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Abstract — For clustered photolithography tools we develop 
two analytic models characterizing the throughput. The models 
are essentially distinguished by the manner in which wafers 
advance through the tool and allow for many important 
features present in practical manufacturing systems. Such 
features include a diversity of lot populations (with different 
process times at each module) and disturbances to the ideal 
processing behavior such as delays to begin processing and 
delays incurred at specific modules. Our models thus allow us 
to quantify important classes of intrinsic equipment loss. 

I. INTRODUCTION 

emiconductor wafer fabrication facilities require 
extensive capital commitments to construct (recently 
rising to on the order of US$5 billion for a modern 300 

mm wafer facility) and thus must be designed for efficiency 
and operated intelligently to ensure a timely return on the 
construction investment. One key target for efficient design 
and operation within such a facility is the photolithography 
scanner toolset which is typically the production bottleneck 
and the most expensive toolset per unit (on the order of 
US$20 million per scanner). Such tools are often clustered 
together with pre-expose and post-expose tracks, whose 
purpose is to coat the wafers prior to the photolithography 
scan via the application of photo resist chemicals and to 
develop the image imbedded in the resist subsequent to the 
scan. The collection of the pre-expose track, the scanner 
and the post-expose track is often referred to as a clustered 
photolithography tool. Though it is common for fabricators 
to develop simulation and static capacity models, there are 
few analytic models that have been developed to 
characterize their throughput performance which 
incorporate practical issues faced during production. The 
need for such models is emphasized by the International 
Technology Roadmap for Semiconductors (ITRS) which 
has increasingly incorporated fabricator performance 
objectives that address small lot sizes and a diversity of 
product types – both of which can have significant 
implications for the throughput of our toolset of interest.  
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Photolithography cluster tools consist of a collection of 
process stages through which each wafer must pass in 
sequential order. Each process stage is conducted by 
distinct modules within the tool that are dedicated to the 
process, though multiple modules may be devoted to a 
process stage to increase throughput potential. Once 
entering the tool, wafers from a lot follow one another from 
one stage to the next until they have received service from 
all the stages (there may be two or more wafers at a single 
stage to which multiple modules are devoted).  The first 
wafer of a lot may proceed immediately behind the last 
wafer of the preceding lot, so that wafers from more than 
one lot can be in process (in different modules) at a time. 
We call this phenomenon production parallelism. In fact, 
for clusters with a large number of modules in relation to 
the lot size (e.g., twenty seven modules and twelve wafers 
per lot) it is possible for wafers from three or more lots to 
be in service. 
 
Existing queueing models are limited in their applicability 
as they generally fail to address the production parallelism, 
interactions between different classes of product lots and 
operating conditions. Typical queueing models are based on 
the G/G/m-queue subject to tool failures. As analysis of 
these models is difficult, approximations such as those of 
[1] and [2] have been employed to obtain analytic 
expressions for the mean cycle time. To incorporate the 
production parallelism inherent in clustered 
photolithography tools, [3] and [4] essentially considered 
the first module as the server and treated the remaining 
process time as an independent post production delay before 
the lot was allowed to exit the system. As such, though the 
production parallelism was incorporated, the queueing 
models in [3] and [4] did not allow for possible interactions 
caused by diverse production time requirements among the 
modules and for different classes of product lots. 
 
Petri nets have been employed to model, design and 
optimize semiconductor manufacturing cluster tools, see for 
example [5] or [6]. Though existing approaches could be 
used to model clustered photolithography tools, (under the 
typically deterministic timing assumption) they are less 
tractable for analyzing the throughput with random 
disturbances to their nominally periodic operation. In 
addition, the intent of such models is more to optimize the 
robot task sequence, a problem that we do not consider 
here. The work of [3] does begin to develop models along 
these lines; however, they essentially assume that the 
process times in the modules are a fixed constant (which is 
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not true of the actual tools). Flow shop models (or their 
Petri-net equivalents) could be used to model such tools, 
though the existing results are primarily focused on 
algorithms for optimizing the order in which the lots are to 
be processed (see, for example, the texts [7, 8, 9] and recent 
work such as that in [10]). 
 
