demonstrated using the GA algorithm [29], and the se-
lective population transfer of dressed states using the AC stark shifts has been studied in atomic
potassium [30].

In this paper, we report an experimental study of ultrafast coherent control of multiphoton
absorption in a dynamically shifted energy-level structure. In a three-level system modeled for
ultrafast optical interactions with ground-state sodium atoms, we controlled the quantum inter-
ference of sequential 2 + 1 photons and direct three-photon transitions. The dynamic structural
change of sodium energy levels predicts an enormous enhancement of |7p〉-state excitation by
a negatively chirped pulse in the strong-field regime. In addition, the |4s〉-state excitation is
enhanced symmetrically by nonzero linear chirp rates given as a function of laser peak inten-
sity and laser detuning. We first obtained analytical formulas for the strong-field contributions
to |3s〉-|7p〉 and |3s〉-|4s〉 transitions and then verified them by experiments performed with
programmed laser pulses.

2. Theoretical considerations

We consider a three-state model system to describe the ultrafast optical interaction of ground-
state atomic sodium. The first two energy states are two-photon states coupled with each other,
and the third is a one-photon state that is resonant with the second state. The effective Hamil-
tonian in the resonant approximation can be written in terms of the three states {|g〉, |e〉, | f 〉}
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as [31]

Ĥ(t) =

⎛
⎝

Sg(t) 1
2 Ω(t)ei[Δ1t+2φ(t)] 0

1
2 Ω(t)e−i[Δ1t+2φ(t)] Se(t) 1

2 Ωe f (t)ei[Δ2t+φ(t)]

0 1
2 Ωe f (t)e−i[Δ2t+φ(t)] S f (t)

⎞
⎠ , (1)

where Sg(t), Se(t), and S f (t) represent the dynamic Stark shifts, Ω(t) and Ωe f (t) are the two-
photon and one-photon Rabi frequencies, respectively, Δ1 is the two-photon detuning defined
by Δ1 = 2ν −ωe +ωg, and Δ2 is the one-photon detuning, Δ2 = ν −ω f +ωe, where ωg, ωe,
and ω f are the respective energies of the |g〉, |e〉, and | f 〉 states. φ(t) is the phase of the laser
field relative to its central frequency, ν . The Hamiltonian can be alternatively expressed as

Ĥ(T )(t) =

⎛
⎝

Sg(t)+Δ1 +2φ̇(t) 1
2 Ω(t) 0

1
2 Ω(t) Se(t) 1

2 Ωe f (t)
0 1

2 Ωe f (t) Sr(t)−Δ2 − φ̇(t)

⎞
⎠ , (2)

using the transformation Ĥ(T ) = T̂ †ĤT̂ − ih̄T̂ †dT̂/dt, where T̂ = ei[Δ1t+2φ(t)]|g〉〈g|+ |e〉〈e|+
e−i[Δ2t+φ(t)]| f 〉〈 f |. Furthermore, the transformation matrix T̂ ′ = e−i[

∫ t Sg(u)du+Δ1t+2φ(t)]|g〉〈g|+
e−i

∫ t Se(u)du|e〉〈e|+ e−i[
∫ t S f (u)du−Δ2t−φ(t)]| f 〉〈 f | transforms the diagonal terms in Eq. (2) into

the off-diagonal phase terms, making the Hamiltonian

Ĥ(T ′)(t) =

⎛
⎝

0 1
2 Ω(t)eiQ1(t) 0

1
2 Ω(t)e−iQ1(t) 0 1

2 Ωe f (t)eiQ2(t))

0 1
2 Ωe f (t)e−iQ2(t) 0

⎞
⎠ , (3)

where Q1(t) =−∫ t Seg(u)du+Δ1t +2φ(t) and Q2(t) =−∫ t S f e(u)du+Δ2t +φ(t). Seg(t) and
S f e(t) are the level-shift parameters given as Seg(t) = Se(t)−Sg(t) and S f e(t) = S f (t)−Se(t).

