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ABSTRACT

A three-dimensional Navier-Stokes flow solver is developed on unstruc-
tured tetrahedral meshes. For a turbulence closure, a standard high Reynolds
number k — ¢ model with a wall function boundary condition is used. The
seven equations of motion are discretized and integrated in a tightly coupled
manner. The time integration is achieved using an explicit Runge-Kutta
time-stepping scheme. The inviscid flux terms are discretized based on a
cell-centered finite-volume formulation with Roe’s flux-difference splitting.
The numerical method is applied for flows on a two-dimensional backward-
facing step and a three-dimensional turbomachinery geometry. The results
are compared with analytical and experimental data for validations.
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INTRODUCTION

Despite the growing popularity of the unstructured mesh flow calcula-
tions, until recently much of this work has been limited to inviscid flow prob-
lems [1-7]. Thus the advantage of using unstructured mesh methodology,
which provides great flexibility in handling complex configurations, has not
fully flourished in solving ‘real’ flows on these geometries where it is needed
most. One of the major difficulties in solving viscous flows on unstructured
meshes is generating highly stretched, viscous meshes. Recently, progress has
been reported in overcoming the difficulty of generating viscous unstructured
meshes in 2-D and 3-D using the advancing-layers method [8, 9].

Another difficulty in developing a viscous unstructured mesh flow solver is
in accurately resolving the convective and viscous fluxes on highly stretched
triangular/tetrahedral meshes. The degree of difficulty in solving viscous
flows tremendously increases in the case of high Reynolds number flows.
The viscous effect remains inside a very thin layer near the solid surface,
which requires an extreme grid stretching. At the same time, a proper tur-
bulence closure is required to model the turbulent viscosity, which results in
additional computational effort. The simplest algebraic turbulence model is
generally not suitable for random unstructured mesh data structures due to
the difficulty of evaluating the distance of each mesh from the nearest wall.

Viscous calculations on unstructured meshes were reported for 2-D low
Reynolds number laminar flows [10, 11]. Three-dimensional viscous laminar
flow calculations were made using Roe’s flux-difference splitting and implicit
time integration on a highly stretched unstructured mesh [12]. Until recently,
several 2-D high Reynolds number flow calculations on unstructured meshes
were reported using different levels of turbulence closure, such as an alge-
braic turbulence model using a local structured turbulence mesh [13, 14], a
one-equation model [15], and a two-equation k — ¢ model [16, 17]. Three-
dimensional viscous flow calculations with & — ¢ turbulence equations have
been reported using a finite volume method based on central differencing [18,
19] and a finite element approach [20].

In the present paper, a three-dimensional Navier-Stokes flow solver with a
k —e turbulence closure is developed as an extension of a previously validated
3-D Euler method [7, 5]. The numerical scheme is based on a cell-centered
finite volume method with Roe’s flux-difference splitting. The flux terms
of the turbulence equations are discretized in exactly the same manner as
the mean flow equations using flux-difference splitting. The full set of seven
governing equations of motion of the mean flow and the turbulence model
are integrated in time using a fully explicit Runge-Kutta time stepping in
a fully coupled manner using exactly the same time step. Validations are
made for a two-dimensional backward-facing step flow to demonstrate the
details of the viscous capability of the present method. Three-dimensional



applications are made for turbulent viscous flows through typical turbine
blades. Comparisons are made with available analytical and experimental
results.

