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Efficient simulation of silicon nanowire field effect transistors
and their scaling behavior

Mincheol Shina�

School of Engineering, Information and Communications University, Daejeon 305-732, Republic of Korea

�Received 28 July 2006; accepted 17 November 2006; published online 23 January 2007�

We have simulated silicon nanowire field effect transistors in the ballistic transport regime using the
effective mass theory and the mode space nonequilibrium Green’s function method. In order to solve
the two-dimensional Schrödinger equations on the nanowire cross-sectional planes as a part of the
numerical procedure, we have developed an efficient numerical scheme, the product-space method,
where the size of the eigenvalue problem is reduced to the number of subband modes that participate
in the transport. We have investigated the scaling behavior of the nanowire transistors and found that
their device characteristics sensitively depend on the aspect ratio of the channel length and width.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2430786�

I. INTRODUCTION

As the channel lengths of conventional planar metal ox-
ide semiconductor field effect transistors �MOSFETs� shrink
into the nanometer regime, performance of the devices be-
comes degraded mainly due to the short channel effects.
Multiple gates around the channel of the silicon nanowire
field effect transistors �SNWFETs� can improve the gate con-
trol considerably, and thus the short channel effects can be
suppressed significantly. In addition, the SNWFETs show ex-
cellent current drive and have the merit of compatibility with
conventional complimentary metal oxide semiconductor
�CMOS� processes. The SNWFETs are therefore considered
to be promising candidates for the next generation transistors
and have drawn considerable attention recently.1–3

In a simulation of the SNWFETs, accurate modeling and
calculations based on quantum mechanics are necessary to
assess their performance limits, because the SNWFETs are
expected to be a few nanometers wide in their ultimate scal-
ing. There have been previous quantum mechanical simula-
tions of the SNWFETs based on the effective mass theory
�EMT� and the nonequilibrium Green’s function �NEGF� for-
malism. Ballistic transport4,5 and diffusive transport using
the Büttiker probe model4 have been considered, and the
surface roughness scattering effect6 has been investigated.
There have also been works on the validity of using the
simple EMT in simulations of the SNWFETs,7,8 where it has
been concluded that the EMT starts to be incorrect below the
nanowire cross-sectional area of about 5�5 nm2, but
through the tuning of device parameters, the EMT can still
be used below it.

The approach in this work is similar to the previous
works mentioned above: we have used the EMT to model the
device, because it has the merit of computational simplicity,
and assumed ballistic transport. In our work, the product-
space method was developed to efficiently solve the two-
dimensional Schrödinger equations in the nanowire cross-
sectional planes, and a scaling behavior of the SNWFETs has

been investigated, paying attention to the dependence of the
device characteristics on the aspect ratio of the channel
length and width.

II. APPROACH

The device that we have considered in this work is a
three-dimensional field effect transistor with source/drain,
channel, and multiple gates as shown in Fig. 1. The source/
drain is modeled as semi-infinite wires, which are heavily
n-doped silicon, and the nanowire channel is assumed to be
intrinsic or lightly p-doped silicon with a rectangular cross
section. To simulate the device, we have self-consistently
solved the three-dimensional Poisson equation with the bal-
listic transport equation expressed by the uncoupled mode
space NEGF formalism4,9 as follows.

The effective mass Hamiltonian of the device that we
have used in our simulation is given by

H3D��x,y,z� = E��x,y,z� , �1�

where

H3D = −
�2

2mx
*

�2

�x2 −
�2

2my
*

�2

�y2 −
�2

2mz
*

�2

�z2 + V�x,y,z� , �2�

where mx
*, my

*, and mz
* are effective masses and V�x ,y ,z� is

the conduction band edge profile. The wave function
��x ,y ,z� can be written as

a�Electronic mail: mcshin@icu.ac.kr. FIG. 1. Silicon nanowire field effect transistor.
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��x,y,z� = �
m

�m�x��m�y,z;x� , �3�

where �m�y ,z ;x� is the mth mode eigenfunction of the two-
dimensional �2D� Schrödinger equation in the cross-sectional
plane located at x, which is given by