Neither transformation chang the state populations, and the probability amplitudes, aside
from the global phase factors, can be calculated in the perturbative regime that satisfies Ω(t)τ �
1 and Ωe f (t)τ � 1. For the | f 〉 state, the probability amplitude is given as the second-order
Dyson series:

a f =
∫ ∞

−∞
dt

Ωe f (t)

2
e−iQ2(t)

∫ t

−∞
dt ′

Ω(t ′)
2

e−iQ1(t
′), (4)

where Q1(t) and Q2(t) are the atomic phases induced from laser detuning, level shift, and the
temporal phase of laser pulses. The probability amplitude of the |e〉 state is given by

ae = −i
∫ ∞

−∞
dt

Ω(t)
2

e−iQ1(t)

+ i
∫ ∞

−∞
dt

Ωe f (t)

2
e−iQ2(t)

∫ t

−∞
dt ′

Ωe f (t ′)
2

eiQ2(t
′)
∫ t ′

−∞
dt ′′

Ω(t ′′)
2

e−iQ1(t
′′), (5)

where the dominant contribution is from the two-photon excitation in a decomposed two-level
system in |g〉, |e〉 bases.

The optimal excitation of each |e〉 and | f 〉 state is determined by the engineered quantum
interference of the transition probabilities. In the following section, we discuss the derivation
and testing of approximate behaviors of the excited energy levels of atomic sodium induced
by shaped pulses, especially in the strong-field interaction regime where the structure of the
energy levels is strongly altered during the pulse interaction.
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Fig. 1. Energy levels and transitions of atomic sodium

3. Experimental

The energy-level structure of atomic sodium is shown in Fig. 1, where the ground-state atoms
are excited to the |4s〉 energy-state by non-resonant two-photon absorption of 777-nm light.
The energy difference between the |4s〉 and |7p〉 states is 781 nm, and the transition between
these states is single-photon resonant with the laser light. Because the atoms interacted with a
sub-picosecond optical pulse of broad wavelengths, including both resonant wavelengths, 777
and 781 nm, the |4s〉 and |7p〉 states were simultaneously excited. The resulting wave function
is a coherent superposition state of |3s〉, |4s〉, and |7p〉. Sodium atoms were prepared in a
heated optical cell. The vapor pressure of sodium in the solid phase is given by [32] log10 Pv =
2.881+ 5.298− 5603/T , where the temperature, T , is in Kelvin, and the vapor pressure, Pv,
is in Torr; thus, the density of sodium atoms was 2.0× 1017/m3 in the heated cell at 423 K.
The lifetimes of the excited sodium atoms are on the order of a few tens of nanoseconds. The
ionization probability at the explored laser intensity of 1013 W/cm2 was 1000 times smaller
than the |4s〉− |7p〉 transition. For the interaction of sodium atoms with short optical pulses of
a few picoseconds, the decay processes and ionization processes could be ignored during the
excitation; therefore, the |3s〉, |4s〉, and |7p〉 energy states formed the three-state model system
under consideration.

For the generation and pulse shaping of sub-picosecond optical pulses, we used a Ti:sapphire
laser amplifier system that produced 50-fs short optical pulses. The laser was operated at a 1-
kHz repetition rate, and the central wavelength was tuned between 779 and 800 nm. The optical
pulses of 100-μJ of energy were shaped by an actively controlled acousto-optic programmable
dispersive filter [33] inserted into the laser system between the amplifier gain medium and the
pulse compressor. The shaped pulses were spatially filtered and then focused in a vapor cell
of sodium atoms. The beam radius at the focus was 32.8 μm, and the Rayleigh range was 4.0
mm. The focused spot in the vapor cell was imaged by a telescope, and the fluorescence was
collected by a photomultiplier (PMT, Hamamatsu R1527P). The two-photon Rabi coupling was
Ω(0)=-10.25 Trad/s at the laser peak, and the Rabi coupling between the |4s〉 and |7p〉 states
was Ωer(0) = 5.45 Trad/s. For the two-photon rotating wave approximation, we verified that
|Δ| � ω jg −ν � ω je +ν . At a 777-nm center wavelength, the two-photon detuning was nearly
zero, and the given condition was satisfied. At 800 nm, |Δ| ≈ 140× Trad/s and ω jg − ν �
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700× Trad/s, so the approximation condition was satisfied.
To record the |7p〉 excited population, we used the |7s〉-|3p〉 transition. (Fig. 1) The 475-nm

