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Abstract

Background: Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many
approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial
manual intervention to reduce the number of possible connections and are mainly applied to disease-effect
relation. With the advancement in biomedical science, it has become imperative to extract and combine
information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.

Methods: We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using
Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language
System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge
emergence model to extract implicit relationships across different levels such as molecular level for gene and
protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological
concepts. Third, we provide an empirical and systematic approach to discover novel relationships.

Results: We applied our system on 5000 abstracts downloaded from PubMed database. We performed the
performance evaluation as a gold standard is not yet available. Our system performed with a good precision and
recall and we generated 24 hypotheses.

Conclusions: Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in
extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model.

Background
The advent of high-throughput methods and sheer
volume of medical publications covering various dis-
eases, mining Undiscovered Public Knowledge (UPK)
from these resources is a daunting challenge. The con-
cept of UPK was introduced by Swanson in discovering
Raynaud disease and fish-oil relation in 1986 [1]. Swan-
son defined UPK is public and yet undiscovered in two
complementary and non-interactive literature sets of
articles (independently created fragments of knowledge),
when they are considered together, can reveal useful
information of scientific interest not apparent in either
of the two sets alone [1,2].

Swanson semi-automatically analyzed scientific articles
by using exploratory methods so as to mine for cause-
effect relations. He showed that chains of causal
implication within the medical literature can lead to
hypothesis for cause of rare diseases, some of which
may receive scientific supporting evidence.
The underlying discovery method is based on the fol-

lowing principle: some links between two complemen-
tary passages of natural language texts can be largely a
matter of form “A cause B” (association AB) and “B
causes C” (association BC) (See Figure 1). From this, it
can be seen that they are linked by B irrespective of the
meaning of A, B, or C. However, perhaps nothing at all
has been published concerning a possible connection
between A and C, even though such link if validated
would be of scientific interest. This allowed for the* Correspondence: min.song@njit.edu; dhlee@biosoft.kaist.ac.kr
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generation of several hypotheses such as “Fish’s oil can
be used for treatment of Raynaud’s Disease” [3].
One major issue with the Swanson’s approach is that

it requires the labor intensive work of a domain expert
in the process of screening out the intermediate con-
cepts (the “B” concepts) [4]. To overcome this issue,
several approaches [5-8] have been proposed to auto-
mate the Swanson’s UDK method. Even though these
approaches have successfully replicated the Raynaud dis-
ease/fish-oil and migraine/magnesium discovery, it still
requires substantial manual intervention to reduce the
number of possible connections. In addition, existing
approaches do not cover hidden relations resided at the
molecular level.
Several techniques have been proposed to automate

the Swanson’s UDK model. Early studies on the UDK
model applied advanced Information Retrieval techni-
ques such as Latent Semantic Indexing (LSI) and
TF*IDF to find candidate intermediate concepts on top
of ranking term lists [9-11]. They easily identified high
ranking intermediate terms of interest. However, apply-
ing the same statistics to the intermediate literatures,
the already known (by Swanson’s work) target terms
such as Fish Oil could not be found directly in higher
ranks. Apart from statistical approaches to the UDK

model, rigorous attempts were made to integrate exter-
nal knowledge in ontologies into the discovery process
in the UDK model [12,13][40]. Srinivasan [14] viewed
Swanson’s method as two dimensions. The first dimen-
sion is about identifying relevant concepts for a given
concept. The second dimension is about exploring the
specific relationships between concepts. However, Srini-
vasan [14] dealt only with the first dimension. The key
point of her approach is that MeSH terms are grouped
into the semantic types of UMLS to which they belong.
However, only a small number (8 out of 134) of seman-
tic types are considered since the author believes those
semantic types are relevant to B and A concepts. For
each semantic type, MeSH terms that belong to the
semantic type are ranked based on the modified
TF*IDF. There are some limitations in their method.
First, the author used manually-generated semantic
types for filtering. Second, the author applied the same
semantic types to both A and B terms. Because the roles
of A and B terms for C term are different, different
semantic types should be applied.
Hristovski, et al. [12] used the MeSH (Medical Subject

