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ABSTRACT 
 

The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial 
factor with respect to achieving desired mechanical performance. However, evaluation of the 
fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered 
Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers 
with the cement-based matrix. In the present work, a new evaluation technique is developed and 
demonstrated. Using a fluorescence technique on PVA-ECC, PVA fibers are observed as green 
dots in the cutting plane of the composite. After capturing the fluorescence image with a 
Charged Couple Device (CCD) camera through a microscope, the fiber dispersion is evaluated 
using image processing and statistical tools. In the image processing step, the fibers are more 
accurately detected by employing a series of processes based on categorization, watershed 
segmentation, and morphological reconstruction. Test results showed that the dispersion 
coefficient αf was calculated reasonably and the fiber detection performance was enhanced. 
Keywords: FRCs, fiber dispersion, morphological reconstruction, watershed segmentation. 
 
INTRODUCTION 
 

Synthetic fibers have been used to improve the toughness of quasi-brittle cement-based 
materials such as concrete and mortar (Li, et al. 2001). Recently developed ultra-ductile 
Engineered Cementitious Composite (ECC) is an example of application of this approach (Li, et 
al. 2002, Kim, et al. 2003, Kim, et al. 2007). ECC is a micromechanically designed cementitious 
composite that is able to exhibit extreme tensile strain capacity (typically more than 2%) while 



requiring only a moderate amount of fibers (typically less than 2% in a volume fraction). Since 
the fibers can bridge micro-cracks, the dispersion of fibers strongly influences the resulting 
mechanical performance of the composite.   

Several techniques, including image analysis and transmission X-ray photography, are 
available for evaluating the fiber dispersion in a composite, i.e., determining the degree to which 
the fibers are homogeneously dispersed in the composite. These are mostly applicable to non-
organic fibers such as steel or glass fibers. Recently, Ozyurt et al. (2006) proposed a 
nondestructive technique using AC-impedance spectroscopy; however, this approach is useful 
only for conductive fibers including steel and carbon fibers.  

To date, the evaluation of organic/non-conducting fiber dispersions has seen little attention. 
The key step in evaluating an organic fiber dispersion is the fiber detection, since the contrast of 
organic fibers with cementitious materials is too low to allow detection in the composite. To 
overcome this obstacle, a fluorescence technique has been employed to specifically detect 
polyvinyl alcohol (PVA) fibers using their fluorescent characteristics.  

Torigoe et al. (2003) suggested a new evaluation technique for PVA fiber dispersions. 
After capturing a fluorescence image with a Charged Couple Device (CCD) camera through a 
microscope, the image is divided into small units of appropriate pixel size. The degree of fiber 
dispersion is then calculated based on the deviation from the average number of fibers in a unit, 
which is obtained by a rigorous process of directly counting the fibers point by point. In addition, 
the distribution coefficient, which represents the degree of fiber dispersion, significantly 
depends on the size of the unit.  

In the present work, the authors describe a new image processing to eliminate both the 
rigorous, manual fiber-counting processes and the undesirable impact of the unit size on the 
distribution coefficient. In the development of the proposed technique, the fiber detection 
performance is enhanced by employing categorization, a watershed algorithm, and 
morphological reconstruction. 
 
FIBER DISPERSION EVALUATION TEHCNIQUE  
 
Specimen preparation and image acquisition 

The PVA-ECC specimen was produced on the basis of micromechanical principles (Li, et 
al. 2001) and then cured in water at 20±3 °C for 28 days. The specimen was cut with a diamond 
saw to obtain samples for fiber dispersion evaluation. Each sample, a rectangular block with a 
size of 13×36×20 mm, was polished to create a smooth surface on the exposed cross-section, i.e., 
the cutting plane. The polished surface was then photographed using image acquisition 
equipment, i.e., a fluorescence microscope (Olympus, BX51), a CCD camera, and image 
processing software. To obtain a digital image, the sample surface was first illuminated by a 
mercury lamp, followed by capture of a fluorescent image using a CCD digital camera through a 
GFP filter under 40×magnification. 

 
Image processing for evaluation of fiber dispersion 

As described in the previous section, the greenish points represent PVA fibers in the 
fluorescence image. The PVA fibers, therefore, should be easily detected by segmentation from 
the background image. The degree of fiber dispersion is then quantitatively evaluated based on 
calculation of a distribution coefficient αf, referred to as the fiber dispersion coefficient, as 



expressed by Eq. (1) as follows (Kobayashi, et al. 1981). 
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where n is the total number of fibers on the image and   denotes the number of fibers in 

the i-th unit, which is a square portion allocated to the i-th fiber on the assumption that the fiber 
dispersion is perfectly homogeneous. The fiber dispersion coefficient αf is automatically 
calculated via the following steps.  

