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This work documents the design method of allocating channels that serve as heat sources or heat

sinks in a conducting body. First, we develop a numerical model to find the optimum channel

spacing for specified properties of the surrounding medium, the time scale of the heat transfer

process, and the dimensions of the configuration. Second, we show with scale analysis that the

optimal spacing (S=D) must equal s1=2 in an order of magnitude sense, where s is the

dimensionless time scale of the process. This conclusion holds for the two heat transfer histories

that were considered, exponential and top hat. We extend the method to a packing of channels of

two sizes (diameters and heat source strengths). The optimal spacings and packing density obey

the scaling rule determined for packing sources of a single size. VC 2011 American Institute of
Physics. [doi:10.1063/1.3610387]

I. INTRODUCTION

In this paper we consider the fundamental problem of

how to position in a conducting body several parallel lines

that serve as heat sources or heat sinks. The volume of the

conducting body is finite. The objective is to distribute the

lines in such a way that the overall thermal resistance

between the volume and the sources is minimal. This means

that when the heat generation rate is specified, the peak tem-

perature difference between sources and volume should be

minimal. Conversely, when the peak temperature difference

is specified, the heat transfer rate between the lines and the

finite volume should be maximal, i.e., the design represents

the highest density of heat deposition in the volume, or heat

extraction from the volume.

This fundamental problem has several important appli-

cations most notably in the design of heat pumps with heat

extraction or release through pipes buried in the ground,1–3

and the positioning of decaying nuclear waste underground.4

In all such applications, the heat transfer interaction between

the line sources (or sinks) and the ground is time dependent,

for two reasons: transient heat conduction in the surrounding

medium and the finite lifetime tc of the line sources. For

example, during heat pump operation the lifetime is dictated

by the daily cycle and the seasonal weather variations. In

nuclear waste storage, the lifetime is controlled by the decay

of the heat generation rate.

As background for the method, we note that the

phenomenon of design generation and evolution in nature

and engineering is accounted for by the constructal law.5

Design can be predicted and pursued based on principle.6 In

heat transfer, spacings have been determined based on

constructal design for a high-density packager of plates, tubes,

and other components in steady natural or forced convec-

tion.6–11 In this paper, we consider the time-dependent coun-

terpart of the search for high-density arrangements of line heat

sources or sinks. The objective is fundamental, and consists of

determining the relation between the line spacing, the time

scale of the heat transfer process (tc), the dimensions of the

configuration, and the properties of the conducting ground.

II. MODEL

Assume that heat sources are positioned as several paral-

lel thin cylinders, which are viewed in the cross section area

A shown in Fig. 1. The third dimension is perpendicular A,

and is aligned with the horizontal direction shown in the

lower part of Fig. 1. The volume is fixed. Each heat source

generates heat in time dependent fashion. The cylinders have

the diameter D and are indicated by black discs. Because the

available volume is finite, the boundary of A is modeled as

insulated. In general, the number of cylinders and their

placement on A are free to vary. The initial temperature of

the surrounding medium is uniform, T0. For simplicity, the

effects of convection, phase change and heterogeneity are

assumed negligible.

To start, we assume that the time scale of the heat inter-

action is tc, and every cylinder generates heat according to

the time-dependent behavior sketched in Fig. 2,

qðtÞ ¼ q0 expð�t=tcÞ; (1)

where t is the time, and q0 is the heat generation rate at t¼ 0.

Later we will consider the step-change q(t) shown in Fig. 2.