MATHEMATICAL AND NUMERICAL
FORMULATION

Governing Equations

The equations governing three-dimensional, viscous, unsteady, compress-
ible flows are the Reynolds-averaged Navier-Stokes equations which express
the conservation of mass, momentum, and energy for a Newtonian fluid in the
absence of external forces. The turbulence viscosity is calculated using the
standard high Reynolds number turbulence model of Launder and Spalding
[21]. The seven equations may be written in an integral form for a bounded
domain €2 with a boundary 0f2:
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where
Q = {p, pu, pv, pw, €., pk, pe}"

Here F'(Q) represents the convective flux term and 7 is the exterior surface
unit normal vector on the boundary 0€2. The Cartesian velocity components
are u, v, and w in the x,y, and 2z directions, respectively. The term e, is the
total energy per unit volume. The turbulent kinetic energy and the turbulent
kinetic energy dissipation rate are represented by k and €. The viscous heat
flux and shear stress vectors are written as:
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Here 7y, 1y, and n, are the Cartesian components of the exterior surface unit
normal n. The Prandtl number for air is taken to be 0.72 and the turbulent
Prandtl number is 0.9. The laminar viscosity is determined by Sutherland’s
law. The turbulent viscosity, p¢, is computed as:
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The source term, S, contains the production and destruction of turbulent
kinetic energy. The source term for the standard high Reynolds number is
modeled as:
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The term P represents the production rate of the turbulence kinetic energy,
and is defined as:
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where the Boussinesq approximation is used to model the stress terms
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The turbulence modelling constants are chosen to be the standard Launder
and Spalding [21] values of

C, =0.09,1 = 1.44, ¢, = 1.92,0 = 1.0, 0. = 1.3

The equations are nondimensionalized with the reservoir flow condition and
the reference length. The Reynolds number is calculated based on the reser-
voir quantities. The molecular and turbulent viscosities are normalized using
the molecular viscosity at the reservoir gas state. Equation (1) describes a
relationship where the time rate of change of the state vector () within the
domain €2 is balanced by the net flux F' and G across the boundary surface
0f2. The domain is divided into a finite number of tetrahedral cells, and
the equation (1) is applied to each cell. The state variables ) are volume-
averaged values.

Spatial Discretization

The flux across each cell face x is computed using Roe’s flux-difference
splitting formula [22]:

Fy = [F(QL) + F(Qr) — |A|(Qr — QL)L€ (4)
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Here Q1 and Q) are the state variables to the left and right of the interface
k. The matrix A is computed from evaluating
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0Q
with Roe-averaged quantities as defined in Ref. 23, which includes the tur-

bulent kinetic energy and the turbulent kinetic energy dissipation rate, so
that

A=

F(Qr) — F(Qr) = A[Qr — Q1)

is satisfied exactly. Introducing the diagonalizing matrices T and T7', and
the diagonal matrix of eigenvalues A, then |A| is defined as

|A] = T|A|IT

The term . o
|Al(Qr — QL) = TIAIT™'AQ

in Roe’s flux formula can be reduced to three AF flux components, each of
which is associated with a distinct eigenvalue:

TIANT'AQ = |AF| + |AFy| + |AFj| (5)

The complete form of the Jacobian matrix, the symmetrization matrices, and
the three flux components |AFy|, |[AFy|, and |AFj| are given for the complete
set of governing equations in Ref. 23.

For a first-order scheme, the state of the primitive variables at each cell
face is set to the cell-centered average on either side of the face. For a
higher-order scheme, estimation of the state at each cell face is achieved by
interpolating the solution at each time step with a Taylor series expansion
in the neighborhood of each cell center. The cell-averaged solution gradi-
ent required at the cell center for the above expansion is computed using
Gauss’ theorem by evaluating the surface integral for the closed surface of
the tetrahedra. This process can be simplified using some geometrical invari-
ant features of the triangles and tetrahedra [12]. The resulting formula for
the flow state at each cell face can be written as:
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where the subscripts ni, ns, n3 denote the nodes comprising face fi 53 of cell
¢t and n4 corresponds to the opposite node. The expansion also requires the
nodal value of the solution, which can be computed from the surrounding
cell center data using a second-order accurate pseudo-Laplacian averaging



procedure as suggested by Homes and Connell [16]. Recently, the three-
dimensional extension was made by Frink [12], which is adopted for the
present calculations.

The convective terms of the turbulence equations are calculated using a
first—order accurate scheme to reduce the computational cost and to ensure
the numerical stability of the time integration [17] in the present paper.