 
(1) Convert the RGB image to a grayscale image; 
(2) Convert the grayscale image to a binary image based on a set threshold – object 

detection based on a thresholding algorithm (Otsu, 1979);  
(3) Divide the binary image into units, i.e., equivalent squares, of which the total number 

equals the number of fibers (n); 
(4) Obtain the coordinate data for the centroid of each fiber image; and 
(5) Count the number of fibers (xi) located in each unit. 
 
Following the initial two steps of the image processing, a composite image (Figure 1) can 

be obtained by combining the original grayscale image with the detected binary image. As 
indicated in Figure 1, fiber images of A, B, and C show quite different shapes in terms of aspect 
ratio, i.e., length-to-width ratio. This is attributed to the angle created between the fiber 
orientation and the sawed plane of the sample. In addition, the fiber images of B and D in Figure 
1 reveal a single fiber whereas in reality it is composed of several fibers in close proximity; 
therefore, further improvement needs to be made to this thresholding algorithm in order to 
obtain a more accurate dispersion coefficient. 

 

 

Figure 1. Combining original grayscale image with detected binary image 

 
IMAGE PROCESSING FOR ENHANCING FIBER DETECTION PERFORMANCE 
 

As discussed in the previous section, some improvements need to be made regarding the 
fiber-detection performance of the proto-type process to detect aggregate fiber images correctly. 



To this end, an additional process was developed and inserted between step (2) and step (3) 
(described in the previous section). The added process basically consists of two parts. In the first 
part, fiber images are categorized into correctly detected single fiber images and aggregate fiber 
images, which are subdivided into several types, dependent on the shape of image. In the second 
step, aggregate fiber images are divided into individual fiber images using morphological 
reconstruction and watershed segmentation. 

 
Categorization of fiber images 

The first process entails categorizing fiber images into correctly detected single fibers and 
potentially aggregate fibers detected as a single fiber (Figure 2). In this process, we employed a 
watershed segmentation algorithm (Vincent, et al. 1991) to examine whether a single fiber 
image detected by the proto-type thresholding algorithm exhibits one segmented object, i.e., a 
single fiber. Table 1 compares the number of segmented objects with the number of fibers that 
are obtained from the thresholding algorithm and observations of the fluorescence image. If an 
image shows a single segmented object, the image is classified as a ‘Single fiber,’ denoted as 
Type S1. The fiber images categorized into Type S1 are correctly detected images; therefore, an 
additional process is not necessary.  

Other types of fiber images correspond to cases where the number of objects segmented 
by the watershed algorithm is more than two. Typical fiber images are classified into four types, 
i.e., N1 (or S1), N2, N3, and N4, as illustrated in Figure 3. Four-type categorization, denoted as 
1, 2, 3 and 4, is basically established according to the shape characteristics of the image.  

 

   
Type N1 Type N2

Type N3

Type N4

 

Figure 2. Proposed classification system          Figure 3. Typical fiber images  

Type N1 and Type N2 represent single fiber images that are incorrectly over-segmented 
(Beucher, 1991) by the watershed algorithm, while these fibers are most likely single fibers 
based on close observation of the fluorescence image. Therefore, an additional process (i.e. 
beyond the proto-type algorithm) is not required for these two types of fiber images. In terms of 
the object’s shape, Type N1 represents single fiber images whose shape is roughly circular. In 
contrast, Type N2 includes images of single fibers oriented at roughly right angles to the cutting 
plane; therefore, these appear highly elongated. 

On the other hand, Type N3 and Type N4 represent aggregate fiber images incorrectly 



detected as a single fiber by the thresholding algorithm. Type N3 mainly corresponds to simply 
aggregated fibers; thus, they are incorrectly detected as a single fiber. Type N4 represents 
aggregate fiber images lined up in succession and oriented at diverse angles to the cutting plane; 
therefore, they are easily over-segmented because of regional minima and maxima in the 
watershed segmentation process. 

The second process entails feature extraction. The goal of feature extraction is to 
characterize an object to be recognized by measurements whose values are very similar for 
objects in the same category and very different for objects in different categories as well as to 
reduce the dimensions of the inputs. The potential features in images include color, texture, 
shape, and position of the objects. The shape is the most useful feature for classifying the fiber 
images since the other features, i.e., color, texture and position, are not suitable due to 
undistinguishable color/texture between objects and meaningless position of an object. The 
shape feature should be invariant to irrelevant transformations such as translation, scaling, 
rotation, and illumination change. We employed basic shape descriptors, such as object area 
(Aob), convex hull area (Ach), circumscribed circle area (Acc), perimeter (lp), and major axis 
length(ll) of the object. However, direct use of these descriptors is not appropriate since these 
are not invariant to scaling, while they are invariant to translation and rotation. Therefore, five 
descriptors invariant to translation, rotation, and scaling are extracted to classify the fiber images 
into four types.  