fluorescence signal was measured as a function of the control parameters of the shape program-
ming. In addition, the 3p〉− |3s〉 transition signal was used for the combined sum of |7p〉 and
|4s〉 populations, both of which were excited by shaped laser pulses. We note that the Einstein
coefficients were A7p−3s = 7.96×104/s and A7p−7s = 1.70×105/s, and 57% of the |7p〉 pop-
ulation reached the |3p〉 state [34]. The fluorescence signals were centered at 590 nm and 475
nm for the |7s〉-|3p〉 and |3p〉-|3s〉 transitions, respectively, and were individually collected via
spectral bandpass filters placed in front of the PMT. The signal intensity of the PMT was kept
in the well-calibrated linear detection range, and the |7p〉 excited state, maintained below the
saturation limit, was linearly mapped with the fluorescence signal.

4. Results and discussion

The Gaussian pulse width T0 of a transform-limited pulse is about 37 fs. For a linearly
chirped pulse which interacts with Sodium atoms, actual Gaussian pulse width is given by

τ = T0

√
1+(2a2/T 2

0 )
2, where a2 is chirp rate in frequency-domain. In time-domain, the fre-

quency sweeping of a linearly chirped pulse is given as a function of time by φ̇(t) = 2β t,
where β = 2a2/

(
τ2T 2

0

)
. In our experiments, the shaped chirped pulses have the same spec-

trum and also the same fixed energy. Because of the fixed pulse energy in our experiments,
the peak intensity of the linearly chirped pulse is reduced by τ(a2)/T0 times relative to that of
a transform-limited pulse. Thus, the dynamic Stark shifts induced by linearly chirped pulses
become smaller than those by a transform limited pulse.

4.1. Control of sodium |7p〉-state excitation

Figure 2 shows a dressed-state picture of the given 2 + 1 photon absorption processes in the
sodium three-state model system. First, we considered the transition paths from the |3s〉 to
| f 〉= |7p〉 states. Three possible paths are indicated in Fig. 2(a). For a positively chirped pulse,
the photon frequency increased as a function of time; therefore, the |3s〉− |7p〉 transition was
possible along path (III), which is a direct transition path from |3s〉 to |7p〉 that does not pass by
the |4s〉 state. On the other hand, for a negatively chirped pulse, the photon frequency decreased,
and two paths are possible: a sequential path (I) and a direct path (II). Considering the fact that
path (III) is an inefficient excitation, it is thought that the |7p〉 atoms were generated more
effectively by a negatively chirped pulse than by a positively chirped pulse.

This asymmetric excitation to the |7p〉 state, obtained as a function of the chirp parameter,
can be understood in a time-frequency schematic. Figures 2(b) and (c) show one-photon (red)
and two-photon (blue) spectrograms of chirped laser pulses that are plotted in two-dimensional
time space and frequency. They are overlaid with the resonant frequency shifts of |4s〉-|7p〉
and |3s〉-|4s〉 transitions (dashed lines). Figure 2(b) shows that the |3s〉-|4s〉 transition occurred
first and the |4s〉-|7p〉 occurred later; thus, a sequential excitation along the |3s〉 → |4s〉 →
|7p〉 path was satisfied. On the other hand, for a positively chirped pulse shown in Fig. 2(c),
because the |3s〉-|4s〉 resonance frequency was up-shifted during the optical interaction, the
two-photon spectrum overlaps with the resonance line after the temporal center of the pulse. As
a result, the |3s〉-|4s〉 and |4s〉-|7p〉 transitions occurred in a time-reversal sequence, indicating
that the sequential excitation was not possible. Thus, sequential excitation is not possible for a
positively chirped pulse, and only non-sequential excitations, e.g., along path (III) in Fig. 2(a),
are possible.