The release of heat creates a time-dependent temperature

field over the domain A. All the thermophysical properties of

the surrounding medium are assumed to be constant.

a)Author to whom correspondence should be addressed. Electronic mail:

abejan@duke.edu.
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III. NUMERICAL FORMULATION

The heat transfer is by conduction and is governed by

the equation for energy conservation,

qc
@T

@t
¼ k

@2T

@x2
þ @

2T

@y2

� �
; (2)

where q; c; k; and T are the density, specific heat, conductiv-

ity, and temperature of the conduction medium. Dimensional

variables are defined by writing

x� ¼ x

D
; y� ¼ y

D
; t� ¼ t

tc
; h ¼ T � T0

Tm � T0

; (3)

where Tm is the allowable ceiling temperature for the con-

ducting medium. This means that the value of h cannot

exceed 1. When Eq. (2) is transformed by using Eqs. (3), the

conduction equation becomes

1

s
@h
@t�
¼ @2h
@x�2
þ @2h
@y�2

; (4)

where s is the dimensionless lifetime of the heat generation

process,

s ¼ atc

D2
; (5)

and a is the thermal diffusivity of the medium. The cylinders

are numerous, equidistant, and arranged in a square pattern

that covers the computational domain shown in Fig. 3. The

initial and boundary conditions are

k
@h
@n

� �
¼ 0 on C1; (6)

k
@h
@n

� �
¼ q00ðt�Þ on C2; (7)

h ¼ 0 at t� ¼ 0; (8)

where C1 and C2 are the boundaries of computational domain

and the boundary of cylinders that generate or absorb heat.

The conduction equation, boundary conditions, and

initial condition were discretized by the finite-difference

method. The nondimensional temperature field was deter-

mined numerically using the explicit method.12 In order to

increase the numerical accuracy, the step size and the grid

size (Dt�;Dx�;Dy�) were decreased until the value of

holdðt�; x�; y�Þ � hnewðt�; x�; y�Þ
holdðt�; x�; y�Þ

����
����

was less than 0.01. In present numerical simulations we used

Dt� ¼ 10�5;Dx� ¼ Dy� ¼ 10�3.

We validated the numerical solution further by compar-

ing the temperature distributions obtained from the numeri-

cal model with the analytical solution for the temperature

variation in the vicinity of a line heat source with constant

heat generation rate13

hðr; tÞ ¼ q0

4pk

ð1
r2=4at

e�u

u
du; (9)

where q0 is the constant source strength, i.e., the heat genera-

tion rate per unit of length of line heat source. At sufficiently

long times and small radial distances such that r2=4at is

smaller than 1, the temperature distribution approaches

hðr; tÞ ffi q0

4pk
ln

4at

r2

� �
� 0:5772

� �
: (10)

FIG. 2. Two kinds of time-dependent behavior of the heat generation rate

with the same time scale, tc. FIG. 3. Computational domain and boundary conditions.

FIG. 1. Conducting finite-size volume with several embedded line heat

sources or sinks.
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Figure 4 shows the temperature distribution around a contin-

uous line heat source when r2=4at is very small and at suffi-

ciently long times. The results obtained from the numerical

model are in good agreement with the analytical results,

with a relative error less than 1% when r=2 atð Þ1=2
is smaller

than 0.1.

The numerical simulations of the temperature field in

the computational domain (Fig. 5) were used to determine

the optimal spacing between cylinders. The work proceeded

in these steps:

(1) Start with a guess for the spacing S.
(2) Solve Eq. (4), and find the peak temperature as the time

increases.

(3) If the peak temperature is less than 1, calculate the new

spacing as S ¼ S� DS.

(4) Repeat steps (2) and (3) until the peak temperature

equals or exceeds 1.

Figure 6 shows the temperature distribution in the

vicinity of time-dependent line heat sources when s is

7:16� 10�6, which corresponds to a ¼ 1:43� 10�6 m2/s, D

¼ 1 m, tc ¼ 5 s. When the spacing is large, the peak tempera-

ture is below 1, and this means that more space is available

for heat deposition. When the spacing is too small, the peak

temperature rises continuously. The optimum spacing

between cylinders is at the intersection between these two

limits of behavior when the maximum is h¼ 1.The resulting

optimal spacing is reported in Fig. 7, which shows how S
depends on the dimensionless group s defined in Eq. (5).