The first feature is solidity Fs, which is defined as the division of an object’s area by that 
of the convex hull of an object, as expressed by Eq. (2). This feature can be used to effectively 
distinguish Type N1 and Type N2 fibers from other types.  
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The second feature is packing density Fc, which is defined as the division of an object’s 
area by that of the object’s circumscribed circle, as expressed by Eq. (3). This feature implies 
how circular the object is, effectively distinguishing Type N1 from others. 
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The value for Fc tends toward 0 for an extremely elongated object. Fc is also useful for 
calculating the inclined angle of the fiber to the cutting plane, as expressed by Eq. (4). 
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where θ, d, and l are the inclined angle of the fiber, the diameter of the fiber, and the major 
axis length of the fiber image, respectively.  

The third feature is Fp, which is defined as the division of an object’s perimeter by its area, 
as expressed by Eq. (5). This feature can be used to effectively distinguish Type N3 from the 
other types. 
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The other features are Fl and Frl, which are defined as the division of the major axis length 

of the object by Aob and lavg (average value of all the major axis lengths of all fiber images), as 
expressed by Eq. (6) and Eq. (7), respectively. These features (Fl and Frl) are useful for 
distinguishing elongated objects (Type N2 and Type N4) from others.  
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Artificial neural networks are interconnected groups of artificial neurons that use a 

mathematical model for information processing based on a connectionist approach to 
computation. Thus, information or knowledge is represented by massive cross-weighted 
interconnections through training of a given database. 

If artificial neural networks have not being trained concurrently or use an unchangeable 
database, their architecture can be optimized according to the given database representing a type 
of knowledge, so called “knowledge-based structuring.” The capability of solving problems of 
artificial neural networks is determined by the complexity of the networks, which in turn may be 
determined by the number of layers, the complexity of neurons, the dynamic range of 
interconnections (weights and biases), and the number of hidden nodes. In general, the optimum 
architecture of an artificial neural network is realized by matching the complexity of the neural 
network to the complexity of the problem.  

Hecht-Nielsen (1989) and Barron (1993) provide a proof that one hidden layer of neurons 
(operating sigmoidal activation functions) is sufficient to model any solution surface of practical 
interest. Therefore, one hidden layer is used in this study. Moody and Yarvin (1992) have 
compared the performance of several transfer functions and concluded that the sigmoidal 
transfer functions performed better than other functions, particularly when the data were noisy 
and contained non-linear relationships. Therefore, the hyperbolic tangent sigmoid function and 
the linear function are used as transfer functions on hidden neurons and output neurons, 
respectively.  

Weights and biases are determined automatically by the training process. The Levenberg-
Marquardt algorithm with weight decay (Krogh and Hertz, 1992) is adopted as a learning 
algorithm in order to prevent over-fitting.  

In order to determine the number of hidden nodes, a 10-fold cross-validation method is 
adopted, wherein networks having different numbers of hidden nodes are trained. The network 
having the best performance, that is, the case where the accuracy on the test sets is the maximum, 
is then selected. This process is repeated 10 times so as to minimize the effect of the initial 
values of weights and biases for each fold data set. Five features are used as input parameters. 
Figure 4 shows the accuracy on the training sets and test sets versus the number of hidden nodes. 
The optimum network architecture is accordingly found to be 5-4-4 (number of neurons in input 



layer, 5; number of neurons in hidden layer, 4; and number of neurons in output layer, 4); i.e., 
this architecture yielded the maximum accuracy on the test sets. The artificial neural network 
that will be used for the classification of fiber images is trained using the whole database. The 
accuracy of the artificial neural network on the basis of a jack-knife validation is 95.3%. 

 

 
 

Figure 4. Performance on the training sets and test sets versus number of hidden nodes 
 

Detection of aggregate fiber images (Type N3 and Type N4) 
In order to correctly detect an aggregate fiber image (Type N3 and Type N4), a watershed 

segmentation algorithm and morphological reconstruction algorithm were employed in the 
present study. 

To correctly detect Type N3 and Type N4, a watershed segmentation algorithm was 
adopted. Currently, watershed transformation is a widely used technology in image 
segmentation. Watershed segmentation can be implemented on the basis of a drainage analogy 
or immersion analogy. The drainage analogy concept is based on an analogy that all points on a 
surface are classified according to drainage. First, a downstream path from each pixel of the 
image to the local minima of the image surface altitude is found. A catchment basin is then 
defined as the set of pixels for which their respective downstream paths end up in the same 
altitude minimum. The watershed line, which represents the boundary between objects, is 
defined as the set of pixels except the catchment basin pixels. The immersion analogy concept, 
meanwhile, is based on an analogy that all points on a surface are classified according to filling 
and merging the catchment basins from the bottom. The water starts filling all catchment basins. 
If two catchment basins are about to merge, a high dam is built to prevent this. When all basins 
have been filled, the dams represent the watershed lines. In this study, a watershed segmentation 
algorithm based on the immersion analogy proposed by Vincent et al. (1991) was adopted. 