In the following sub-section, we use the theoretical model described in Sec. II to calculate
the sequential and non-sequential excitations to the |7p〉 state and verify the results with corre-
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Fig. 2. (a) Dressed-state picture for a 2 + 1 photon absorption process in a sodium three-
state model system. Three arrows indicate possible transition paths from |g〉 to |r〉 for a neg-
atively chirped pulse interaction. (b) Schematic illustrations of dynamically Stark-shifted
resonant frequencies of |3s〉 − |4s〉 and |4s〉 − |7p〉 transitions (dashed lines) of sodium
atoms, overlaid with two-photon (blue) and one-photon (red) time-frequency spectrograms
for the negatively chirp pulse of a2 = −5000 fs2. (c) Similar illustration for a positively
chirped pulse with a2 = 5000 fs2. The spectrograms were vertically shifted to match the
corresponding transitions.

sponding experiments.

4.2. Calculation of the sequential and direct |7p〉 excitations

The probability amplitude of the |7p〉 state is obtained from Eq. (4). To calculate the transition
probability amplitudes for the sequential and direct excitation paths, we separated Eq. (4) into
two parts: resonant and non-resonant. In the perturbative interaction regime, the probability
amplitudes corresponding to these two parts can be written, respectively, as [25]:

af,res = iπE(ωre +δ f e)
∫ ∞

−∞
dωE(ω)E(ωeg +δeg −ω), (6)

af,nonres = ℘
∫ ∞

−∞
dω

E(ω)

ω −ω f e −δ f e

∫ ∞

−∞
dω ′E(ω ′)E(ω f g +δ f g −ω −ω ′), (7)

where ℘ is the Cauchy principal value. The subscripts ”res” and ”nonres” denote the resonant
and non-resonant excitations, and δeg and (δ f e are the maximum amplitudes of the total level
shifts of the |3s〉 − |4s〉 and |7p〉 − |4s〉 transitions, respectively, which are calculated at the
temporal peak of a transform-limited pulse. E(ω) is the Fourier transform of the electric field
profile, a spectrally chirped Gaussian pulse, given by

E(ω) =
√

πEoTo exp

(
−1

4
(ω −ν)2T 2

o + ia2(ω −ν)2
)
, (8)

where To is the Gaussian width of a transform-limited pulse, and a2 is the linear chirp parameter
in the spectral domain.

The resonant |3s〉 → |7p〉 excitation was obtained by substituting Eq. (8) into Eq. (6) as

af,res =

√
2π3

ToTp
E2(ν)exp

[
−
(

δ 2
1ph(ν)

4
+

δ 2
2ph(ν)

8

)
(T 2

o +2ia2)

]
ei(θ+π)/2, (9)
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where tanθ =−2a2/T 2
o , the two-photon detuning, is defined as δ2ph(ν) = ωeg +δeg −2ν , and

the one-photon detuning is defined as δ1ph(ν) = ω f e + δ f e − ν . Alternatively, Eq. (9) can be
written as

af,res =

√
2π3

ToTp
E2(ν)exp

[
−
(

δ 2
3ph(ν)
12

+
3δ 2

s

8

)
(T 2

o +2ia2)

]
ei(θ+π)/2, (10)

where three-photon detuning is defined as δ3ph(ν) = ω f g + δ f g − 3ν , and δs is the structure
factor, δs = ω f e +δ f e − (ω f g +δ f g)/3 that is independent of ν .

The transition probability for the resonant excitation to |7p〉 is the absolute square of Eq. (10).
The result is a symmetric function of chirp a2, which contradicts the prediction in Sec. 4.1
that the sequential excitation should be an asymmetric function of the chirp. However, there
is indeed another sequential path in the non-resonant excitation path in Eq. (7). Although the
resonant excitation (af,res) contributed only to the sequential transition path (|3s〉 → |4s〉 →
|7p〉), the non-resonant part (af,nonres) contributed to both the sequential and direct paths, i. e.,

af = aseq
f,res +aseq

f,nonres +adirect
f,nonres, (11)

where aseq
f,res = af,res because there were no resonant non-sequential transitions.