Viscous Fluxes

The evaluation of viscous terms G(Q) requires first derivatives of the velocity,
the temperature, and k£ — ¢ values at the cell faces. They are achieved by
evaluating the gradient of each required flow quantity at the cell center from
the known primitive variables at each time step. Applying the gradient
theorem gives
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where {2 represents the volume of the domain over which the gradient theorem
is applied. The scalar quantity ¢ can be the three components of velocity,
the temperature, or turbulence quantities. In the present calculations, the
integral domain is defined as the individual tetrahedral cell of the unstruc-
tured mesh, which is consistent with the numerical procedure of evaluating
the convective fluxes of the present cell-centered scheme. The surrounding
surface area 02 then consists of the four triangular surfaces covering the
tetrahedral cell.

For a first-order scheme, the flux through each cell face in the equation (7)
is calculated as an average of the two cell center values of the adjacent cells.
Thus, with the known cell volume of Vg, the gradient of ¢ can be calculated
at each cell center. Then, the cell-averaged viscous shear stresses and heat
flux for each tetrahedral cell are calculated at the cell center. The values of
Gz, Gy, and Gz at the cell faces for flux calculation in the equation (1) are
determined by the average of the two cell center values of the adjacent cells.
The viscous dissipation of the turbulent kinetic energy and the turbulent
kinetic energy dissipation rate is calculated in the same manner as described
above for shear stresses. The turbulent eddy viscosity is evaluated using the
cell-averaged values of k£ and ¢.

The second—order approximation of the viscous terms for the mean flow is
achieved by using the nodal values of the flow variables calculated using the
pseudo-Laplacian averaging described earlier for the convective terms. The
flux through each of the triangular faces in the equation (7) is obtained by
the average of the three nodal values for the triangle. Once the gradients of
the primitive variables are obtained, the shear stresses and the heat flux can



be calculated, from which G, G, and Gz are evaluated at the cell center.
Then, the nodal values of these quantities are calculated by applying the
pseudo-Laplacian averaging on these quantities. The surface flux of these
quantities in the equation (1) is obtained by taking the average of the three
nodal values for each triangular face of each cell.

The turbulent production, P, can be calculated using the first deriva-
tive of the three velocity components obtained for viscous shear stresses as
described above. Then, the turbulent source term is calculated at the cell
center. The volume integral of the source term in equation (1) is calculated
by simply multiplying the cell volume to the cell averaged source term for
each tetrahedral cell.

Time Integration

A semidiscrete form of the governing equations reads

9Q;
ot

Vi +R; =0, 1=1,2,3,... (8)

where
Ri= > FijASy;
j=H(i)

and V; is the cell volume and R; is the residual accrued by summation of both
the inviscid and viscous fluxes through the four faces x of a tetrahedral cell
t. The source term of the turbulent equations is also included in the residual,
R;. The seven equations of motion are integrated in time using a fully explicit
m-stage Runge-Kutta time-stepping scheme developed by Jameson et al. [24]
in a fully-coupled manner based on exactly the same time step for both the
mean flow and the turbulence equations. A three-stage scheme was used for
the calculations presented in this paper.

The inviscid fluxes are evaluated at each time stage using values of trans-
port variables obtained at the previous stage of the scheme rather than using
values from the previous iteration [25]. Meanwhile, in the “uncoupled” pro-
cedure, for example as in Ref. [16, 26], (sometimes called “lagged” or “split”),
the mean flow equations are integrated in time using frozen values of k£ and e
previously obtained, and the k — ¢ equations are integrated using the frozen
value of the mean flow. The coupled approach gives a more compact and
better organized code, and is easily extended to unsteady flow calculations.
The viscous dissipations and the source terms are evaluated prior to the first
stage and are kept as constants during the time stepping.