Morphological reconstruction is adopted to minimize the over-segmentation problem 
caused by regional minima and maxima in the watershed segmentation process of Type N4. In 
the standard morphological reconstruction, a mask image (g) is reconstructed from a marker 
image (f) by iterating geodesic dilations of the marker image inside the mask image until 
stability is attained; i.e., the image no longer changes. Both of these images have the same size, 
and f ≤ g. A mask image is the initial image that will be reconstructed and a marker image is 
created by subtracting a constant value (h) from the mask image. The number of fibers finally 
detected from Type N4 fibers is dependent on the value of h. In this study, h was determined to 



be 20, empirically by the use of trial and error. 
 

VALIDATION OF THE METHOD 
 
To assess the validity of the proposed technique, a series of tests was performed on real 

and artificial fiber images. As shown in Figure 5, seven groups of fiber images were selected for 
closer examination. Figure 6 displays the detection test results, where the white point located on 
the grayscale image (fiber) indicates the center of the detected fiber image. A, B, C, and D fiber 
images in Figure 6, which were classified as Type N3 fibers, were more successfully detected 
using the enhanced detection process relative to the results of the proto-type process. Detection 
results of E, F, and G fiber images (Type N4) in Figure 6 are also indicative of significantly 
improved fiber-detection performance, where over-segmentation is minimized by applying the 
morphological reconstruction. All results in Figure 6(b) indicate that the enhanced detection 
process yields significantly improved fiber-detection performance. 

Figure 7, in which the dispersions of (a) and (b) are perfect and severely biased, 
respectively, shows artificial fiber images tested to assess the validity of the αf calculation. The 
test results demonstrate correct calculations, showing αf values of 1.0 and 0.041 for each image 
(see Figure 8). αf values calculated by the proto-type algorithm and the enhanced algorithm were 
0.384 and 0.348, respectively. The enhanced algorithm provides lower αf values, i.e. decreased 
by 9.4%, compared to the proto-type algorithm. This is most likely due to correct segmentation 
of the fibers from the aggregate fiber images, where the fibers are located in close enough 
proximity to decrease the average αf for the same sample. 
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Figure 5. Seven groups of fiber images  

  

 
 

 
 
 

Figure 7 Artificial fiber images to test                   Figure 6. Test results 
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CONCLUSION 
 
This paper proposes a new technique to evaluate the PVA fiber dispersion in Engineered 

Cementitious Composite. A series of experimental and analytical investigations was carried out 
to verify the validity of this technique. The following conclusions can be drawn from the current 
results: 
(1) The proposed technique is essentially composed of stepwise tasks. First, the specimen is 

prepared and treated, followed by the acquisition of a fluorescence image. Based on the 
proposed image processing algorithm, the fiber images are then automatically detected in a 
binary image converted from the fluorescence image. A fiber dispersion coefficient αf is 
finally calculated by a mathematical treatment performed on the image data. 

(2) To enhance the fiber-detection performance, the fiber images detected by the proto-type 
thresholding algorithm were classified by a watershed segmentation algorithm into two 
categories, single fibers (Type S1) and possible single fibers (Type N family). The fibers in 
Type N family were then subdivided into four types (Type N1, N2, N3 and N4) by an ANN, 
which was carried out to enhance fiber-detection efficiency. For this process, five features, 
Fs, Fc, Fp, Fl and Frl, which are invariant to image translation, scaling, and scaling, were 
extracted. For correct detection of aggregate fiber images (Type N3 and Type N4), the 
watershed segmentation algorithm and morphological reconstruction were adopted. 

(3) The calculation accuracy of αf was demonstrated by tests on artificial images. In addition, the 
results of real image tests indicated significant improvement of the fiber-detection 
performance. This was achieved by applying an enhanced detection algorithm, correctly 
separating fiber images from the aggregate image, and relieving the over-segmentation 
problem. It was also found that the enhanced detection process provided a lower average αf 
compared to that of the proto-type process. This is because of correct segmentation of the 
fibers from aggregate fiber images, which are located in close enough proximity to decrease 
the average αf for the same sample. On the other hand, the application of morphological 
reconstruction resulted in an increase of αf, most likely due to correction of the over-
segmentation error. 
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