For the calculation of the non-resonant direct excitation adirect
r,nonres, we considered Eq. (7) near

the three-photon resonant condition, i.e., ω ≈ (ω f g + δ f g)/3. Then, the denominator of the
integrand in Eq. (7) can be treated as a constant, and it is simple to show that

adirect
f,nonres =− 4π√

3δsToTp
E3(ν)exp

[
−δ 2

3ph

12
(T 2

o +2ia2)

]
eiθ . (12)

Finally, for the calculation of aseq
r,nonres, we considered the small frequency range around the

pole, i.e., ω ≈ ω f e +δ f e, in Eq. (7). Equation (7) is written as

aseq
f,nonres =

√
2π

ToTp
E3(ν)exp

[
−δ 2

3ph

12
(T 2

o +2ia2)

]
eiθ/2

× ℘
∫ ∞

−∞

dω
ω −ω f e −δ f e

exp

[
−3

8

(
ω − ω f g +δrg

3

)2

(T 2
o +2ia2)

]
. (13)

By neglecting the term of the order of O(ω−ω f e+δ f e)
2, the non-resonant sequential excitation

is given by

aseq
f,nonres =

√
2π3

ToTp
E2(ν)exp

[
−
(

δ 2
3ph(ν)
12

+
3δ 2

s

8

)
(T 2

o +2ia2)

]
ei(θ+π)/2sgn(a2δs)

= aseq
f,ressgn(a2δs), (14)

where the sign function, defined by sgn(x)=+1 (-1) for x > 0 (x < 0), is due to the contour
integral given as a function of the sign of δsa2. The result is valid in the chirp range of |a2|/T 2

o �
1. In the experiment, To is 37 fs, and the approximation |a2|/T 2

o � 1 was valid for |a2| >
1369 fs2. In sodium, δs= -8.3 Trad/s, and as a result, aseq

f,nonres +aseq
f,res = 0 for a2 > 0. Therefore,

the net sequential excitation path to |7p〉 in Eq. (11) vanishes for a positively chirped pulse
because the resonant and non-resonant contributions cancel each other.
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Fig. 3. Three-photon sodium excitation to the |7p〉 state with a chirped optical pulse. The
curves show the calculation of total (solid line), sequential (blue dashed line), and direct
(green dot-dash line) transitions. The experimental measurements are shown as circles. The
inset shows the sequential and direct transition paths from |3s〉 to |7p〉.

4.3. Verification of shaped-pulse |7p〉-state excitation

The sodium |7p〉 excitation was experimentally tested as a function of the chirp rate a2. Figure 3
shows the calculation of the net transition probability (solid line) of |3s〉−|7p〉 given in Eq. (11),
the components of which were obtained from Eq. (10), Eq. (12), and Eq. (14) as a function of the
linear chirp rate. The laser (transform-limit) peak intensity was kept at I = 3.0×1011 W/cm2,
and the chirp rate a2 was varied in the range [-1.0, 1.0]×104 fs2. As predicted in the schematic
picture in Sec. 4.1, the excitation was significantly enhanced by negatively chirped pulses be-
cause the sequential excitation path along |3s〉 − |4s〉 − |7p〉 was zero for positively chirped
pulses. The direct transition from |3s〉− |7p〉, which is a symmetric function in Eq. (12), was
10 times smaller than the sequential transition for the tested laser peak intensity. For compar-
ison, the sequential and direct excitation probabilities are plotted using dashed and dot-dash
lines, respectively. For the numerical calculation, the dynamic Stark shift of the |3s〉 state was
Sg = −32.8(I/Io) Trad/s, determined by couplings with |p〉 states, where Io is the reference
laser intensity, Io = 1.0× 1011 W/cm2. The shift of the |4s〉 state was Se = 28.9(I/Io) Trad/s
at the same intensity. Thus, the net frequency shift of the two-photon transition was positive.
The |7p〉 state was shifted by couplings with the |s〉 and |d〉 states as well as with continuum
states. It is known that the presence of a continuum increases the energy of the excited state by
the ponderomotive energy given by Sr(t) = e2E2(t)/4mν2, where ν is the laser frequency, and
m is the mass of an electron. As a result, the |7p〉 state was up-shifted Sr = 8.7(I/Io) Trad/s,
and the net frequency shift of the |4s〉-|7p〉 transition was negative Sre = −20.2(I/Io) Trad/s.
Also, because the laser beam had a Gaussian spatial intensity distribution, the total excitation
probability was calculated as the sum of local excitations, i.e., Ptotal =