H2D�m�y,z;x� = Em�x��m�y,z;x� , �4�

where

H2D = −
�2

2my
*

�2

�y2 −
�2

2mz
*

�2

�z2 + V�y,z;x� . �5�

In the uncoupled mode space approach, coupling between
different modes is ignored and �m�x� of Eq. �3� satisfies4

�−
�2

2mx
*

d2

dx2 + Em�x���m�x� = E�m�x� . �6�

In our simulation, the one-dimensional �1D� transport
equation was solved by using the NEGF method: the 1D
Green’s function for subband m is given by

Gm = �E − Hm
1D − �S,m − �D,m�−1, �7�

where Hm
1D is the 1D Hamiltonian in Eq. �6� and �S,m and

�D,m are self-energies of the source �S� and drain �D�. The
1D charge density nm

1D�x� is obtained via

nm
1D�x� =

1

2��x
� dE�fSGm	S,mGm

† + fDGm	D,mGm
† � , �8�

where �x is the 1D lattice spacing, fS,D are the source and
drain Fermi distribution functions, respectively, and

	S,m = i��S,m − �S,m
† � , �9�

	D,m = i��D,m − �D,m
† � . �10�

The three-dimensional �3D� quantum charge density is then
calculated as

n3D�x,y,z� = �
m=1

M

nm
1D�x�	�m�y,z;x�	2, �11�

where M is the number of subbands participating in the
transport, which is used in Poisson’s equation,

�2
�x,y,z� = −
q

�
�ND − n3D�x,y,z�� , �12�

to be solved for the potential 
�x ,y ,z�, where ND is the
doping concentration. Equations are solved iteratively until
the self-consistent potential and charge distributions are ob-
tained. If the self-consistency is reached, the current is cal-
culated by using the Landauer-Büttiker formula,

Id =
2q

h
� dET�E��fS�E� − fD�E�� , �13�

where the transmission probability T�E� is given by

T�E� = �
m=1

M

Tr�	S,mGm	D,mGm
† � . �14�

III. SOLUTION OF 2D SCHRÖDINGER EQUATIONS
IN THE PRODUCT SPACE

In this work, we have developed an efficient way to
solve the 2D Schrödinger equations in the cross-sectional
planes as follows. We write �m�y ,z�
�m�y ,z ;x� of Eq. �4�
in terms of the “product-space” basis 	K�,

�m�y,z� = �
K

AK	K� , �15�

where AK’s are expansion coefficients and

	K� 
 �i�y� j�z� . �16�

In the above equation, �i�y�
�i�y ;x� is the ith mode eigen-
function in the y direction with its eigenvalue �i

�y�
�i
�y��x�,

satisfying

�−
�2

2my
*

d2

dy2 + V̄�y���i�y� = �i
�y��i�y� , �17�

where V̄�y�
 V̄�y ;x� is an average potential in the y direc-
tion, defined by

V̄�y ;x� =
1

TSi
�

Tox

Tox+TSi

dzV�x,y,z� , �18�

where TSi is the depth of the silicon channel as shown in Fig.
1. Similarly, we define  j�z�
 j�z ;x� as the jth mode eigen-
function in the z direction with its eigenvalue � j

�z�
� j
�z��x�,

satisfying

�−
�2

2mz
*

d2

dz2 + V̄�z�� j�z� = � j
�z� j�z� , �19�

where V̄�z�
 V̄�z ;x� is an average potential in the z direc-
tions, defined by

V̄�z;x� =
1

WSi
�

Wox

Wox+WSi

dyV�x,y,z� . �20�

The 1D eigenvalue problems of Eqs. �17� and �19� can
be solved easily: using the finite difference discretization
scheme and the 1D k-space transformation10 expressed by

�i�y� = �
m

am�i�	m� , �21�

 j�z� = �
n

bn�j�	n� , �22�

where 	m� and 	n� are 1D k-space bases in each direction,
respectively, and am�i� and bn�j� are coefficients, the 1D ei-
genvalue problems can be solved in less than one-tenth of a
second. If we use a uniform mesh of sizes Ny and Nz in the y
and z directions, respectively, the index i in Eq. �17� will
range from 1 to Ny, while j from 1 to Nz. K thus ranges from
1 to NyNz and we index it in the order of increasing value of
the sum �i

�y�+� j
�z�.