Headings) descriptors as features and employed associa-
tion rule algorithms to find the co-occurrence of the
words. Their technique first found every intermediate B

Figure 1 Swanson’s UPK model – the connection of fish oils and Raynaud disease
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concepts related to the concept C and then all A con-
cepts related to B concepts were selected by searching
Pubmed. Since each concept can have one or many rela-
tionships with other concepts, the size of B®C and
A®B combinations can be extremely large. In order to
deal with this combinatorial problem, the algorithm
incorporates filtering and ordering capabilities. Hu et al.
[4] utilizes the semantic types and semantic relation-
ships of the biomedical concepts through Unified Medi-
cal Language System (UMLS). Their system identifies
the relevant concepts collected from Medline and gener-
ates the novel hypothesis between these concepts. Pratt
and Yetisgen-Yildiz [6] used UMLS concepts instead of
MeSH terms and limited the search space to the docu-
ment titles as a starting concept which is similar to
Swanson’s method to reduce the number of terms (B
concepts and A concepts). They also reduced the num-
ber of terms/concepts by classifying terms into three
categories: “too general”, “too closely related to the
starting concept”, and “meaningless”. With the qualified
and grouped UMLS concepts, they used the well-known
Apriori algorithm [15] to find correlations among the
concepts. By concept grouping they were able to dis-
cover Swanson’s migraine-magnesium implicit connec-
tion. However, their technique required strong domain
knowledge in selecting semantic types for A and B
concepts.
Atkinson and Rivas [13] used NLP techniques, in a

similar manner, to extract cause and effect relationships
related to diseases from biomedical text and infer new
hypothesis from the information extracted. The system
used the concept types of “substances”, “symptoms”
which represented symptoms of a disease, “diseases” and
“body parts”. While the system aims to infer emergent
knowledge, it was limited in scope. The system was
extracting at the physiological level. Humanly created
discovery patterns were defined by biomedical experts
using the training corpus. And additionally, manual
extraction patterns were also used to create a symptom
list. Validation for information extraction part of the
system was not performed and instead, some of the
transitive relationships that the system developed were
given to human experts for evaluation, thereby repre-
senting a weak evaluation of the system. Inferring indir-
ect relationships from biomedical text is generally
considered challenging however it is also potentially
more rewarding. As the literature is so vast that each
researcher can only read a small subset, it might be that
no person is aware of all the facts that are required to
make a logical indirect inference of related facts. These
research works have made significant progress on Swan-
son’s method. However, none of the approaches consid-
ers the various different biological entities such as body
parts, DNA, and RNA other than disease and cure.

In addition, several studies have identified and
extracted biological information from unstructured bio-
logical corpus by building on the UMLS knowledge
sources [16-18]. SemRep is an outcome of such studies
that serves as a general knowledge-based semantic inter-
preter and a host of tools to extract important knowl-
edge contained within large text corpus.
The goal of this paper is to propose a novel and fully

automated approach to mine undiscovered public
knowledge from biomedical literature and develop a
flexible discovery model that can be applied to various
different biological entities.
The contribution of this paper is 1) proposing a flex-

ible knowledge emergence model to extract implicit
relationships across different levels such as molecular
level for gene and protein and Phenomic level for dis-
ease and treatment, 2) employing MetaMap for tagging
biological concepts, and 3) providing an empirical and
systematic approach to discover novel relationships
based on similarity between substances/drugs thereby
providing a measure to gauge the newly formed rela-
tionships. Our MKEM model is not only differentiated
from but also a sophisticated model than Swanson’s
UPK model as Swanson’s method does not perform any
similarity measure between substances/drugs. Our
approach requires presence of multiple extracted rela-
tionships containing similar substances before we could
aim to produce new hypotheses. In addition, Swanson’s
method does not provide any measure to gauge the
newly formed hypotheses.
We fully automate the discovery process in the UDK

model based on the semantic knowledge about the med-
ical concepts and their relationships. We also propose
similarity measure to prune irrelevant medical concepts
and bogus or non-interesting relationships among the
medical concepts. Our use of an intermediate set of
automated identified semantic types helps to manage
the sizable branching factor.

