HYE SN ¢T2)

oj

£ 0| &8t F575t= ChlA AlAE el 75}

Evolving Soccer-Playing Multi-Agents Using a Modified

Genetic Algorithm

II-Kwon Jeong* and Ju-Jang Lee
Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1 Kusong-dong Yusong-gu Taejon 305-701 Korea
Fax : 82-42-869-3410 E-mail : jik@odyssey.kaist.ac.kr

Abstract

It is difficult to design controllers for multi-agent
systems without a comprehensive knowledge about the
system. One of the ways to overcome this limitation is
_to implement an evolutionary approach to design the
controllers. This paper introduces the use of genetic
algorithms to discover rules that govern emergent co-
operative behavior. A modified genetic algorithm was
applied to automating the discovery of rules for multi-
agents playing a simplified soccer game. A model con-
sisting of movable agents in a cellular space is in-
troduced. Simulation results indicate that, given the
complexity of the problem, an evolutionary approach
to find the appropriate rules seems to be promising.
The implications of the results are discussed.

1 INTRODUCTION

Studying computational models of co-operative
structures accomplishing a given task is an interest-
ing area in the field of artificial life. However, gener-
ally it is difficult to design such models by analysis.
As the problem size grows, it becomes more difficult.
In the field of self-learning reactive systems it is not
even desirable to have a clear idea of a computational
model. Autonomous agents being adaptable implies
an minimally pre-programmed systems. The aim of
this paper is making agents learn to accomplish tasks
by interacting with the environment and adapt future
behavior on the basis of feedback from the present (or
past) action[1].

Patel and Maniezzo solved a soccer-playing agent
problem using neural networks to control agents, and
genetic algorithms (GAs) to train the neural net-
works(1]. However, the result was not good enough to
validate their approach to the problem, and only one
team with two players was simulated. Recently. it has
been shown that GAs are not suitable for training neu-
ral networks, and most GA-based learning algorithms
for neural networks use GAs and another calculus-
based algorithm (e.g. GA + BackPropagation){2][3]

or modified GA specially designed for neural network
training|4].

Genetic algorithms are search methods based on
natural selection and genetics. GAs are used in var-
ious problems including control problems. In control
area, the GA has been used in identification, adapta-
tion and neural network control[4][5][6](7]. The GA is
different from conventional optimization methods in
several ways. The GA is a parallel and global search
technique that searches multiple points so it is more
likely to obtain the global solution. It makes no as-
sumption about the search space, so it is simple and
can be applied to various problems[8]. It has been em-
pirically proved that GAs are especially suitable for
solving combinatorial optimization problems.

Lohn and Reggia used GAs to discover automata
rules that govern self-replicating processes{9]. They
developed a modified cellular automata (CA) model,
named effector automata (EA). In the EA model, a
cellular space is defined where individuals receive in-
put from their local neighborhood, and using a pre-
defined rule, produce an output. In EA models, each
cell is a location in space, and automata are entities
that can occupy cells.

In this paper, we use a modified genetic algorithm
(MGA) to discover rules that govern emergent co-
operative behavior. The genetic algorithm is applied
to automating the discovery of rules for multi-agents
playing soccer game. A model consisting of movable
agents in a cellular space is introduced. The paper is
organized as follows. In section 2, a simplified soccer
model is described. In section 3, rule discovery pro-
cess using MGA is described. Simulation results are
provided in section 4.

2 SIMPLIFIED SOCCER MODEL

A simplified soccer (SS) model is similar to the ef-
fector automata (EA) model[9]. In both EA and SS
models, a cellular space is defined where individual
processing units (automata or agents), operating in

- 309 —

Table 1. Actions used for the SS model.

| action { description
MOVE [DIR] move one cell in the specified direction.
DRIBBLE [DIR] | move one cell with the ball in the specified direction only when currently possessing the ball.
KICK [DIR] kick the ball two cells in the specified direction only when currently possessing the ball.

parallel, receive input from their local neighborhood,
and produce an output using a pre-defined rule. Each
cell is a location in space, and agents (automata) are
entities that can occupy cells. In the SS model, the
output is an action to effect, such as moving to a neigh-
boring cell.