In the industry, simulation models and static capacity 
models have been used to assess toolset performance and 
predict throughput. Such models are eminently applicable; 
however they suffer from disadvantages. Simulation models 
do not provide formula from which an intuitive 
understanding of the system performance may be gleaned. 
Static capacity models do not typically include important 
features of the system performance, favoring ease of 
implementation over the capability to model system 
components and interactions.  
 
Our objective is to analytically characterize the tool 
performance from the perspective of the external operation 
as opposed to attempting to optimize the internal logistics 
of the robot movement. The analyses will allow us to 
characterize the throughput and evaluate the so-called 
intrinsic equipment loss (throughput reduction) which may 
derive from numerous sources including multiple classes of 
lots, delay to enter the tool and reticle removal from or 
insertion to the scanner. To achieve our objectives, we 
develop two models to analytically characterize the 
throughput behavior of clustered photolithography tools. 
Each model supposes a different underlying design for 
wafer advancement (though we suppress the explicit 
dependence upon the robot task sequence and include wafer 
transport time in the process time, so that our models 
provide an upper bound on the throughput performance). 
The models readily account for the typical aperiodic, 
transient and failure prone environment in which such tools 
operate.  
 
The paper is organized as follows. In Section II, we 
describe the general system and its operation. The features 
of and throughput results for two models, distinguished by 
the manner in which wafers advance, are detailed separately 
in Sections III and IV. Section III studies synchronous 
wafer advancement (which is related to the popular 
backward sequence of robot task scheduling) and Section 
IV studies asynchronous wafer advancement (which may 
serve as an upper bound on system performance for all 
robot task sequences). Examples of the results for Model I 
and Model II are presented in Sections V and VI, 
respectively. Concluding remarks are presented in Section 
VII.  

II. GENERAL SYSTEM DESCRIPTION 

Our models of a clustered photolithography tool may be 
considered a serial processing cluster tool, or a variant of a 
flow shop. There are M modules, labeled m1, m2,…, mM at 

which wafers must receive service. Each module conducts a 
unique operation on the wafer processed in that module. 
The wafers require service in sequential order from the 
modules, so that, after receiving processing at module mi, a 
wafer proceeds next to module mi+1, unless i = M after 
which the wafer exits the tool. As the wafers undergo 
different operations in different modules, the process time 
required by a wafer from module mi may be different from 
module mj. Further, each production lot (a collection of W 
wafers with the exact same processing requirements) may 
be of a different class than other lots. That is, the production 
time required to process a wafer of lot class � in module mj 
is denoted as ∆�

j. Figure 1 depicts a clustered 
photolithography tool with fifteen modules (M  = 15). Two 
wafer handling robots are depicted, though we include 
handling time in the module process times and otherwise 
ignore the robots. 
 

  
 

Figure 1. A clustered photolithography tool. 
 
Though we stated in this Section that each module provides 
a distinct operation, it is quite common for redundant 
modules to be employed. Redundant modules provide an 
alternate path for wafers requiring a particular operation and 
allow for a potential increase in the throughput. This can be 
readily included in our model via the approach discussed in 
[3]. In addition, modules which are present solely for the 
purpose of holding a wafer between stages of production, 
termed buffer modules (e.g., a wafer cassette module prior 
to the scanner), are easily incorporated by introducing one 
module for each such buffer module with a production time 
∆�

j = 0. Any of the modules in Figure 1 may thus be a buffer 
module (there are typically 12 to 24 prior to the scanner in 
practical tools). 
 
Lot production proceeds as follows. When a lot of W wafers 
arrives at the tool, it waits until all wafers from lots of 
higher priority have received service from the first module 
m1. At that instant, the first wafer of that lot may enter the 
tool to begin production. If the first module is vacant when 
the lot arrives, it may enter production immediately subject 
to the restrictions stated below. A lot is complete when its 
last wafer completes processing from the last module mM 
and exits the tool. We do not specify the priority of the lots 
(i.e., the order in which they are to receive attention from 
the tool), and assume that this has already been determined.   
 

m1 m2 m3 m4 m5 m6 m7 

m8 

m15 m14 m13 m12 m11 m10 m9 
W wafers/lot 

M modules 

Robot
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In practical manufacturing systems, activities such as tool 
qualifications, setup times, resist dispenser dumps and 
routine tool maintenance impinge upon the attainment of 
throughput. These generally unavoidable disruptions reduce 
the throughput potential of the tool as do complete tool 
failures or module failures and contribute to intrinsic 
equipment loss. To study the effect of such activities as well 
as to characterize the influence of diverse lot populations, 
we deduce the time between lot completions. 
 