To accelerate the convergence of the solution to steady state, local time
stepping was used based on a two-dimensional stability analysis [5]. The
local time steps are updated at every user-specified number of iterations.
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In order to maximize the time step, an implicit residual smoothing is
applied by filtering the residuals through a Laplacian operator for the neigh-
boring cells that share the same faces. This is performed for the odd stage
of the Runge-Kutta time cycle by solving the resulting set of equations using
Jacobi iteration [5]. Inclusion of the viscous terms in the residual smooth-
ing procedure was essential to obtain a stable and convergent solution. The
implicit residual smoothing was also applied to the turbulence equations in
exactly the same manner to the mean flow equations.

Unlike some of the explicit time-stepping methods [17, 27], the implicit
treatment of the turbulence source terms was not necessary for the present
fully-coupled solution procedure, which is consistent with the results using
structured grids [25]. The addition of turbulence equations did not stiffen
the scheme at all using the wall function boundary condition approach.

It is known that the & — ¢ equations are instability prone during the
transitory phase of the computations. In order to stabilize the computations,
k and e are bounded by the following limiters as suggested in Ref. 27:

pk > Kkpookoo >0
pe > K. pootoo >0 (9)
10P > pe > 0.1P

where K. = 0.01—0.0001 and K} = 0.0001 to prevent k£ and ¢ from becoming
negative [25]. Also, the equation (9) imposes that the turbulence production
at each cell remains in the same order of magnitude as the local turbulent ki-
netic energy dissipation. pyke and peso are arbitrary reference quantities,
taken to be the values at the inlet for the present calculations.

To obtain a stable k — ¢ behavior at the early stage of computation it
was helpful to integrate the mean flow for a reasonable number of time steps
before turning on the turbulence equations. Thus, the mean flow is given
a chance to adjust to the flow conditions so that the turbulent production,
P, which is a function of the mean flow velocity gradients, remains in a rea-
sonable range. This was particularly true for flows with complex geometries
involving a large region of reversed flow or high flow turning where a good
initial guess of the mean flow was usually unavailable.

Boundary and Initial Conditions

For internal flow calculations, the stagnation pressure, stagnation tem-
perature, and the two inlet flow angles are specified at the inflow boundary.
Whenever known, the total pressure and velocity profiles inside the bound-
ary layer on the solid wall are prescribed at the inflow boundary. Other flow



quantities are obtained using a characteristic boundary condition by extrap-
olating the Rieman invariant from the interior of the computational domain.
At the flow exit boundary, the static pressure is assumed to be known. Other
flow variables such as density and velocities are extrapolated from the inside
of the computational domain at the exit plane. The turbulent kinetic energy
and the dissipation rate are assumed to be known at the inlet boundary from
the known turbulence intensity and the turbulence length scale:
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where I, ¢, and V represent the turbulence intensity, the turbulent length
scale, and the magnitude of total velocity, respectively. At the outflow bound-
ary, the & — € values are extrapolated.

On the computational boundaries between turbine blades the periodic
flow condition is imposed. After each time step, the flow quantities on peri-
odic boundaries are replaced by the cell-centered values and averaged between
the two surfaces for each matching triangular element. Then, the values are
replaced on both boundary surfaces. Since the surface triangular distribu-
tions between the two periodic boundaries are constructed to be identical
from the grid generation both in number and size, no interpolation of the
flow quantities is required to conserve the flow on these boundaries. Informa-
tion about matching triangles between the two periodic boundary surfaces is
pre-determined and stored as a pre-processing step before the time integra-
tion is performed. The k —e values are averaged and replaced for the periodic
boundaries in a way that is similar to the one performed for the mean flows.