Time is discretized in the SS model, and space is an
isotropic two-dimensional rectilinear grid composed of
w (width) x [(length) cells. A cell may be empty
or occupied by agents or ball, whereas a cell in a EA
model can be occupied by only one automaton. Each
agent is represented by a symbol T;, ¢ = 1,2,---,n,
indicating the ith agent of agent-type T € {A, B},
where 7 is the number of agents (players) of an agent-
type (team). Agents with the same agent-type use
identical rules.

Goal
post

B,

B2

®
Az

A

Goal
post

Figure 1. A playground of the SS model. e represents the ball.

Fig. 1 shows a playground of the SS model with 4
agents, A, A, By, and B, and a ball. It is assumed
that each agent can move, or detect other objects (
agents, goal posts and a ball) in one of the following
directions: top, left, right, and bottom. The orienta-
tion of an agent is fixed during all the game. Fig. 2
shows a view window of an agent. An agent can detect
objects in view window except for the ball, which is
detected regardless of the ball position. An agent can
detect other agents in a neighboring cell, and agents of
the same agent-type also can be detected in a cell next
to the neighboring one. The ball is detected according
to the sector it belongs to (see Fig. 2).

The behavior of each agent is governed by a rule
table. An entry of a rule table is a condition-action
rule of the form:

C+ L+ IR(-+)T(--)B(-) — action (1)

where CLRTB stands for center, left, right, top, and
bottom. For example the rule,

C(A)L(A)R(s)T(ball)B(4, B) — MOVE RIGHT

means that if agents of agent-type A exist at the left
and the bottom of A, agent B is at the bottom of A,
the ball is at the top of A, and no others (e means
empty), then the agent A at the center moves to its
right at the next time step. The actions possible for
the SS model are listed in Table 1. There are three ac-
tions; MOVE, DRIBBLE, and KICK. DRIBBLE and
KICK are possible only when the agent going to do
the actions has the ball. Values for the direction pa-
rameter (shown as [DIR] in Table 1.) are either left,
right, top, or bottom. MOVE and DRIBBLE actions
move an agent (and the ball in the case of DRIBBLE)
to a neighboring cell, and KICK moves only the ball
by two cells.

III

IT [I I

III

Figure 2. A view window of an agent. The center of the view
window corresponds to the center of the agent. The agent can
detect an agent of the same agent-type in the region I, II, and III,
and can detect an agent of different agent-type in the region I. Goal
posts in the region III can be detected. The ball is always detected;
the position of the ball is either center, upper, lower, left, or right,
according to the sector it belongs to.

We need a simulator for the SS model. The simu-
lator simulates the movements of agents and the ball
according to the rule table for a given time steps, and
scores a game. The simulation stops when a team
scores a goal or the given time steps is over. When an
action by an agent is outside the ground the simulator
disables the action. Because actions modify neigh-
boring cells, a collision policy should be specified to
address the possibility of two or more agents attempt-
ing to occupy the same cell. Two example policies are
mutual annihilation which results in all agents being
disabled to move, and the random winner policy which
randomly selects one agent to occupy the cell in ques-
tion[9]. In contrast to those policies, our SS model

—-310—

allows two or more agents into the same cell. The ball
in a cell is regarded as belongings of the agent chosen
probabilistically in the following manner. If there are
n agents and the ball in a cell, then one of the agents
obtain the ball with the probability %

3 RULE DISCOVERY USING A
MODIFIED GA

3.1 Problem Description

Our objective is to investigate how relatively simple
agents can adaptively learn to solve a complex prob-
lem. Each agent should learn simple behaviors which
are collectively sufficient to solve the problem. Agents
have to decompose the problem effectively but this de-
composition should be an emergent property of adap-
tive learning and not pre-programmed. It is an impor-
tant motivation of this work that a problem should be
solved with the minimal possible direction from the
programmer or the trainer. We apply a modified ge-
netic algorithm to finding a rule table for agents.

The experimental problem is a simplified soccer
game. The players (agents controlled by rule tables)
have to learn to play the game. Two players with
the same agent-type make up a team in our simula-
tion. It is assumed that the behavior of the players of
one agent-type is pre-defined, because it is difficult to
design an appropriate fitness function capable of eval-
uating the behavior of two teams simultaneously. The
task of a team is to score a goal in a limited period
while at the same time not to lose control of the ball
to the opposing team. Success of a team depends on
players learning to co-operate in order to score a goal.