Methods
In this section, we describe our approach for knowledge
emergence. First we give an overview of our system (see
Figure 2) and describe how it works in steps. Second we
introduce the SEPDB information model defining enti-
ties extracted from the biomedical text. The learning
process for relation rules is described under the “Learn-
ing a rule set” section. Third we describe the extraction
process and the concept of similarity measure.
INPUT: MEDLINE Abstracts
OUTPUT: New Relationships
STEP 1: Selected sentences are provided to the tagger

for concept tagging. These sentences contained the rela-
tionship on which our SEPDB model is based. About
150 sentences were selected by the authors from

Ijaz et al. BMC Bioinformatics 2010, 11(Suppl 2):S3
http://www.biomedcentral.com/1471-2105/11/S2/S3

Page 3 of 10



biomedical texts to use for rule generation, from which
100 rules were generated.
STEP 2: Rule sets are generated by the tagger for

extraction purposes. Step 1 and 2 is to learn rules. We
select candidate sentences that contain terms represent-
ing relationships based on the SEPDB model. These sen-
tences are then fed to the “tagger” for tagging important
concepts. The concepts are based on the SEPDB infor-
mation model of the system. This leads to rule creation
where each rule defines a path between different con-
cepts. The user “tags” words of interest in the tagger.
This provides an intuitive as well as a faster way of
creating rule set.
STEP 3: MEDLINE abstracts are downloaded and

given to the sentence selector.
STEP 4: Effect Word List is fed into the sentence

selector. These words are searched in the new sentence
and represent the main connector in our relationships.
STEP 5: Any matched sentence containing the effect

keyword is handed over to the relation extractor which
performs the extraction process.
STEP 6: For the sentence containing the effect key-

word, the rules related to the keyword are read by the
relation extractor.
STEP 7: The extracted data is given to the Informa-

tion Element Recognizer for named entity recognition.
STEP 8: MetaMap is employed as a NER (Named

Entity Recognizer) engine and tags the information
provided.
STEP 9: After the NER process, a set of biological

entities is extracted by the system for further analysis.
Step 3 to Step 9 is to extract entities and their relation.

Sentences that contain certain effect words are extracted
from MEDLINE abstracts. These sentences are then
parsed by the link grammar parser. Rules that were cre-
ated by the tagger are applied to extract the relevant
information from the sentences. Additionally, MetaMap
is used as a NER for identification purpose as well as
sorting of the concepts if required. MetaMap used
UMLS Metathesaurus which provides better coverage of
the concepts involved as well as uses standard semantic
types.
STEP 10: The extracted information is utilized for the

similarity measure.
STEP 11: The application of similarity measure pro-

duces new relationships and it is given as output. Step
10 and 11 is for hypothesis generation. Similarity mea-
sure is used for formation of new relationships/hypoth-
esis. This similarity measure is used to gauge the
similarity between substances, the more similar the sub-
stances, the more possible the newly created
relationships.

SEPDB information model
Our information model is termed as SEPDB (Figure 3),
which stands for Substance, Effects, Processes, Disease,
Body Part. Each of this is a concept extracted from nat-
ural language text. We include low-level processes that
a substance may affect or that may occur in a disease or
body part. This provides us with a better insight as to
function of a drug or a substance and what low-level
processes it is affecting. In addition, our system also
extracts information that contains processes that occur
in a specific body part e.g. a cell.