Let the lots be indexed by the order in which they enter the 
tool, so that lot �i is preceded by lot �i-1 and succeeded by lot 
�i+1. Denote the class of lot �i as �(i). Let bi and ci denote the 
time instants that lot �i begins and completes service, 
respectively, so that the total production time for lot �i is Pi = 
ci – bi. Let  

Ti := min{ ci – ci-1, Pi } 
denote the time between the completion of the previous lot 
and lot �i, unless lot �i enters production on an idle tool, in 
which case use the production time. For throughput 
calculations, Ti may be used as the amount of time 
associated with the production of the W wafers in lot �i. 

III. MODEL I: SYNCHRONOUS WAFER ADVANCEMENT 

In the first model, we assume that the robot wafer transfer 
sequence has been designed such that wafers are required to 
advance in synchronization. That is, we impose the 
following two assumptions. 
 
Assumption A1: Wafer advancement. If any module in 
the cluster contains a wafer, all wafers must wait until all 
modules have completed their tasks. At that time epoch, all 
wafers advance simultaneously. 
 
Assumption A2: The first module. If any module in the 
cluster is providing service, a wafer may only begin 
production in module m1 at a time epoch corresponding to 
the wafer advancement of Assumption A1. 
 
Assumptions A1 and A2 may be essentially implemented by 
using the popular backward sequence of wafer movement 
(proven to be optimal in some contexts, see [11]). The 
throughput in Model I is an upper bound on the throughput 
for the backward sequence robot protocol.  
 
To simplify the exposition, we impose one additional 
assumption. It can be removed at the expense of increased 
notation.  
 
Assumption A3. Limit on wafers per lot. At most two lots 
may receive service from the cluster at a given time, that is, 
W � M – 1.  
 
We introduce further notation. In the event that the lot 
queue is empty, the tool is returning from failure, lot 

production is delayed pending a recipe setup or myriad 
other reasons, there may be empty modules between wafers 
receiving production. Let k(i) denote the number of empty 
modules between the first wafer of lot �i and the last wafer 
of the preceding lot, if there is one, otherwise let k(i) = M-1. 
Thus, when lot �i enters production on a completely empty 
tool k(i) = M-1. If lot �i begins production immediately 
subsequent to its predecessor then k(i) = 0. Noting that k(i) 
may be used to model the duration of events such as tool 
failures and setup events, Theorem 1, stated next, allows us 
to assess their consequences.  
 
Theorem 1: Time between lot completions with diverse 
lot populations. Consider a serial processing cluster tool 
satisfying assumptions A1, A2 and A3. Let lot li of class 
�(i) wafers be succeeded by lot li+1 of class �(i+1). Then 
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Proof: With assumptions A1, A2 and A3, wafers proceed 
simultaneously once all wafers in the cluster have 
completed their process times. That is, only when the 
maximum over all occupied modules of the terms ∆�

j have 
elapsed do wafers advance. Thus, we have that the first 
summation is the time required for the first wafer of lot li to 
reach the last module mM after the preceding lot li-1 exits the 
tool. The next term is the time required for the last wafer of 
lot li to exit the first module. The second summation is the 
additional time until the first wafer of the succeeding lot li+1 
enters the first module. The third and final summation is the 
time required for last wafer of the lot li to exit the tool.   � 
 
For the case where there is only one class of lots, we can 
drop the dependence upon �(i) and obtain the following 
corollary.  
 
Corollary 1: Time between lot completions with one 
class of lots. If all the lots are of the same class � then the 
time between the lot completions is given by, 
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The theorem and corollary detail the interactions between 
lots, the consequences of time delays between lots and the 
diversity of module process times for Model I.  

IV. MODEL II: ASYNCHRONOUS WAFER ADVANCEMENT 

In the second model, we assume that the wafer transport 
system has been designed such that wafers may advance 
independently (until becoming delayed by an occupied 
module ahead of them). That is, rather than the Assumptions 
A1, A2 and A3 of Model I, we impose the following 
assumptions where xj(w) is the entry time of wafer w to 
module mj. (Of course, lot �i contains wafers w = (i-1)M+1, 
…, iM.) Note that we now restrict attention to a single class 
of lots. This allows us to obtain analytic results beyond the 
basic iterative cycle time and/or throughput relations of 
Assumption 5. 
 
Assumption A4: A single class of lots. The process time 
for a wafer in module mj is ∆j, independent of the lot. 
 
Assumption A5: Asynchronous wafer advancement.  A 
wafer in module mi proceeds to the next module mi+1 (or 
exits the tool if i = M) once it completes processing and the 
next module is vacant. That is, letting �(w) denote the index 
of the lot containing wafer w and ai denote the arrival time 
of lot �i to the system,  

( ) ( ){ }1,max 2)(1 −= wxawx wl , 

( ) ( ) ( ){ }1,max 111 −∆+= +−− wxwxwx jjjj , for 2 � j � M-1, 

( ) ( ) ( ){ }MMMMM wxwxwx ∆+−∆+= −− 1,max 11 . 
 
Further notation is presented next. Let ∆ = (∆1, ..., ∆Μ)Τ be 
the column vector of the module process times and let e = 
(1, …, 1)T be the vector of ones with the same dimension. 
Thus, eT∆ is the sum of the process times for a wafer. Let Λ 
= maxj {∆j} be the bottleneck process time. We will use B 
to denote the index of the bottleneck module, that is, the 
module mB  (with the smallest index in case two modules 
qualify as the bottleneck) such that ∆B � ∆j for all modules j. 
Recall that the number of modules in the track is M. 
 
For lots, recall that the completion time of a lot �i is given as 
ci. Finally, recall that we are using ai to denote the arrival 
time of lot �i to the system. 
 
The following lemmas may be proved via induction.  
 
Lemma 1: No module contention occurs after the 
bottleneck. In Model II, for B � j < M, the start time of 
wafer w on module mj+1 is given as  

( ) ( ) jjj wxwx ∆+=+1 . 

For the last module, the time wafer w exits the tool equals 
xM(w) + ∆M.  
 
Lemma 2: Wafers enter each post-bottleneck module no 
earlier than ΛΛΛΛ time units after their predecessor. In 
Model II, for j � B, the start time of wafer w+1 on module j 
is constrained as  

( ) ( ) Λ+≥+ wxwx jj 1 . 

For the last module, the time wafer w + 1 exits the tool is 
greater or equal to the completion time of wafer w plus Λ. 
 
Lemmas 1 and 2 may be employed to prove Theorem 2 
which is stated next. It characterizes the completion times of 
lots, thereby enabling the calculation of the time between lot 
completions. Recall that ai is the arrival time of lot �i. 
 
Theorem 2: Completion time of lot ����i. For Model II, the 
completion time of lot �i is given as  

{ } ( )Λ−+Λ+∆+= − 1,max 1 Wceac i
T

ii , 
with initial condition for an empty tool 

( )Λ−+∆+= 1Weac T
ii . 

 
Theorem 2 enables the iterative calculation of the 
completion time of a lot based on the preceding lot. The 
first term in the maximization of Theorem 2 may be 
interpreted as the time taken for the first wafer in the lot to 
exit the tool when that first wafer does not experience 
module contention with the preceding lot. The second term 
in the maximization is the time taken for the first wafer in 
the lot to exit the tool when the first wafer does experience 
module contention with the preceding lot. The last term is 
the time to complete the remaining wafers after the first 
wafer of the lot exits the tool. 
 
One can readily deduce the time that should be attributed to 
lot �i for throughput calculations Ti := min{ ci – ci-1, Pi }. 
 
Corollary 2: A recursion for Ti. In Model II,  

{ }{ }1,0min,0max −−+Λ−∆+Λ= ii
T

i caeWT . 

 
The theorem and corollary allow us to characterize the 
implications of late lot arrivals and can be used to model the 
effect of failures to load the lots promptly. Other events may 
reduce throughput as well, such as a failure or pause of a 
specific module. As an example, when a reticle (also called 
a mask, which holds the pattern that is to be scanned onto 
the wafer) is removed from the tool for maintenance or 
replacement, the scanner ceases all operation for the 
duration of the reticle removal. Thus, if a wafer is in the 
scanner during such an event, that wafer incurs a delay. In 
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fact, there are typically up to four wafers which may be in 
the scanner at a given moment. We model this as a delay 
experienced at the bottleneck module (it is easy to 
generalize when additional modules after the bottleneck are 
included in the pause, but not for modules prior to the 
bottleneck).  
 