Each player behaves independently of the other,
and only knows about the existence of other players
in the view window and the ball as described in the
previous section. So there is no direct communication
between players, and their knowledge of the aims of
other players is also indirect. Hence each player in-
teracts with a highly dynamic environment. Learning
(modifying the rule table) takes place through feed-
back gained from actions in the environment.

In this paper, the simplified soccer model consists
of 5 x 6 cells, that is, w = 5 and [= 6. The goal posts
are located at the center of the top and the bottom
of the ground, and each players and the ball are lo-
cated as shown in Fig. 1 at the beginning of a soccer
game. There are two agent-types; A and B. The be-
havior of the agent-type B is predefined and that of
the agent-type A is to be learned. We have simulated
the following three situations.

Case 1: agent B; and B, is fixed during the game,
that is, they just act like obstacles.

Case 2. B, in front of the goal post is fixed. It may
be thought as a goalkeeper. B; moves to capture the
ball. So, it interferes in other player’s DRIBBLE and
KICK actions.

Case 3. The ball is initially at the left end of the
ground. Other conditions are the same as in the case

2.

3.2 Methodology

We used a modified genetic algorithm (MGA)[4].
For a description of the algorithm readers are referred
to the reference. The MGA is described briefly here
for convenience. The MGA consists of a fitness mod-
ification and a modified mutation probability. The
fitness value for a certain string is determined by the
following rule.

k x fitnessayg,
if fitness > k X fitnessayy (2)
fitness, other case

fitness' =

where fitness is the original fitness value and fitness’
is the modified value. fitness,,, is the average of fit-
ness values and k is a constant greater than 1. The
modified mutation probability, p,, is given as

Pmo, if the fittest is the same
for N,.set generations

Pmow, I Pm(igen) X k1 < Pm_tow
Dm(igen) X k1,0ther case
3

where g, is the generation number. pmo, Pm_ow, and
k1 is a positive constant less than 1. Ny, is a positive
integer constant.

Pm(igen + 1) =

Some aspects to be considered to use the modified
genetic algorithm are as follows:

e Chromosome representation and Population size:
A rule table of condition-action rules is indexed implic-
itly by the neighborhood pattern in the view window.
In the view window, there are 11=4Cy + 4C) + 4C»,
5=4Cp+4C1, 2, and 2 possible configurations of agents
of agent-type B, an agent A, the goal post of B, and
the goal post of A, respectively. There are 5 (4 sectors
and the center) configurations of the ball. The action
part of a rule requires three bits; two bits for direc-
tion and one bit for an action type; MOVE or KICK.
When an agent has the ball, MOVE is automatically
recognized as DRIBBLE. Thus, a rule table encoded
in binary string requires 3300 =11 x5 x2x2x5x3
bits. A population consists of 50 chromosomes in our
simulation.

o Fitness: The fitness function is defines as

F =Y F) @)
=]
F,(i) = Fy+ z (fgont—A(t) + fPOaaeaa-—A(t)
t=0
+fgoal»~3(t) + fpoaacsa—B(t)) (5)

where ¢ represents the ith simulated game, n;., is
a given iteration number of simulations, ¢sina is the
time when a simulation stops. When no goal occurs
Lfinai is set to 30. In our simulation, mj, = 5 and
Fo = 400. If the team A scores a goal at time ¢, then

—-311—

fooar-a(t) = 1000. fooa-B(t) = —90, if the team B
scores a goal at time ¢. In other cases, fyoa—a(t) =
fooa-p(t) = 0. If the team A possesses the ball at
time ¢, then fpos.sea.s-—A(t) = 10. fpoasess—B(t) = -10,
if the team B possesses the ball at time ¢. In other
cases, fpossess-A(t) = fpossess—B(t) =0.

e Reproduction: A chromosome is reproduced us-
ing the standard roulette wheel selection method. We
used the elitist strategy, that is, the best chromosome
is always reproduced without any alterations.

o Crossover: we used one point crossover. From ex-
perimentation, we found that a crossover probability
of 0.8 yielded best results.

e Mutation: we used the modified mutation proba-
bility. The MGA parameters are as following: ppo =
0.5, Pm_iow = 0.03, Nyeser = 5, k = 2.5, and k; = 0.9.