Figure 2 Data flow of MKEM
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“Effect” node acts as the main node that connects the
whole relation. Substance node is directly related to the
effect node as an effect is an attribute of a substance.
Such attribute can influence a process or a disease.
Lastly process or disease can occur in a body part. The
Effect keywords and their types are given in Table 1.
These effect words are searched in the sentences for
learning or extraction purposes. Their types describe the
general action taken by the substance. They act as a
connector between the substance concept and either the
disease or the process concept in the extracted
relationships.

Learning a rule set
To create a rule set, candidate sentences are selected to
represent the relationship identified by our data model.
The sentence is fed to the Tagger that parses the sen-
tence using Link Grammar Parser and displays the
parsed sentence. The relevant concepts such as Disease,
Substances, Processes, Effects, Body parts are then
tagged visually.
We can think of a parsed sentence as a graph where

words are vertices and links are edges. Therefore a rule
is the shortest path between an effect word or a key-
word and a concept. This connection is stored as a rule.
Hence, a rule is created by first selecting a word as an
effect and traversing the graph to the other tagged
concepts.

The link labels are stored in their reduced form, stor-
ing information only about the primary link. Direction-
ality information is also stored by using “+” and “-”

signs that represents search directions for right and left
respectively. Intermediate words are termed as nodes
and a rule can have any number of nodes. An example
provided in Figure 4 illustrates the aforementioned
concept.
The words are stemmed by Porter Stemming algo-

rithm [19] to solve the problem of inflection. For a rule
to be satisfied, the input sentence must contain words
and links defined in the rule. In other words, with a sen-
tence being a graph in Link Grammar, a rule is a route.
Rule satisfaction occurs when the portion of the parsed
sentence, starting from the effect word, contains the
links and words defined in the rule and the route com-
pletely traversed.
An example of how a rule set is created using the pro-

posed technique is as follow (Figure 4):
1) a sentence is selected and parsed by the Link

Grammar Tagger. As illustrated in Figure 4, a sentence
is entered into the tagger to be parsed, and the user tags
the concepts. The system displays the word linkages and
the resultant rule set.
2) The user tags the concept of importance and the

effect word in the sentence.
3) The program also displays the sentence linkage

provided by the Link Grammar Parser.
4) Finally, when tagging is complete, a rule set is

formed and displayed by the system. It can then be
stored in the rule set file.

As an example (Figure 4), one of the rules generated
by the tagger is “S- @ SUBSTANCE”. Beginning from
the effect word, in this case “induces”, we move towards
the left, following the S link. On the left, we find the
word “acid”, which is the substance inducing an effect.
The system automatically expands the name of entities.
Hence the system follows such rules to traverse the gen-
erated graph to extract the entities of concern.
As shown, a rule may have the following place holders

for concepts:
@SUBSTANCE : Representing substances, drugs and

related concepts.

Figure 3 SEPDB information model

Table 1 Effect list and types

Effect Type

Induce Increase

Contribute Increase

Reduce Reduction

Increase Increase

Resistant Reduction
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@SYMPTOM: Representing symptoms and processes.
@DISEASE: Representing diseases.
@BODYPART: Representing body parts.
Effect words do not have a placeholder as they are

represented in the rule set. In this manner, using differ-
ent sentences, a rule book is created and used by the
extraction system for information extraction purposes.
As is seen in the newly formed rules, directionality
information is shown with “+” and “-” signs. The infor-
mation is extracted from natural language text when
these rules are satisfied by the sentences.

Extraction
MEDLINE abstracts in XML format are fed to the Sen-
tence Selector. The “Sentence Selector” extracts sen-
tences from abstracts and for each sentence; the words
are stemmed and checked against a list of effect words.
If a match occurs, the sentence is passed to the “Rela-
tion Extractor” module and rules related to the effect
word matched are applied on the target sentence and
relevant information is extracted. After extraction of
data, the output is fed to the “Information Element
Recognizer” process to the followings: 1) Removes any

Figure 4 Rule creation
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unknown word from the dataset: This reduces false
positives. For the words that do not occur in MetaMap,
they are removed.
2) Correctly sorts the identified word and allocates it

to its correct position as one of the four concepts: It is
possible that a disease is incorrectly extracted as being a
symptom based on the rule set being used. In order to
resolve this incorrect assignment, MetaMap is used to
properly shift the concept into its correct place.
Extracted data is mapped onto the SEPDB information

model, and the relationships conforming to the model
are then stored as output. After the data sets have been
created, they are then used to infer new knowledge by
combining multiple pieces of information using similar-
ity measure.