If we put Eq. �15� into Eq. �4� and using the relation-
ships of Eqs. �16�–�20�, Eq. �4� is written as
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�
K

��K + V�y,z� − V̄�y� − V̄�z��AK	K� = Em�
K

AK	K� ,

�23�

where

�K 
 �i
�y� + � j

�z�. �24�

Multiplying �L	 to the left of Eq. �23�, we obtain

�
K=1

NyNz

VLKAK = EmAL �L = 1, . . . ,NyNz� , �25�

where

VLK = �L�LK + �L	�V�y,z� − V̄�y� − V̄�z��	K� , �26�

which is an eigenvalue problem and can be numerically
solved using standard eigenvalue routines.

Notice that writing �m�y ,z� as in Eqs. �15� and �16� is
just another basis transformation: the size of the resultant
matrix VLK� in Eq. �26� is NyNz�NyNz, which is of course
the same size as the matrices that would have been obtained
in the real-space or in the k-space representations. If we as-
sess the performance of solvers in different representations
by the size of the resulting matrices, we have gained nothing
by the above transformation. However, in obtaining the ei-
genvalues and eigenfunctions in the nanowire cross-sectional
planes, the product-space basis transformation turns out to be
very useful, as will be discussed in the following.

First, we have found that, in solving the eigenvalue
problem of Eq. �25�, only the first M �M elements are suf-
ficient, where M, as defined earlier, is the number of the
subbands that contribute to the transport,

�
K=1

M

VLKAK = EmAL �L = 1, . . . ,M� . �27�

The eigenfunctions �m�y ,z�, m=1, . . . ,M, can be easily con-
structed from the eigenfunctions AK�. �Note that the un-
coupled mode space NEGF approach that we have adopted
in this work also requires only the first M modes in the
transport part of the solution procedure, as seen in Eqs. �11�
and �14�.� For a specific example, let us consider a nanowire
transistor of a cross-sectional area of 5�5 nm2. Due to the
strong quantum confinement in the transverse direction, sub-
bands in the channel are well separated from one another
energy wise and only the lowest ten subbands are sufficient
to be considered in the transport, i.e., M =10 in this case. If
we take a coarse mesh of size Ny =Nz=32 in a k-space solu-
tion, the problem reduces to finding ten eigenvalues �and
eigenfunctions� from a matrix of size 1024�1024. In our
product-space method, however, we need to find ten eigen-
values �and eigenfunctions� from a matrix of size 10�10, so
the computational burden of handling a large-size matrix is
greatly reduced. Notice that M increases in proportion to the
area S of the cross-sectional planes, as shown in Table I.
Even for a nanowire transistor of rather large cross-sectional
area, the resultant matrix size in our product-space solution
is only a few hundreds by a few hundreds, which can be
handled easily numerically.

Second, we have found that the matrix VLK� of Eqs. �25�
and �26� is, in an excellent approximation, a banded matrix
of band size NB as shown in Fig. 2. NB depends on the area
S as shown in Table I. For example, if S=5�5 nm2, NB=1.
But if we neglect the possible degeneracy in �K’s in Eq. �24�,
NB is 0 in this case, i.e., the matrix VLK� are practically
diagonal,

VLK = VKK�LK, �28�

and the energy eigenvalues are simply given by

EK = �K + VKK. �29�

If S is increased, the off-diagonal elements near the diagonal
elements gradually become significant: for S�10�10 nm2,
up to the second off-diagonal elements from the diagonal
elements should be also considered, and for S�15
�15 nm2, up to the fifth off-diagonal elements from the di-
agonal elements should be included, and so on, as shown in
Table I. The banded matrix nature of the matrix VLK� has the
effect of enhancing the computational efficiency of the
product-space method.

To demonstrate the accurateness of our product-space
method, we have compared a few eigenvalues from the
product-space method and from the k-space method in Table
II, for a nanowire transistor of L=TSi=WSi=10 nm, tox

=1 nm, and with the drain and gate voltages of 0.5 and
1.5 V, respectively. M and NB used in the product-space
method are 40 and 2, respectively. The relative errors be-

TABLE I. Dependence of the number M of subband modes contributing to
the transport and the band size NB of the matrix VLK� on the nanowire
cross-sectional area S.