In order to predict high Reynolds number turbulent boundary layer flows
correctly through the laminar, semi-laminar, and fully turbulent regions,
many grid points are required inside the viscous sublayer (more than 30 points
to obtain a reasonably correct value of skin friction [28]) with the near wall
value of y* ~ 1. Using the current explicit scheme, three-dimensional flow
calculations become very stiff and require an extreme number of iterations
on such fine grids, which is not practical even on current supercomputers. To
avoid this situation, a semi-empirical wall function boundary condition was
imposed on the solid surface for the present turbulent flow calculations [16,
17]. Tt is assumed that the velocity profile between the first grid point (cell
center of the first cell adjacent to the solid surface on the present unstructured
mesh) and the solid surface obeys the following law of the wall [28]:

uwt =yt for yT <115 (10)

1
ut=—In(Ey")  for y' >11.5 (11)
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where

ut = E yt = PaYalir Re
Ur 1

Here p, and V, are the fluid density and the velocity at the cell center of the
first cell adjacent to the solid surface at a normal distance y, away from the
surface; u, is the friction velocity; k, is the von Karman constant of 0.41;
and F is taken to be 9.0 in the present calculation. At each iteration, from
the known velocity V, and y,, the friction velocity can be calculated using
a Newton-Raphson iteration. Then the k£ and ¢ at the first cell center point
are obtained from the following relations:
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In practice, when the first cell center point is located very close to the wall,
the velocity and the k£ — e values at the first cell center can be replaced at the
center of the surface triangle. This yields a slip boundary condition rather
than a no-slip boundary condition for the mean flow.

On the solid boundaries the velocity gradient normal to the surface is
known from the relation between V' and y in the equations (10) and (11).
Thus, the viscous shear stresses on the solid wall are determined and applied
as a boundary condition for evaluating the viscous fluxes in the equation
(1). The turbulent viscosity on the solid surface is calculated using the k — ¢
values on the surface as determined above. The first derivatives of £ and
e on the solid surface for the turbulence equations are extrapolated from
the cell center values of the adjacent tetrahedral cell. For pure laminar flow
calculations, a regular no-slip boundary condition is recovered on the solid
surface.

The initial condition of the mean flow is assumed to be a uniform flow
field based on the initial guess of the inlet flow. The initial turbulent flow

field is a uniform field based on the inflow k£ — & boundary conditions.

RESULTS AND DISCUSSION

The intent of the present work is to provide a validation of the algo-
rithm and the numerical methodology described above for calculating three-
dimensional viscous fluid flows on tetrahedral meshes. Even though the nu-
merical methodology is developed in three dimensions, it is sometimes easier
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and clearer to validate the results in two dimensions where well-defined an-
alytical and experimental data are available. The capability of the present
methodology of calculating viscous terms was previously demonstrated for a
flat-plate laminar boundary-layer flow [29]. In the present paper the k — &
equations are validated for a well-known backward-facing step flow, where
not only the mean flow but also detailed turbulent kinetic energy and turbu-
lent shear stress distributions are available. A three-dimensional calculation
is demonstrated for a turbulent flow through typical turbine blades. Viscous
unstructured meshes are obtained by dividing structured grids into tetrahe-
dral meshes to obtain the proper grid density and stretching in the direction
normal to the solid surface. The viscous calculations are performed with a
CFL number of 2. The local time step is evaluated for every 20 iterations.
Turbulent flow calculations using the higher-order scheme require approxi-
mately 19usec of CRAY-C90 time per cell per iteration.

2-D turbulent backward-facing step flow

The backward-facing step flow has been frequently used to benchmark
turbulent models. In the present study, the experiment of Driver and Seeg-
miller [30] has been chosen because the measurement includes details of the
mean flow velocity profile, the turbulent kinetic energy, the shear stress, the
skin friction, and the pressure distributions. Two-dimensional simulations
using the present 3-D solver were made on 3-D meshes which were composed
of three structured 2-D grid planes of the same size and shape allocated par-
allel in the direction normal to the flow plane. The 2-D grids were connected
each other and divided into tetrahedral meshes. The two outer planes were
treated as periodic boundaries, and the derivatives normal to these planes
were set to zero to simulate pure 2-D flows. The results are compared with
the experiment and the existing structured grid results using a standard high
Reynolds number turbulence model with a wall function boundary condition
[31]. The inlet of the experiment was located 80 step height lengths upstream
of the step. The downstream exit was located 60 step height lengths down-
stream of the step. The expansion ratio (the ratio of downstream channel
height to upstream channel height) was 1.125 (for the zero deflection angle
case). The inlet Mach number (U,.s) was 0.128 and the Reynolds number
based on the step height and the inlet velocity was 33,420.

