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Abstract — A novel scheme called the selective mapping of 
partial tones (SMOPT) is addressed for the reduction of the 
peak-to-average power ratio (PAPR) in orthogonal frequency 
division multiplexing (OFDM) systems. The SMOPT first 
produces a set of modified OFDM symbols with reduced 
PAPRs by adding a set of mapping symbols designed on peak 
reduction tones (PRT) to the original OFDM symbol. The 
SMOPT then selects the symbol with the lowest PAPR for 
transmission among the modified OFDM symbols. When 
simulated under the IEEE 802.11a wireless local area 
network and ETSI EN 300 401 digital audio broadcasting 
physical layer models, the SMOPT is observed to have lower 
sensitivity to PRT positions, lower complexity, and more 
design flexibility than the tone reservation scheme1.  
 

Index Terms — OFDM, peak-to-average power ratio, tone 

reservation scheme, selective mapping of partial tones. 

I. INTRODUCTION 

Known to be robust against multipath fading, the orthogonal 
frequency division multiplexing (OFDM) system can transmit 
high speed data using a number of orthogonal sub-carriers. 
The OFDM system, however, exhibits a relatively large peak-
to-average power ratio (PAPR) when the sub-carriers are 
added with the same phase, which would reduce the efficiency 
of the analog-to-digital and digital-to-analog converters and 
radio frequency power amplifier [1], [2].  

Various techniques have been proposed for reducing the 
PAPR [3]-[7]. The techniques can generally be divided into 
two classes, one using all the sub-carriers and the other using a 
subset of the sub-carriers called the peak reduction tones 
(PRT). In this paper, we are concerned with the latter.  

Among the schemes using the PRT, the most widely used is 
the tone reservation (TR) scheme [8], [9]. The TR scheme 
shows very good PAPR reduction performance when operating 
with optimized PRT positions. However, it is not easy to find 
the optimal PRT positions, and the performance of the TR 
scheme degrades with non-optimal PRT positions. In addition, 
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although the TR scheme can be implemented with the iterative 
gradient algorithm (IGA), it could take a long time to yield a 
converged result. In this paper, to overcome these drawbacks 
of the TR scheme, we propose a novel PAPR reduction 
scheme called the selective mapping of partial tones 
(SMOPT).  

The remainder of this paper is organized as follows. In 
Section II, the PAPR is formulated and the complementary 
cumulative distribution function (CCDF) of the PAPR is 
derived. The CCDF is the most general performance measure 
for PAPR reduction. The TR scheme and its weaknesses are 
also described in this section. Section III proposes the SMOPT 
and depicts its structure and characteristics. In Section IV, the 
performance of the TR scheme and SMOPT is simulated and 
compared in terms of the sensitivity to PRT positions and 
multiplication complexity. Finally, Section V concludes this 
paper. 

II. THE CONVENTIONAL SCHEME 

A. The Complementary Cumulative Distribution Function 
(CCDF) of PAPR 

This subsection formulates the PAPR of an OFDM symbol 
and derives the CCDF of the PAPR, which gives the 
probability that the PAPR exceeds a given threshold. Let us 
consider an OFDM system implemented by the inverse fast 
Fourier transform (IFFT) and fast Fourier transform (FFT), 
each of size N  for modulation and demodulation. The OFDM 
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D  is the quadrature phase shift 

keying (QPSK) or quadrature amplitude modulation (QAM) 
data symbol transmitted through the k th sub-carrier and 
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Fig. 1. The OFDM transmitter with the TR scheme. 
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The PAPR of an OFDM symbol is defined as the ratio of 
the maximum to the average power of the OFDM symbol and 
can be expressed as the ratio [1] 
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where ( )PAPR  represents the PAPR calculation, 

0 1 1
( , , , )T

N
d d d −=d with ( )T⋅  denoting the transpose 

operation, and [ ]E ⋅  denotes the expectation.  

Let us assume that {1, 1, , }
k

D j j∈ − −  (i.e., 
k

D  is assumed to 

be a QPSK data symbol). From the central limit theorem, the 
real and imaginary values of dn  become Gaussian distributed 

for 1,N >>  each with mean zero and variance 1 / 2.  Thus, the 

amplitude of dn  has a Rayleigh distribution, while the power 

distribution becomes a central chi-square distribution with two 
degrees of freedom: the cumulative distribution function 
(CDF) ( )F x  of power is given by 
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Finally, assuming that 1
0{ }

N
n nd

−
=  are mutually uncorrelated, we 

can obtain the CCDF of the PAPR as     
0
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where 0PAPR is a given threshold.  

B. Tone Reservation (TR) Scheme 

The structure of the TR scheme is shown in Fig. 1. The 
structure is composed of three parts: PRT reservation, IFFT, 
and IGA [8]. First, in the PRT reservation part, L  sub-carriers 
out of N  sub-carriers are reserved for PAPR reduction. 
Subsequently, the data and null symbols are modulated by the 
IFFT on N L−  and L  sub-carriers, respectively. Finally, the 

signal TRx with the PAPR reduced through the IGA, is 

transmitted.  
Details of  the operation of the IGA are as follows. First, the 

index of the OFDM sample with the maximum absolute 

amplitude (i.e.,
0 1

arg max n
n N

d
≤ ≤ −

) is detected, and then a pre-

determined peak reduction kernel (PRK), denoted by ,p is 

circularly shifted by the detected index. The PRK is an 
impulse-like time domain signal and can be obtained by setting 
all the PRTs to a constant. The circularly shifted PRK is scaled 
by a given step size and by the difference between the 
maximum absolute amplitude of the OFDM sample and a 
desired threshold. The PRK is then phase-rotated in such a 
way that the phase of the PRK is the opposite to that of the 
OFDM sample with the maximum absolute amplitude. Finally, 

the modified PRK c  is added to the OFDM symbol d and the 
PAPR of the modified OFDM symbol +d c  is calculated. If 

the PAPR is smaller than the desired threshold, 
TR

x is 

transmitted; otherwise the above procedure is repeated. 
The IGA requires long iteration times, generally 30-40 

iterations, in yielding a converged result, and thus, the TR 
scheme employing the IGA may not be suitable for real time 
implementations. Moreover, the TR scheme is sensitive to the 
PRT positions, because how the PRK is impulse-like strongly 
depends on the PRT positions.  