Let τR(r) and dR(r) denote the start time of the r-th reticle 
change (pause in the bottleneck) and its duration, 
respectively. Assume for simplicity that only the bottleneck 
module is paused by the reticle removal. The following 
corollary of Theorem 2 assesses the implications of a pause 
in the processing at the bottleneck module. 
 
Corollary 3: Pause in the bottleneck module. Let i be the 
smallest index such that  

{ } ( ) ( ) � +=− ∆+>Λ−+Λ+∆+ M

Bj jRi
T

i rWcea
11 1,max τ . 

The completion time of all lots preceding lot �i are not 
changed by the r-th pause (employ the recursion of Theorem 
2). The completion time of lot �i is  

{ }iii gfc ,0max+= ,  

where  
{ } ( )Λ−+Λ+∆+= − 1,max 1 Wceaf i

T
ii , 

is the original completion time of the lot (if there had been 
no pause) and 

( ) ( ) ( )
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M
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jRRRi fWrdrrdg
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The maximization term in the completion time in Corollary 
3 is the delay introduced by the pause in the bottleneck 
module, if any.  

V. EXAMPLES FOR MODEL I 

We consider three examples to illustrate the application of 
the results for Model I.  
 
Example 1: Consider a serial processing cluster tool with 
synchronous wafer advancement as in Model I that consists 
of eleven modules (M = 11). For wafers from lots of class 1, 
the module process times are ∆1

1 = 20, ∆1
2 = 25, ∆1

3 = 40, 
∆1

4 = 35, ∆1
5 = 30, ∆1

6 = 50, ∆1
7 = 15, ∆1

8 = 35, ∆1
9 = 45, 

∆1
10 = 20 and ∆1

11 = 30 seconds. For wafers from lots of 
class 2, the module process times are ∆2

1 = 30, ∆2
2 = 35, ∆2

3 
= 50, ∆2

4 = 45, ∆2
5 = 40, ∆2

6 = 60, ∆2
7 = 25, ∆2

8 = 45, ∆2
9 = 

55, ∆2
10 = 30 and ∆2

11 = 40 seconds. Suppose that a lot �0 
has just exited the tool and the gap between it and lot �1 is 
one module (k(1) = 1). Let lot �1 of class 1 run before lot �2 
of class 2 with a one module gap in front of lot �2 (k(2) = 1). 
We employ Theorem 1 to calculate the value of T1 for 
different lot sizes. Table 1 depicts T1 (in this case, the time 
between the departure of lot �0 and the departure of lot �1) as 

the lot size for all lots changes over the values W = 10, 11, 
12, 13 and 14. The calculation details are omitted. 
 

W - Wafers Per Lot 10 11 12 13 14

T1 590 640 690 740 790  
Table 1. T1 for lot �1 varies with the number of wafers. 

 
Table 1 demonstrates that T1 has constant slope in relation 
to the lot size W for the values considered.        � 
 
Example 2: Consider the serial processing cluster tool of 
Example 1. To study the behavior of T1 as the number of 
empty modules prior to the lots changes, consider the cases 
k(1) = k(2) = 0, 1, 2, 3 and 4 (i.e., both k(1) and k(2) are the 
same and range from 0 to 4). Let there be ten wafers in each 
lot (W = 10). Further, assume that a lot �0 has just exited the 
tool and the gap between it and lot �1 is k(1). Theorem 1 
may be employed to calculate T1.  
 
T1 has a constant slope (with respect to k(i)) for values of 
k(i) from 0 to 3. The slope changes when we allow a greater 
interlot gap. It can be observed that as the number of empty 
modules increases to four, there is one time epoch where the 
bottleneck module m6 is empty. Also note that the increase 
in T1 in all cases here is less than both of the bottleneck 
processing times ∆1

6  and ∆2
6. Table 2 depicts the result (the 

calculation details are omitted.).            � 
 

k(i) - Empty Modules 
Between Lots

0 1 2 3 4

T1 550 590 630 670 705  
Table 2. T1 for lot �1 varies with the empty modules. 