Similarity measure
To discover novel relationships, we propose a semantic
similarity measure that calculates resemblance between
substances. The assumption for this measure is that if
the substances shares similar properties with each other,
novel connections exist among related concepts to the
substances... The similarity measure is also used to rank
the newly formed relationships.
The similarity measure comprises of four units.

• MetaMap Semantic Type
• Structural Similarity
• Atomic Count
• XLogP

MetaMap semantic type represents the UMLS seman-
tic type assigned to the substance. As MetaMap cate-
gorizes the substances into predefined UMLS semantic
types, it assumes that substances under same category
may perform similar actions.
Structural similarity is calculated using the SMSD

(Small Molecule Subgraph Detector) system [20]. Struc-
tural similarity plays a very important role in medicinal
sciences. Substances having highly similar structures are
more likely to exhibit the same actions.
Atomic count and XLogP values are taken from the

chemDB database. Atomic count defines the enumera-
tion of constituent atoms of the chemical under consid-
eration. For small molecules like drugs, atomic count is
considered valuable for similarity purposes.
In the fields of organic and medicinal chemistry, a

partition (P) coefficient is the ratio of concentrations of
a compound in two phases of a mixture of two immisci-
ble solvents at equilibrium (Water-Octanol). XLogP
represents its logarithmic form. Hence this describes
whether a substance would dissolve more in a water
based medium like blood or hydrophobic medium like
lipid bilayers of cells. Partition coefficients are useful in

estimating distribution of drugs within the body. There-
fore, for similar drugs, their dissolution in hydrophobic
or hydrophilic medium should be same or similar. Com-
parative values for the similarity measures are shown in
Table 2. The sum of these values is used for ranking of
newly created relationships.
The similarity measure can have a maximum value of

4. We selected a threshold value of 2 for the created
hypotheses. Therefore relationships having a score
greater than or equal to the threshold are considered
and all others are dropped. Additionally, the score
values are also used for sorting the newly formed
relationships.

Similarity measure working scenario
The following scenario is given to help understanding of
how similarity measure is calculated and applied. For
two substances, “Cordycepin” and “Fludarabine”, we
check the semantic type assigned by MetaMap for each
substance. “Pharmacologic Substance” is assigned to
both of them by MetaMap. Next we calculate structural
similarity of these substances. For that purpose we find
out their structural formula or SMILES (simplified
molecular input line entry specification) value available
at chemDB database. SMILES is a specification for
unambiguously describing the structure of chemical
molecules. After acquiring the SMILES values, we sup-
ply the SMSD system the values to calculate the struc-
tural similarity, which in this case comes out as 0.9.
This denotes the two chemical being structurally very
similar.
Atomic values and XLogP values can be acquired from

the chemDB database. Entering either the chemical
name or SMILES formula gives us the information on
the chemical under question, including the atomic
values and XLogP. Cordycepin has the atomic value
C10H13N5O3 and Fludarabine has C10H12FN5O4. XLogP
values are -1.25 and -1.38 respectively. Lastly, when all
of these four values are acquired, we use our compara-
tive values table to calculate the total similarity measure
(Table 3)

Table 2 Similarity measure comparative values

Comparative
Values

MetaMap Type Structural Atomic
Count

XLogP

0: Not Similar 0: Not Similar 0: Not
Similar

0: Not Similar

1: Similar 0.5:
Substructure
1: Similar

1: Similar 0.5: Somewhat
similar
(1 < diff <0.5)
1:Similar
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With a high similarity value, we can assume that both
substances perform similar action and therefore we can
make new relationships from combining extracted infor-
mation containing them.