IV. SCALE ANALYSIS

Figure 7 shows that when plotted log-log, the optimal

spacing increases linearly as the dimensionless group s
increases. This trend can be anticipated based on scale analy-

sis. From the conduction equation (2), the respective scales

of the two terms are

qc
DT

t
� k

DT

L2
: (11)

This shows that the length scale of the heated zone L should

increase as atð Þ1=2
. The spacing between cylinders S must be

such that it matches the thermal diffusion scale that corre-

sponds to the time scale of the heat deposition process,

S � atcð Þ1=2
(12)

or, in dimensionless terms,

S

D
� atcð Þ1=2

D
¼ s1=2: (13)

The dimensionless group atcð Þ1=2=D accounts for the effect

that the physical properties a; tc;Dð Þ have on the optimal

FIG. 4. Numerical and analytical results for the temperature distribution in

the vicinity of a continuous line heat source.

FIG. 5. (Color online) Contours of the

dimensionless temperature field in a finite

volume when s¼ 0.16, and the heat gen-

eration rate decays exponentially.
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configuration of the design. According to Eq. (13), S=D
should increase as s1=2. Figure 7 shows that the agreement

between scale analysis and numerical results is very good,

qualitatively and quantitatively. The data of Fig. 7 are corre-

lated with the expression suggested by Eq. (13), S=D ¼ Cs1=2,

where C is a factor of order 1, namely, C ffi 2:7.

The abscissa range in Fig. 7 covers the order of magni-

tude of s1=2 that is representative. For example, in the case of

heat exchanger pipes buried in soil, a � 0:56� 10�6 m2/s, D

� 0.5 m, tc � 15 hours, and s1=2 � 0.35. In the case of nu-

clear waste buried in clay, the a value of clay is

0:133� 10�6 m2/s, D is of order 3 m, tc is of order 10 years,

and the order of magnitude of s1=2 is 2:16.

V. STEPWISE TIME VARIATION

The optimal spacing represents the maximum heat depo-

sition density in the volume. We applied the same method

and the assumptions to the case when the embedded cylin-

ders generate heat according to the stepwise behavior shown

in Fig. 2,

qðt�Þ ¼ q0; t� � 1; (14)

qðt�Þ ¼ 0; t� > 1: (15)

The behavior of the temperature field (Fig. 8) is qualitatively

the same as in Fig. 6. The optimal spacings have been added

to Fig. 7, and their values and trend agree very well with the

predictions based on scale analysis.

VI. TWO HEAT SOURCE SIZES

To deposit more heat in a finite volume, we can insert

more cylinders between the heated zones, for example, in the

subvolume B noted Fig. 1. We could insert a second-genera-

tion source or sink as shown in the upper part of Fig. 9, with

a heat transfer rate scale q1 in addition to q0. The configura-

tion now has two degrees of freedom, S=D and D1=D. We

FIG. 6. The temperature distribution in the vicinity of a time-dependent line

heat source with exponential behavior, showing the effect of the spacing S.

FIG. 7. The effect of the dimensionless group s on the calculated optimal

spacing.

FIG. 8. The temperature distribution in the vicinity of a time-dependent line

heat source with top-hat behavior, showing the effect of the spacing S.

FIG. 9. The optimal geometry and performance of the configuration with

heat sources of two sizes, relative to the configuration of Fig. 3.
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optimized both and used the same numerical approach as in

Sec. III. The objective was to find the best configuration

S=D;D1=Dð Þ and the corresponding heat transfer rate density

q00new ¼ q1 þ q0ð Þ= Sþ Dð Þ2
h i

, relative to the preceding

design q00old ¼ q0= Sþ Dð Þ2
h i

. Note that that q00old is the

D1=D! 0 limit of q00new. First, we fixed S=D at the value

determined in Sec. V, and proceeded in these steps:

(1) Find q00new by satisfying the condition that the peak tem-

perature equals 1.

(2) If the new q00new is larger than the previous q00new, calculate

the next cylinder diameter as D1 ¼ D1 þ DD1.