S �nm2� M NB

5�5 10 1
10�10 40 2
20�20 160 10
30�30 360 25

FIG. 2. The banded matrix VLK�.
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tween the eigenvalues from the two solution methods are less
than 10−3. The first three wave functions from the two meth-
ods are compared in Fig. 3, where one can see excellent
agreements between the solutions from the two methods.

Let us briefly explain why the product-space method is
so successful in solving the 2D Schrödinger equations in the
cross-sectional planes of the nanowire transistors. If one ex-
amines the second term in Eq. �26�, one can see that the
modified potential,

V�y,z� − V̄�y� − V̄�z� , �30�

gives the effect of making a mound-shaped potential profile
into a much flattened one. In a transistor with a small cross-
sectional area of 5�5 nm2, for instance, the gate electric
fields make the electron densities to be focused near the cen-
ter of the cross-sectional plane, leading to a mound-shaped
potential profile V�y ,z� formed in the middle of the plane.
Therefore, the modified potential in Eq. �30� will be almost
constant in this case, making only the diagonal terms in the
matrix VLK� to be nonzero. Considering the way that K is
indexed, one may see that the eigenenergies should be given
as in Eq. �29�. As the area of the cross-sectional plane be-
comes larger, electron transport near the edges or corners of
the silicon body gradually increases. As a consequence, po-
tential profiles gradually develop near the interfaces between
the silicon and oxide, giving rise to more nonzero off-
diagonal terms in VLK�. The fact that the size of the matrix
VLK� is effectively reduced to M �M as in Eq. �27� also has
much to do with the shape of the potential on the cross-
sectional plane that has been just described. Note that the
potentials in the 1D Schrödinger equations as defined in Eqs.
�18� and �20� are the averaged ones in the silicon part of the
plane. Since the conduction band profile in the oxide region
is about 4 eV higher, in the case of silicon oxide, than that of
the silicon region, the averaged potential will be obscured by
the high conduction band profile of oxide if the oxide region
is included in the averaging, leading to requiring more ele-
ments in the matrix VLK�.

A drawback in the product-space method is that elements
VLK of Eq. �26� need to be numerically evaluated, and it turns
out that this part takes most of the computation time in the
product-space solution. Note that, in the k-space method, the
matrix elements can be computed very efficiently through
the fast Fourier transformation,10 which is not applicable in
the product-space method. Nevertheless, the overall compu-
tation time of the product-space method is more than ten
times, in a conservative estimation, faster than the k-space
method. In Ref. 4, the so-called fast uncoupled mode space
�FUMS� method has been introduced, where only one
Schrödinger equation with a potential profile averaged over
the cross-sectional planes is needed to be solved, thereby
enabling a great improvement in the computational effi-
ciency. Our product-space method is complimentary to the
FUMS method, in the sense that ours is to accelerate calcu-
lations in one cross-sectional plane. Therefore, the product-
space method can be combined with the FUMS method for
even greater computational efficiency. Note, however, that
the FUMS method can be applied to the uncoupled mode
space approach only, because the wave functions are as-
sumed to be identical on each of the cross-sectional planes in
the FUMS method, whereas our product-space method can
be applied to the coupled mode space approach as well, be-
cause the Schrödinger equations on cross-sectional planes
are independently solved in the product-space method �our
work in this paper, nonetheless, employs the uncoupled
mode space approach for the transport calculation�.

In this section, the product-space method has been de-
scribed with the assumption that the effective masses are the

TABLE II. Comparison of eigenvalues from the k-space solution and from
the product-space solution. See the legend of Fig. 3 for the device param-
eters.