 
Example 3: Consider a serial processing cluster tool with 
synchronous wafer advancement as in Model I, eleven 
modules (M = 11) and a single class of lots. The module 
process times are ∆1 = 20, ∆2 = 25, ∆3 = 40, ∆4 = 35, ∆5 = 
30, ∆6 = 50, ∆7 = 15, ∆8 = 35, ∆9 = 45, ∆10 = 20 and ∆11 = 
30 seconds. Suppose that a lot �0 has just exited the tool and 
the gap between it and lot �1 is one module (k(1) = 1). Let 
lot �1 run before lot �2 with a one module gap in front of lot �2 
(k(2) = 1). We employ Corollary 1 to calculate the value of 
T1 for different lot sizes. Table 3 depicts T1 (in this case, the 
time between the departure of lot �0 and the departure of lot 
�1) as the lot size for all lots changes over the values W = 
10, 11, 12, 13 and 14. The calculation details are omitted. � 
 

W - Wafers Per Lot 10 11 12 13 14

T1 545 595 645 695 745  
Table 3. T1 for lot �1 varies with the number of wafers. 

VI. EXAMPLES FOR MODEL II 

We consider the following example to illustrate the 
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application of the results for Model II.  
 
Example 4: Consider a serial processing cluster tool with 
asynchronous wafer advancement as in Model II consisting 
of sixteen modules. The module process times for wafers 
from the single class of lots are ∆1 = 20, ∆2 = 25, ∆3 = 40, 
∆4 = 35, ∆5 = 30, ∆6 = 0, ∆7 = 0, ∆8 = 0, ∆9 = 0, ∆10 = 0, Λ 
:= ∆11 = 50, ∆12 = 15, ∆13 = 35, ∆14 = 45, ∆15 = 20 and ∆16 = 
30. There are thus sixteen modules (M = 16) with five 
exclusively devoted to serve as buffers (m6, …, m10) since 
they have zero processing time. Suppose that there are three 
lots of five wafers each arriving to the system at times a1 = 
0, a2 = 320 and a3 = 560 seconds. Further, assume that the 
first lot arrived to an initially empty tool. We can employ 
Theorem 2 to recursively evaluate the completion times: 

c1 = a1 +eT∆ + (W-1)Λ = 545,  
c2 = max{ a2 +eT∆, c1 + Λ}+(W-1)Λ = 865, and 
c3 = max{ a3 +eT∆, c2 + Λ}+(W-1)Λ = 1115. 

 
Corollary 2 allows us to readily determine Ti as follows: 

T2 = WΛ + max{0, eT∆ - Λ +min{0, a2 – c1}} = 320, and 
T3 = WΛ + max{0, eT∆ - Λ +min{0, a3 – c2}}= 250. 

 
If the first reticle change occurs at time τR(1) = 850 seconds 
and has duration dR(1) = 100 seconds, we can employ 
Corollary 3 to identify which lot is the first to have the 
potential to be delayed by the pause in the bottleneck 
module. Since i = 3 is the smallest index that satisfies the 
condition in Corollary 3, c1 and c2 are not changed and we 
adjust c3. The subsequent lot �4 will use the adjusted c3 to 
recursively determine c4. We have c3 = f3 + max{0, g3}, 
where f3 = max{560+345,865+50}+(5-1)*50 = 1115 and g3 
= min{100,850+100+250+145-1115} = 100. Thus c3 = 
1215 seconds.                   � 

VII. CONCLUDING REMARKS 

We have developed two models for the clustered 
photolithography tool which allow for features common in 
practical manufacturing. The models characterize key 
sources of intrinsic equipment loss. 
 
Additional features could be incorporated into the models. 
In the case of synchronous wafer advancement (Model I), 
reticle change events and setup times prior to a lot should be 
considered. In the case of asynchronous wafer advancement 
(Model II), setup times prior to a lot should be included as 
well as a more general approach to reticle change events 
(allowing for modules upstream of the bottleneck to pause). 
For either model, it would also be of interest to study the 
effect of a failure in an arbitrary module. Another important 
task that should be undertaken is the development of 
recommendations for manufacturing operation based upon 
the model results.  

 
Finally, the design of such a tool starting from its functional 
requirements, incorporating the requirement that it operate 
in a high mix and small lot size environment and account 
for the aperiodicity and transient behavior of a fabricator, 
should be undertaken. The design could then proceed to the 
development of robot wafer transfer mechanisms to 
implement the desired behavior.  
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