(3) Repeat steps (1) and (2) until the new q00new is smaller

than the old q00new.

The resulting optimal values of D1=D and q00new=q00old are

reported in lower part of Fig. 9: when the second cylinder is

inserted, the density of heat deposition in a finite volume

increases.

Next, for the case of a time-dependent line heat source

with exponential behavior, we allowed S=D to vary, and

optimized both S=D and D1=D to find the best configuration

in a finite volume. We repeated the previous procedure as

the spacing increases until q00new does not increases. Figure 10

shows that the optimal spacing S=D continues to scale with

s1=2. In the case where s1=2 is 0:40, which corresponds to

a ¼ 0:133� 10�6 m2/s, D ¼ 1 m, tc is 13.5 days, we found

that the optimal S=D is 1.27 and the optimal ratio between

the two cylinder diameters is D1=D¼ 0.38. Note that the

spacings S=D are larger than the corresponding S=D values

of Fig. 7, which is 1.1. In other words, when new sources or

sinks are positioned among the old ones, the optimal spacing

between the old ones increases. Compared to the old transfer

rate density, the new heat transfer rate density increases by

as much as 28%.

A question for future design work is to determine the

optimal number of how many cylinders that can be packed

on A when A and D are fixed (Fig. 1). In the case where s1/2

is 0.75, we assumed that A is a square and D=
ffiffiffi
A
p

is 0.1,

where
ffiffiffi
A
p

is the length scale of A. We simulated the temper-

ature histories in four cases, each with a different number of

cylinders such as Fig. 11. We found that when the number of

cylinders is less than 9, S/D is larger than 2, and the maximal

temperature is less than the allowable temperature. Other-

wise, when the number of cylinders is 16, S/D is 1.5, the

maximal temperature is larger than the allowable tempera-

ture. Using the optimal spacing of 2, as can be seen by refer-

ring to the previous results shown in Fig. 9, we find the

optimal number of cylinders on A to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ðSopt þ DÞ

p� 	2
,

which yields n% 11, the closest to which is n¼ 9 (Fig. 12).

VII. CONCLUSIONS

In this paper we solved the problem of optimizing the

distribution of channels with heat transfer in a conducting

medium by developing a numerical model to find the cylin-

der spacing that produces the maximum heating density

within the volume without exceeding the temperature limit

for the volume. From several numerical simulations for a

time-dependent line heat source, we determined the optimal

cylinder spacing as a function of the properties of the sur-

rounding medium, the time scale of heat transfer process,

and the dimensions of the configuration.

By using scale analysis we derived the relation between

the optimal spacing and the time scale of the heat transfer

process. We showed that S=D must be equal to s1=2 in an

order of magnitude sense, where s is the dimensionless time

scale of the process. This prediction agrees very well with

the numerical results and provides the analytical form in

which to correlate the numerical results. This conclusionFIG. 10. The best configuration with heat sources of two sizes.

FIG. 11. Four arrangements for packing cylinders in a fixed volume.
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holds for both heat transfer histories, exponential, and top

hat. In addition, we extended the method to a packing of

channels of two sizes (diameters and heat source strengths).

Finally, through the use of multi-scale design techniques, we

determined the optimum number of heat sources of two sizes

within a finite volume.
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FIG. 12. (Color online) Contours of the

dimensionless temperature field in the fi-

nite volume of Fig. 1 when s1=2¼ 0.75

and n¼ 9.

023502-6 Jung et al. J. Appl. Phys. 110, 023502 (2011)

Downloaded 19 Apr 2013 to 143.248.118.125. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/S0375-6505(03)00060-9
http://dx.doi.org/10.1016/j.applthermaleng.2007.12.013
http://dx.doi.org/10.1016/j.applthermaleng.2008.02.027
http://dx.doi.org/10.1098/rstb.2009.0302
http://dx.doi.org/10.1016/j.ijthermalsci.2006.05.002
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.014
http://dx.doi.org/10.1016/S0017-9310(99)00189-1