III. SELECTIVE MAPPING OF PARTIAL TONES (SMOPT) 

SCHEME 

In this section, a novel PAPR reduction scheme called the 
SMOPT is proposed to overcome the drawbacks of the TR 
scheme. The structure of the SMOPT is shown in Fig. 2. The 
operation through the IFFT is same as that of the TR scheme. 
Therefore, we focus on the SMOPT part. The SMOPT part is 
composed of three sub-parts: a look-up table that stores V  
mapping symbols each of size 1N × for peak reduction, 
complex adders, and a selector that selects the one with the 
lowest PAPR among V modified OFDM symbols. The 

transmit signal 
SMOPT

x  can be expressed as 
( ) ,SMOPT
κ=x x  (5)     
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Fig. 2. The OFDM transmitter with the SMOPT scheme. 
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Since the SMOPT always selects the symbol with the lowest 
PAPR among a set of sufficiently different candidates, the 
performance of the SMOPT is robust to the PRT positions, 
whereas the PRT positions for the TR scheme have to be 
optimized for high PAPR reduction performance. 
Consequently, the SMOPT exhibits lower sensitivity to PRT 
positions than the TR scheme. 

In addition, once the PRT positions and the number of 
mapping symbols are specified, the mapping symbols can be 
stored in a look-up table in advance, resulting in a complexity 
decrease in the implementation of the SMOPT. The SMOPT 
also offers more design flexibility when compared with the TR 
scheme using the IGA since the mapping and PAPR 
calculation processes in the SMOPT can be implemented both 
in serial and parallel.  

IV. SIMULATION RESULTS AND DISCUSSION 

In this section, the performance of the TR scheme and 
SMOPT is simulated and compared in terms of the  
performance sensitivity to PRT positions and multiplication 
complexity.  

The IEEE 802.11a wireless local area network (WLAN) 
[10] and ETSI EN 300 401 digital audio broadcasting (DAB) 
[11] physical layer models are used for the simulations. The 
CCDF of the PAPR is used as the performance measure, and 
data symbols are assumed to be QPSK modulated.  

A. Sensitivity to PRT Positions 

We consider two sets of PRT positions used widely: the 
continuous sub-carrier and randomly optimized sets. In the 
former, the PRT is placed continuously, and in the latter a set 

of PRT positions are obtained by first generating 510 random 
sets and then selecting the best [9].  

Fig. 3 shows the PAPR reduction performance of the 
SMOPT and TR scheme for the two sets of PRT positions, 
where I denotes the iteration number used in the IGA for the 
TR scheme. It is clearly observed that the PAPR reduction 
performance of the TR scheme is highly sensitive to the 
variation of the PRT positions. On the other hand, the 
performance of the SMOPT is quite robust to such a variation.  

B. Multiplication Complexity  

Since the operation through the IFFT is the same in the 
SMOPT and TR schemes, we focus on the multiplication 
complexity after the IFFT. Specifically, the multiplication 
complexities of the SMOPT and TR schemes are  

SMOPT
N Vγ = + , (7) 

and 
(7 1)

TR
I Nγ = + ,  (8) 

respectively. 
Fig. 4 shows the PAPR reduction performance of the 

SMOPT and TR scheme when the two schemes have similar 
multiplication complexity. In Fig. 4, 'Case 1' and 'Case 2' 
represent that the simulation is based on the IEEE 802.11a 

WLAN and ETSI EN 300 401 DAB physical layer models, 
respectively. The continuous sub-carrier and randomly 
optimized sets are used for the PRT positions of the SMOPT 
and TR scheme, respectively. 

From Fig. 4, we can clearly see that, in both models, the 
SMOPT has better PAPR reduction performance than the TR 
scheme when the two schemes have similar multiplication 
complexity. Another important observation is that, even if the 
SMOPT uses the non-optimized PRT set (the continuous sub-
carrier set), it outperforms the TR scheme with the optimized 
PRT set. 

V.  CONCLUSION 

In this paper, we have proposed a PAPR reduction scheme. 
The SMOPT has the following advantages over the 
conventional TR scheme. First, the SMOPT is robust to the 
variation of the PRT positions. Secondly, once the PRT 
positions and the number of mapping symbols are given as 
system design specifications, the mapping symbols can be 
stored in a look-up table in advance, resulting in a complexity 

Fig. 3. The PAPR reduction performance of the SMOPT and TR scheme 

for continuous sub-carrier and randomly optimized sets of PRT positions 

(N=64, L=11, V=64, and I=40). 

Fig. 4. PAPR reduction performances of the SMOPT and TR schemes 

with similar multiplication complexity (Case1: N=64, L=11, V=4096, and 

I=10, Case2: N=2048, L=64, V=217, and I=10). 
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decrease in the implementation of the SMOPT. Lastly, since 
the mapping and PAPR calculation processes can be 
implemented in serial or parallel, the SMOPT offers more 
design flexibility than the TR scheme employing the IGA.  
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