Results
Performance analysis
For the MEDLINE abstracts, we searched “Cancer” on
PubMED database and downloaded 5000 abstracts in
XML format. Total 410 relationships were extracted
from the downloaded dataset Statistics of the extracted
entities is shown in Table 4. As gold standard is not
available to evaluate the performance of our system, we
conducted the performance analysis of our information
extraction module by randomly selecting 98 sentences
containing relationships and calculated the precision
and recall using the formulae given in Figure 5.
Precision means the proportion of relevant documents

from all the results retrieved, Recall refers to the pro-
portion of retrieved documents, out of all relevant
results available. Results of the analysis are shown in
Table 5. True Positives are those relationships that were
correctly extracted from the dataset. False Positives are
incorrectly extracted relationships whereas false nega-
tives are those relationships that were present in the
text but were not extracted. We calculated the correct
and incorrect relationships. Considering the complex

relationship structure represented by our SEPDB model,
the performance of our system looks promising. With
75% in precision, the system extracted correct informa-
tion with very few false data considered as true. Con-
cerning recall, the system was able to extract 56% of the
information that was present in the input text.
The experiment of hypothesis generation was carried

out for only those substances that exhibited similarity to
each other. In total we were able to infer 24 hypotheses
from the extracted data set. Table 6 shows selected four
examples of extracted data set along with the raw sen-
tences. This represents the extraction of information
from sentences. After the extraction process, we apply
the similarity measure to create new hypotheses.

Hypothesis generation example
Two relationships taken from the extracted data set are
given in Table 7. From these extracted relationships, the
names of the substances are extracted and similarity
measure is calculated as showed in Table 8.
The two substances, “Wogonin” and “Fisetin”, belong

to the same MetaMap semantic type. Using SMSD, their
structural similarity value comes up as 0.75. From
chemDB, their atomic count and XLogP values are very
similar. Therefore, based on the comparative values, the
total similarity score comes up as 4.
As the substances are similar to each other, we pro-

ceed to create new relationships. In this case, both pro-
cesses are identical except for difference in the body
part in which these processes occur. Therefore we create
new relationships with the substance, effect type and
process taken from one relationship and the body part
taken from the other. The newly created relationships
are shown in Table 9.
In Table 9, the first relationship state that “Woginin”

can induce “Apoptosis” in “HCT-116 Cells”. Compar-
ing that with Table 7, the original “Woginin” relation-
ship had “Malignant T Cells” as the body part. In
essence, with the process “Apoptosis” being the same
for both drugs, the body parts in which the process
occurred were switched and the two new relationships
were created.
In our approach, the generation of new hypothesis

does not require any human input. The initial relation-
ship information is extracted automatically from biome-
dical text (Table 7) and similarity measure calculation
(Table 8) is performed using chemical information from
freely available chemical databases. Next, the hypothesis

Table 3 Calculated similarity measure for two substances

Cordycepin Fludarabine Similarity

MetaMap
Semantic Type

Pharmacologic
Substance

Pharmacologic
Substance

1

Structural
Similarity

0.9 1

Atomic Count C10H13N5O3 C10H12FN5O4 1

XLogP -1.25 -1.38 1

Total 4

Table 4 Extracted entities count

Entity Type # of extracted entities

Substances 410

Processes 357

Diseases 44

Body Parts 82

Figure 5 Formulae

Table 5 System performance analysis

System Performance

Accuracy Precision Recall

56% 75% 56%
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generation utilizes this information to form new rela-
tionships from biomedical text (Table 9). Application of
similarity measure to extracted relationships produced
new hypotheses and a sample data set of such relation-
ships is given in Table 10.