4 SIMULATION RESULTS AND
DISCUSSION

Fig. 3, Fig. 4, and Fig. 5 show the results for the
case 1, case 2, and case 3 respectively. Each graph
illustrates the maximum fitness value at each gener-
ation of the team A. Though we have used the eli-
tist strategy the maximum fitness value is fluctuating.
This is due to our probabilistic ball possessing policy.
So, in absolute terms the fitness values indicate little
of importance. The trend is far more revealing. In the
case of the present experimental task the increase over
generations indicates that the team is learning more
and more appropriate behavior. The players have dis-
played co-operative behavior such as passing (using
KICK action) the ball to their team-mates in order to
make it easier to score a goal.

In the case 1, the MGA found a solution (rule-table
capable of making a players in the team A score a goal)
after about 30 generations. In the case 2, the MGA
found a solution after 10 generation, though a player in
the team B interferes with the players of the team A.
However, due to the interference the maximum fitness
value is more oscillatory than that of the case 1. The
case 3 is the most difficult problem to solve; the MGA
found a solution after about 120 generations. The
players moved to the ball first and scored a goal using
dribbles and passes. Usually, scoring a goal occurs
after 20 time steps in the case 3, while it occurs after
about 10 generations in the case 1 and case 2. Due
to the increased interacting period with other players
the maximum fitness curve in the case 3 is the most
oscillatory among the three cases.

5 CONCLUSION

We have implemented an evolutionary approach us-
ing a genetic algorithm to design controllers for multi-
agent system playing soccer game. For that purpose, a
simplified soccer model consisting of movable objects
in a cellular space was introduced. A modified genetic
algorithm was applied to automating the discovery
of rules for multi-agents playing soccer. Though we

did not use comprehensive knowledge about the sys-
tem the genetic algorithm successfully discovered rules
that govern emergent co-operative behavior. Simula-
tion results indicate that, an evolutionary approach to
find the appropriate rules for emergent co-operative
behavior seems to be promising.

Applying the proposed approach to a real multi-agent
system consisting of wheeled mobile robots remains
for further study.

Case 1

1408 |

1388

1299

1108 |

1808 -

Fitness

9880 |-

28 48 68 ;2] 1088

Generations

Figure 3. The result of the case 1.

Case 2
1600)

1408 |-

1208 |

1800 |

Fitness

S8 180 1se 208 258 L]

Gencrations

Figure 4. The result of the case 2.

Caze 3
1688

1400 |

1288

1000 -

Fitness

Generations

Figure 5. The result of the case 3.

—-312-

References

[1] M. J. Patel and V. Maniezzo, “NN’s and GA’s:
Evolving co-operative behavior in adaptive learn-
ing agents,” IEEE International Conference on
Evolutionary Computation, pp. 290-295, 1994.

[2] I. K. Jeong and J. J. Lee, “Adaptive simulated
annealing genetic algorithm for control applica-
tions,” Int. J. Sys. Sci., vol. 27, no. 2, pp. 241-
253, 1996.

[3] M. McInerney and A. P. Dhawan, “Use of ge-
netic algorithms with backpropagation in train-
ing of feed-forward neural networks,” IEEE In-
ternational Conference on Neural Networks, pp.
203-208, 1993.

{4] I. K. Jeong and J. J. Lee, “A modified genetic
algorithm for neurocontrollers,” IFEE Interna-
tional Conference on Fvolutionary Computation,
pp. 306-311, 1995.

[5] K. Kristinsson and G. A. Dumont, “System iden-
tification and control using genetic algorithms,”
IEEFE Trans. Syst., Man, Cybern., vol. 22, no. 5,
pp. 1033-1046, Sep., 1992.

[6] C. L. Karr and E. J. Gentry, “Fuzzy control of
pH using genetic algorithms,” IEEE Trans. Fuzzy
Syst., vol. 1, no. 1, pp. 46-53, Feb., 1993.

[71 Y. Ichikawa and T. Sawa, “Neural network ap-
plication for direct feedback controllers,” IEEE
Trans. Neural Networks, vol. 3, no. 2, pp. 224-
231, Mar., 1992.

[8] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
MA, Addison-Wesley, 1939.

[9] J. D. Lohn and J. A. Reggia, “Discovery of self-
replicating structures using a genetic algorithm,”
IEEE International Conference on Evolutionary
Computation, pp. 678-683, 1995.

{10] L. Davis, Handbook of Genetic Algorithms. New
York, Van Nostrand Reinhold, 1991.

-313-