The numerical domain extended 15 step height lengths upstream of the
step. The downstream was stretched up to 60 step height lengths. A partial
view of the grid is shown in Fig. 1 near the expansion area. The mesh
contains 8,720 triangular elements in the 2-D plane, which was obtained
from three blocks of the structured grid of the size by 14x41, 65x41, and
21x65. In the direction normal to the flow plane, 3 grid points were allocated
for 3-D calculations as described earlier, which produces a total of 52,320
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tetrahedral cells. The first cell center point was located at 0.0125 step height
lengths away from the solid surface, which yielded a y™ value of 10 - 17 in
the attached flow region.

The mean flow velocity profiles are shown in Fig. 2 and compared with
both the experiment and the structured grid results at 10 different streamwise
stations downstream of the step. Excellent correlations are observed for all
streamwise stations. The present calculation shows almost identical velocity
profiles with the structured grid results.

In Figs. 3 and 4, the turbulent kinetic energy and the turbulent shear
stress distributions are compared with the experiment and the results from
the structured grid calculation. In the neighborhood of reattachment, the
location of the peak values was predicted slightly away from the experiment.
A similar behavior is also shown in the structured grid results. This discrep-
ancy is probably due to the characteristics of the k — & model, rather than
the numerical method used. In the region downstream of the reattachment,
the present unstructured mesh calculation predicts slightly higher values of
turbulent quantities than the structured grid results, which could be the ef-
fect of grid density (the structured grid calculation was performed on about
twice as many grid points as the present unstructured mesh calculation).

The wall static pressure coefficient for both the step-side wall and the
opposite wall are shown in Fig. 5. The pressure coefficient was calculated
based on the pressure at 6.5 step height lengths upstream of the step and the
inlet velocity. Calculation for the step-side wall shows the premature pressure
rise by the present k —e model. A similar trend was also noticed in the results
based on the structured grid [30, 31]. The minimum and maximum values of
the pressure and the steep pressure gradient in the vicinity of reattachment
are reasonably well predicted. The pressure recovery downstream of the
reattachment is slightly overpredicted by the present calculation, which is
consistent with the results obtained using the structured grids. The skin
friction coefficients are shown in Fig. 6. The level of skin friction inside the
reversed flow region and after the flow reattachment is well predicted using
the wall function boundary condition.

The predicted flow reattachment was about 5.2 step height lengths down-
stream from the step, which is about 15% less than the experimentally mea-
sured value of 6.1. The predicted reattachment points reported, which were
based on the structured grid calculations, were about 5.5 in Ref. 31 and 5.2
in Ref. 28.

3-D turbulent flow through turbine blades

A three-dimensional turbulent flow was calculated for a typical turbine
annular cascade where well-documented experimental data are available [32,
33]. The full geometry consists of an annular ring of 36 core turbine stator
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vanes. The geometry is a 38.10 mm high untwisted blade of constant profile
with an axial chord of 38.23 mm. The stator has a tip diameter of 508 mm
and a 0.85 hub-to-tip radius ratio.

The calculation was performed for the design flow condition. At the inlet,
the total temperature and the total pressure profile inside the boundary layer
were known from the experiment. The inlet flow angle was zero (flow parallel
to the axis of the full cascade). The calculation was made for a static-to-inlet
total pressure ratio of 0.665 on the hub of the flow exit plane. The Reynolds
number based on the inlet total quantities and the axial chord length was
898,650.

Fig. 7 shows the computational domain and the surface triangulation
on the hub and the blade surfaces. The tetrahedral mesh for the present
calculation was obtained from a structured grid of 77 x 25 x 22, which yields a
total of 229,824 cells. The first cell center point was located at approximately
0.0011 axial chord length away from the solid surface, which gives a value
of y* between 5 and 34. The computational domain was extended one half
axial chord length upstream of the blade leading edge and one axial chord
length downstream of the blade trailing edge.