Discussion
Given that the main goal of our approach is for auto-
matic hypothesis generation, we attempt to verify valid-
ity of the discovered novel connections discovered by
searching for such findings published in the scientific
literature. As listed below, we have found two scientific

articles that support the existence of the novel relation-
ships discovered by our approach.
Taking example of the first generated relationship in

Row 1 of Table 10, Wogonin increases apoptosis in
HCT-116 cells. HCT-116 cells represent Human colon
cancer cells. This newly formed relationship is sup-
ported by the research article by Dae-Hee Lee et al. [21].
Row 4 states that Genistein can induce apoptosis in

HCT-116 cells. By searching PudMed, we came across a
research article by Mao Li et. al. [22] In this article, they
state that Genistein has chemopreventive effects in sev-
eral human malignancies, including colon cancer and
induces apoptosis in a variety of human cancer cell
lines. For the rest of discovered relationships, literature
search did not find any relevant research articles. It may
be a good research topic to investigate whether there
exists such a novel connection among them.

Conclusions
We proposed a new system that extracts relationships
from biomedical text and infers new information. This
system can be used for knowledge emergence tasks as it
combines information from multiple disjoint sets of
information (research articles etc) and provides novel
hypotheses that may either be correct or would lead to
a promising research direction. The system was applied
on SEPDB-driven relationships and we achieved good
extraction accuracy from natural language text. In addi-
tion, using the similarity measure concept, we were also
able to infer new relationships, showing that our system
is able to perform its task well.
There are multiple options for further improvements.

First, we plan to replace MetaMap with machine

Table 6 Sample dataset with raw sentences and extracted information

PubMed ID: 19264955
Sentence: These results show that fisetin induces apoptosis in HCT-116 cells via the activation of the death receptor- and mitochondrial-dependent
pathway and subsequent activation of the caspase cascade.

Substance Effect Type Process Disease Body Part

fisetin increase apoptosis N/A HCT-116 Cells

PubMed ID: 19262372
Sentence: Docetaxel was a more potent inducer of apoptosis than SN-38, but simultaneous treatment with docetaxel+SN-38 decreased the
proportion of apoptotic cells to the same level observed after exposure to SN-38 alone.

Substance Effect Type Process Disease Body Part

Docetaxel increase apoptosis N/A N/A

PubMed ID: 18070986
In this study, we show that Wogonin, derived from the traditional Chinese medicine Huang-Qin (Scutellaria baicalensis Georgi), induces apoptosis in
malignant T cells in vitro and suppresses growth of human T-cell leukemia xenografts in vivo.

Substance Effect Type Process Disease Body Part

Wogonin increase Apoptosis N/A malignant T Cells.

PubMed ID: 19258429
Sentence: Tolfenamic acid induces Sp protein degradation in several cancer cell lines.

Substance Effect Type Process Disease Body Part

Tolfenamic Acid increase Sp protein degradation N/A Cancer cell lines

Table 7 Example relationships

Substance Effect Type Process Disease Body Part

Wogonin Increase Apoptosis N/A Malignant T Cells

Fisetin Increase Apoptosis N/A HCT-116 Cells

Table 8 Similarity measure

Wogonin Fisetin Similarity

MetaMap Type Organic Chemical 1

Structural Similarity 0.75 1

Atomic Count C16H12O5 C15H10O6 1

XLogP 2.74 2.77 1

Total 4

Table 9 Newly formed relationships

Substance Effect Type Process Disease Body Part Score

Wogonin Increase Apoptosis N/A HCT-116 Cells 4

Fisetin Increase Apoptosis N/A Malignant T-Cells 4

Ijaz et al. BMC Bioinformatics 2010, 11(Suppl 2):S3
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learning techniques for Named Entity Recognition. This
should improve the results as more entities such as
drugs and processes are recognized by the system. Sec-
ond, we will extract anaphoric relationships that exist
within a sentence to increase the performance. In addi-
tion, we are improving Link Grammar lexicon to reduce
incomplete or incorrect word linkage considerably and
in consequence providing better parsing results. Last, we
plan to carry out rule generalization to reduce the rule
sets and provide better coverage of extracting possible
relationship from the text.
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