No. Product space k-space Relative error

1 −0.203 02 −0.203074 0.000 25
2 −0.175 75 −0.175 77 0.000 10
3 −0.160 92 −0.160 95 0.000 17
4 −0.151 28 −0.151 35 0.000 41
5 −0.137 63 −0.137 67 0.000 33
6 −0.123 61 −0.123 63 0.000 19
7 −0.108 76 −0.108 80 0.000 32
8 −0.106 53 −0.106 59 0.000 57
9 −0.085 49 −0.085 55 0.000 62

10 −0.067 95 −0.068 04 0.001 30
] ] ] ]

31 0.158 99 0.158 78 0.001 37
32 0.170 91 0.170 72 0.001 09
33 0.194 67 0.194 53 0.000 74
34 0.211 16 0.210 92 0.001 14
35 0.216 18 0.216 06 0.000 56
36 0.231 29 0.231 07 0.000 99
37 0.233 70 0.233 44 0.001 13
38 0.240 60 0.240 42 0.000 75
39 0.244 72 0.244 66 0.000 27
40 0.259 56 0.259 48 0.000 33

FIG. 3. The lowest three wave functions from the k-space solution �lines�
and from the product-space solution �symbols�, for the nanowire transistor
of L=TSi=WSi=10 nm and tox=1 nm. The applied voltages are 0.5 and
1.5 V for drain and gate voltages, respectively, and the top-gate configura-
tion is assumed. The wave functions were obtained on the cross-sectional
plane located at the center of the channel, and their values in the z direction
along the middle line �y=6 nm� are shown.
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same both in the silicon and oxide regions. It can be ex-
tended to include the mass discontinuity across the silicon-
oxide interface with some reasonable approximations. We
have found, however, that the effect of the mass discontinu-
ity in the SNWFET simulations is almost negligible, as long
as the final outcome of the simulation, the current-voltage
characteristic, is concerned.

IV. SCALING BEHAVIOR

We now present results for the scaling behaviors of the
SNWFETs with rectangular cross section, using the numeri-
cal schemes described in the previous sections. In the simu-
lated devices, the source/drain are heavily n-doped with a
doping concentration of 1020 cm−3, the channel is intrinsic,
and an abrupt doping profile is used. The silicon �100� ori-
entation is parallel to the transport �x� direction. The gate
oxide thickness is 1 nm, and metallic gates with the midgap
work function are assumed.

In a scaling of ballistic SNWFETs, the general trend is
that the device performance improves as the channel length L
becomes longer �for the same cross-sectional area� or as the
channel cross-sectional area W
WSi is decreased �for the
same channel length�, which we have confirmed in our simu-
lations. In this work, we vary L and W simultaneously while
the aspect ratio L /W is fixed. We have found as follows that
the SNWFETs can be characterized by their aspect ratio.

Figure 4 shows the scaling behavior of the gate-all-
around �GAA� transistors with square cross sections. Three
aspect ratios of L /W=1, 1.5, and 2 were considered, and
each of the aspect ratio simulations were done for three val-
ues of W=5, 8, and 10 nm. We first observe in the figure that
the I-Vg characteristics of transistors of the same aspect ratio
are more or less the same, and they are clearly distinguished
from those of transistors of different aspect ratios. In particu-
lar, for L /W=2, subthreshold swing �SS� and Ion/ Ioff remain
almost the same regardless of the scaling. We next observe

that the device performance strongly depends on the aspect
ratio. Compared to the case of L /W=1, the device perfor-
mance of transistors of L /W=2 is greatly improved. Notice
that the SS approaches the theoretical limit of 60 mV/decade
for L /W=2. The same trend is observed for the trigate tran-
sistors, as shown in Fig. 5: the current-voltage curves are
clearly characterized by L /W and the device performance
improves as L /W gets bigger.

Figure 6 shows the dependence of the SS values on the
aspect ratio of the GAA transistors and trigate transistors
considered in this work, respectively. For the same aspect
ratio, the SS values of the trigate transistors are higher than
those of the GAA transistors, which is logical since the GAA
transistors have better gate control. It is noteworthy that the
SS values increase rapidly with W /L and the rate of increase
is higher for the trigate transistors. The inset of Fig. 6 shows
that the SS values of transistors of the same aspect ratio are
more or less the same with respect to the scaling, which is

FIG. 4. Id-Vg characteristics of GAA nanowire transistors �left: log scale,
right: linear scale�. The dotted lines represent L /W=1, where W=5 �solid
squares�, 8 �open squares�, 10 �solid circles�, and 15 nm �open circles�, and
thin sold lines L /W=1.5, where W=5 �solid triangles�, 8 �open triangles�,
and 10 nm �crosses�. For L /W=2, data are shown for W=5 �solid line with
no symbols�, 8 �dashed line with no symbols�, and 10 nm �solid circles with
no connecting line�.