The actual computation was divided into two steps to reduce the compu-
tational time. Initially the first 2,000 time iterations were performed using
the less expensive inviscid Euler calculation with a higher CFL number of 3.
During this inviscid calculation, the overall mean flow characteristics through
the turbine blade passages were approximately developed for the given in-
let and exit flow conditions starting from the crude initial distribution of
uniform flow. Then, the full viscous turbulence calculation was restarted
from the previous inviscid solution. The convergence history of the RMS of
the residual of both the mean flow and the turbulence quantities is shown in
Fig. 8 as a function of the time iterations. No attempt was made to determine
an optimum number of inviscid time iterations in the present calculation.

The resulting flow field is fully subsonic. The surface pressure distri-
butions are compared with the experiment at three spanwise stations. In
Figs. 9, 10, and 11 the chordwise surface static pressures normalized by the
inlet total pressure are compared with the experiment at 13.3, 50, and 86.7
percent radial stations. The comparison shows that the overall performance
of the cascade blade is reasonably well predicted. The predicted pressure on
the suction side of the blade near the trailing edge is slightly higher than the
experiment.

The flow angle and the critical velocity ratio (local Mach number) within
the passage are compared with the experiment, which was obtained using
the laser survey measurements at 30% axial chord of the blade at 50% of
the span as a function of circumferential position between the blade surfaces.
The flow angle was defined by the angle between the axial velocity component
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and the circumferential velocity component. Fig. 12 shows the comparison
of the flow angle between the present calculation and the experiment. Even
though the predicted flow angle near the suction surface is slightly higher
than the measurement, the overall agreement between the experiment and
the calculation is considered to be very good. The critical velocity ratio
comparison in Fig. 13 also shows good agreement between the prediction
and the measurement. Similar comparisons between the calculation and the
experiment are made at 70% axial chord, 50% of the span in Figs. 14 and 15.

The aftermixed flow angle and the total pressure loss (defined as a de-
ficiency of the exit-to-inlet total pressure ratio) are compared with the ex-
periment in Figs. 16 and 17. The measurement was taken at approximately
1/3 axial chord length downstream from the vane trailing edge to obtain the
aftermixed conditions, where the flow was assumed to be at circumferentially
uniform conditions [32]. The calculated values were obtained by averaging
the circumferential variation of the flow at each radial position. The calcu-
lated aftermixed flow angle compares well with the experiment, even though
the calculation shows less radial variation than the experiment. The high
flow angle near the hub and the shroud due to the endwall crossflow from
pressure to suction surface is well predicted. The design flow angle was 67
degs.

In Fig. 17, the aftermixed total pressure loss is compared with the mea-
surement. Even though the predicted loss is slightly higher than the mea-
surement, the overall loss profile is well predicted. The high loss near the end
wall due to the boundary layer is also well predicted, which demonstrates the
ability of the present scheme to solve viscous calculations.

CONCLUSION

A three-dimensional unstructured mesh Navier-Stokes flow solver is de-
veloped with k£ — ¢ turbulence closure. The scheme is based on explicit
Runge-Kutta time stepping with cell-centered finite volume flux-difference
splitting. The turbulence equations are discretized and integrated in a fully
coupled manner with the mean flow equations. The turbulence equations are
validated for a 2-D backward-facing step flow. The mean flow, turbulence
kinetic energy, and turbulent shear stress profiles for several streamwise sta-
tions compare very well with the experiment. The wall static pressure and
skin friction are also well predicted within the accuracy of the present turbu-
lence model. A three-dimensional application was made for a turbulent flow
through typical turbine blades. The blade surface pressures, the flow angle,
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and the velocity magnitude inside the flow passage are well predicted. The
total pressure loss due to the viscosity is also well predicted.
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