∫ ∞
0 P(I(r))d3r.

#139363 - $15.00 USD Received 8 Dec 2010; revised 18 Jan 2011; accepted 18 Jan 2011; published 24 Jan 2011
(C) 2011 OSA 31 January 2011 / Vol. 19,  No. 3 / OPTICS EXPRESS  2274



chirp rates(fs   )2

En
er

gy
 

(μ
 J)

 

 

−5000 0 5000
0

1

2

3

4

5

0

0.5

1

1.5

2

x 10−3
(a) Calculation (3s-7p) (b) Experiment

chirp rate (fs   )2

pu
ls

e 
pe

ak
 in

te
ns

ity
 (I

/Io
)

 

 

−5000 0 5000
0

1

2

3

4

5

6

0

0.005

0.01

0.015

0.02

0.025

Fig. 4. (a) Theoretical and (b) experimental results of chirped-pulse three-photon excitation
probability of sodium atoms as a function of the linear chirp rate and laser peak intensity.
For the relative measurement of |7p〉 sodium atoms, the |7s〉−|3p〉 fluorescence signal was
recorded.

The excitation probability calculated as a function of a2 and laser peak intensity I is com-
pared with the experimentally tested results in Fig. 4. The |7p〉 excited atoms were measured
by monitoring the |7s〉 − |3p〉 fluorescence as a function of laser (transform-limited) peak
intensity and the chirp parameter (a2). The laser peak intensity, I, was varied from zero to
I = 6.0× 1011 W/cm2, and a2 was varied in the range of [-1.0, 1.0]×104 fs2. The net transi-
tion probability, which is the sum of the calculated sequential and direct transitions shown in
Fig. 4(a), showed excellent agreement with the experimental results in Fig. 4(b).

4.4. Chirped-pulse excitation of |4s〉-state atoms

Finally, we considered the excitation of |4s〉 atoms. Figure 5 shows the calculation and ex-
perimental results of the excitation probability of |4s〉-state atoms. It is evident from Eq. (5)
that the dominant excitation to the |4s〉 state was the direct two-photon absorption from the
|3s〉 state. The presence of the |7p〉 state affected this excitation in terms of the third-order
Dyson series, and the new excitation path was a four-photon sequential excitation along
|3s〉 → |4s〉 → |7p〉 → |4s〉. Therefore, the excitation probability amplitude of |4s〉 atoms is
given by

ae = adirect
e +aseq

e , (15)

where the direct two-photon transition adirect
e is

adirect
e =−i

∫ ∞

−∞
dt

Ω(t)
2

e−iQ1(t), (16)

, and the sequential two-photon transition aseq
e is

aseq
e = i

∫ ∞

−∞
dt

Ωer(t)
2

e−iQ2(t)
∫ t

−∞
dt ′

Ωer(t ′)
2

eiQ2(t
′)
∫ t ′

−∞
dt ′′

Ω(t ′′)
2

e−iQ1(t
′′). (17)

The probability amplitude of the excitation along the direct transition path is

adirect
e =

√
2π

ToTp
exp

[
−δ 2

2ph(ν)
8

(T 2
o +2ia2)

]
ei(θ+π)/2, (18)
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Fig. 5. Chirped-pulse excitation of |4〉-state sodium atoms. (a) The excitation transition
probability shown as a function of chirp rate at a laser transform-limited peak intensity
of I = 3.0× 1011 W/cm2. The curves show the calculation of total (solid line), sequential
(dashed line), and direct (dot-dash line) transitions. The sequential transition was multiplied
by 1000. The experimental results are plotted as circles. The inset shows the sequential and
direct transition paths from |3s〉 to |7p〉. (b) Theoretical and (c) experimental results of the
chirped-pulse excitation probability of sodium |4s〉 atoms plotted as a function of the linear
chirp rate and laser peak intensity.

#139363 - $15.00 USD Received 8 Dec 2010; revised 18 Jan 2011; accepted 18 Jan 2011; published 24 Jan 2011
(C) 2011 OSA 31 January 2011 / Vol. 19,  No. 3 / OPTICS EXPRESS  2276



which was the dominant contribution to the net excitation, and the sequential transition via the
|7p〉 state is negligible. Therefore, the excitation probability is given by

Pe � |adirect
e |2 ∝

1√
1+B2

exp

[
− A2

2(1+B2)

]
, (19)

where A = δ2ph(ν)τ , and B = 2a2/τ2
0 . The net excitation probability was a symmetric function

of the linear chirp rate and nearly vanished at zero chirp. The dynamic Stark shift of the |3s〉-|4s〉
transition caused off-resonance to the two-photon excitation. As the dynamic Stark shift, which
is stored in the parameter A, increased, the term exp

(−A2/(2(1+B2))
)

became important, and
the net probability had a local minimum at a chirp rate of zero.

For experiments, the direct two-photon transition adirect
e was the dominant contribution. The

direct transition, plotted as a solid line in Fig. 5(a), was symmetric around the zero chirp rate be-
cause the direct transition path was available for both negatively and positively chirped pulses.
The probability of the |4s〉 state was determined by the sum of the contributions of the sequen-
tial and direct paths, but the sequential transition, dotted lines in Fig. 5(a), only contributed at
negative chirp rates and was 1000 times smaller than the direct transition. The calculated excita-
tion probability, given as a function of the linear chirp rate of the shaped pulses at various peak
intensities in Fig. 5(b), showed good agreement with the experimental data in Fig. 5(c). A dip
was observed at the zero chirp rate. In the experiment, because the pulse energy was fixed, the
pulse duration (pulse peak intensity) was shortest (maximum) at the zero chirp rate. The strong
peak intensity at the zero chirp rate induced strong off-resonance, reducing the absorption, as
expected from Eq. (19). The net excitation probability showed a nearly symmetric function of
chirp rate and nearly vanished at zero chirp.

5. conclusion

In conclusion, we theoretically analyzed and experimentally demonstrated 2 + 1 multipho-
ton absorption in a three-level system in the strong-field regime. In experiments with atomic
sodium, we engineered quantum interference between sequential and non-sequential excitation
paths from the ground |3s〉 state to the |7p〉 state. The dressed-state picture for the three-photon
interaction with the three-level model system predicted that the resonant and non-resonant con-
tributions in the sequential excitation interfered destructively and canceled each other for pos-
itively chirped pulses. Both analytic formulas and experimental results showed that a nega-
tively chirped pulse enhanced the |7p〉 population because the sequential path was opened by
a negatively chirped pulse. In addition, the |4s〉-state excitation was enhanced symmetrically
by nonzero linear chirp rates given as a function of laser peak intensity and laser detuning. Ex-
periments verified the various strong-field contributions to |3s〉-|7p〉 and |3s〉-|4s〉 transitions.
The transition amplitude formulas analytically obtained by considering the atomic Hamilto-
nian showed good agreement with the experiment. The result suggests that adiabatic control
approach with analytically shaped pulses provides a more direct control of systems of molecu-
lar level understandings than feedback-loop black-box approaches do.
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