FIG. 5. Id-Vg characteristics of trigate nanowire transistors �left: log scale,
right: linear scale�. See the caption of Fig. 4 for the legend.

FIG. 6. SS values vs W /L for the GAA �solid circles� and trigate �crosses�
transistors. The dashed lines are curves by the second order polynomial
fitting. In the inset SS values vs W are shown, for the GAA transistor with
L /W=2 �solid circles�, the trigate transistor with L /W=2 �open circles�, the
GAA transistor with L /W=1.5 �solid triangles�, and the trigate transistor
with L /W=1.5 �open triangles�.
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particularly true for transistors with higher aspect ratio. Simi-
lar behaviors are observed in Fig. 7, where the dependence of
the drain induced barrier lowering �DIBL� on the aspect ratio
of the GAA transistors and trigate transistors, respectively, is
shown.

Figure 6 suggests that L /W should be greater than about
1.2 and 1.5 for GAA and trigate transistors, respectively, so
that the SS values are 100 mV/decade or below. On the other
hand, L /W should be greater than about 1.5 and 2.0 for GAA
and trigate transistors, respectively, so that the DIBL values
are 100 mV/V or below. We remark that we have tried other
gate types such as pi and omega gates and found that they
show the same trend as mentioned above: their SS and DIBL
values, in particular, fall between the two lines of Figs. 6 and
7, respectively.

V. CONCLUSIONS

Silicon nanowire field effect transistors in the ballistic
transport regime have been simulated based on the effective

mass theory and using the self-consistent Poisson-NEGF cal-
culations. To solve the two-dimensional Schrödinger equa-
tions in the nanowire cross-sectional planes as part of the
numerical procedure, the product-space method, where the
product of two one-dimensional wave functions forms a ba-
sis set, has been developed and its performance has been
compared to the k-space method. Due to the reduced size of
the eigenvalue problem and the banded matrix nature of the
resultant matrix, the product-space method shows a great ad-
vantage in numerical calculations. Using the numerical
schemes developed in this work, the scaling behavior of the
silicon nanowire field effect transistors has been investigated,
and it has been found that their device characteristics sensi-
tively depend on the aspect ratio of the channel length and
the channel width.

ACKNOWLEDGMENT

This research was supported by the Ministry of Informa-
tion and Communication, Korea, under the Information
Technology Research Center �ITRC� support program super-
vised by the Institute of Information Technology Assessment
�IITA�.

1J. T. Park and J. P. Colinge, IEEE Trans. Electron Devices 49, 2222
�2002�.

2Y. Cui, Z. Zhong, D. Wang, W. Wang, and M. Lieber, Nano Lett. 3, 149
�2003�.

3H.-S. Philip Wong, Solid-State Electron. 49, 755 �2005�.
4J. Wang, E. Polizzi, and M. Lundstrom, J. Appl. Phys. 96, 2192 �2004�.
5M. Bescond, K. Nehari, J. L. Autran, N. Cavassilas, D. Munteanu, and M.
Lannoo, Tech. Dig. - Int. Electron Devices Meet. 2004, 617.

6J. Wang, E. Polizzi, A. Ghosh, S. Datta, and M. Lundstrom, Appl. Phys.
Lett. 87, 043101 �2005�.

7J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, IEEE
Trans. Electron Devices 52, 1589 �2005�.

8K. Nehari, N. Cavassilas, J. L. Autran, M. Bescond, D. Munteanu, and M.
Lannoo, Proceedings of the 35th European Solid-State Device Research
Conference, 2005 �ESSDERC, 2005�, 12–16 Sept. 2005, pp. 229–232.

9S. Datta, Superlattices Microstruct. 28, 253 �2000�.
10A. Abramo, A. Cardin, L. Selmi, and E. Sangiorgi, IEEE Trans. Electron

Devices 47, 1858 �2000�.

FIG. 7. DIBL vs W /L for the GAA �solid circles� and trigate �crosses�
transistors. The dashed lines are curves by the second order polynomial
fitting.

024510-6 Mincheol Shin J. Appl. Phys. 101, 024510 �2007�

Downloaded 21 Apr 2013 to 143.248.118.125. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions


