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A Generalized Self Organizing Evolutionary
Algorithm and Its Efficient Application to Control Problems
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I . introduction

There are two widely used evolutionary algorithms. One
is the genetic algorithm and the other is the evolutionary
strategy. Genetic algorithms (GAs) are robust search and
optimization techniques which are based on the natural
selection and genetics. GAs are applied to a number of
practical problems nowadays. GAs are different from
conventional optimization methods in several ways. The GA
is a parallel and global search method which searches
multiple points, so it is more likely to get the global
optimum. It makes no assumption on the search space, so
it can be easily applied to various problems. In control area,
it has been applied to identification [1], adaptation, and
neural network controller [2][3]. However, GAs are
inherently slow and not good at fine tuning of the solutions.

The GA may be thought as an evolutionary process
where a population of solutions evolves over a sequence of
generations, During each generation, the fitness (goodness)
of each solution is calculated, and solutions are selected for
reproduction based on their fitness values. The probability
of survival of a solution is proportional to its fitness value.
This process is based on the principle of 'Survival of the
fittest’. The reproduced solutions then undergo recom-
bination which consists of crossover and mutation. Genetic
representation may differ from the real form of the
parameters of the solutions. Fixed-length and binary
encoded strings have been widely used for representing
solutions since they provide the maximum number of
schemata and as they are simple to implement [4].

The evolutionary strategy (ES) is another simulated
evolution technique [5]1[6]. Both in the GA and the ES, a
population of individual is arbitrarily initialized and evolves
towards the better regions of the search space by means of
a stochastic process of selection, mutation, and recom-
bination if appropriate. These methods differ in the specific
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representation, mutation operations, and selection proce-
dures. While the GA emphasizes chromosomal operators
based on the observed genetic mechanisms {(e.g., crossover
and bit mutation), the ES emphasizes the adaptation and
diversity of behavior from parent to offspring over
successive generations.

In this paper, we propose a generalized self organizing
evolutionary algorithm (GSOEA) for multimodal function
optimization which is designed to merge the ES into the GA
and to set its control parameters such as population size,
crossover probability, and mutation probability adaptively
during the execution of it. The choice of the crossover
probability, p. and the mutation probability, ., is known to

critically affect the behavior and performance of an
evolutionary algorithm, Though a number of generalized
guidelines exist in the literature for choosing p. and p,,
these guidelines are inadequate as the choice of the optimal
p. and p, becomes specific to the problem under
consideration. The size of a population is another important
parameter that affects the performance of an algorithm. In
our algorithm, p., p., and the size of the population are

determined by the GSOEA itself to realize the twin goals of
maintaining diversity in the population and sustaining the
convergence capacity of the algorithm.

There have been similar works to improve an evo-
lutionary algorithm. Jeong and Lee incorporated the
simulated annealing technique into a GA [2]. They used a
fitness modification technique and an adaptive mutation
probability in [3]. A local improvement operator was
introduced in [10]. The crossover and the mutation pro-
babilities vary according to the population maximum fitness
and the population mean fitness in [7]. But, their adaptive
rules are not general in the sense that the rules only apply
to the solutions above average. Bryant used the relative
credit of each genetic operator over some generations [8].
However, his algorithm needs more memory and longer
computation time compared to above-mentioned algorithms.
Smith and Fogarty investigated the use of genetically
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encoded mutation rates within a steady state GA [9]). Again
their algorithm needs much memory, and it cannot be
applied to a generational GA. This paper is organized as
follows. In section 2, a generalized self organizing
evolutionary algorithm (GSOEA) is proposed. In section 3,
we present control applications of GSOEA. The conclusions
are presented in the last section.

. Generalized self organizing evolutionary
algorithm
1. Generalization of evolutionary algorithms

The genetic algorithm and the evolutionary strategy are
very similar to each other and each has its own merits or
demerits. So it is natural to combine them to produce a
generalized evolutionary algorithm which preserves the
merits of the both algorithms. A generalized evolutionary
algorithm (GEA) is based on a very simple concept and is
simply constructed as follows. The GEA uses, reproduction,
selection, crossover. It can use a binary string or a real
valued vector for a solution, and it can use a gaussian
mutation for a solution of real valued vector. When a GEA
uses a binary encoded string, the GEA hecomes an ordinary
GA. When a GEA uses a real valued vector for a solution,
a gaussian mutation, and no crossover operator, the GEA
becomes an ES. Thus, a GA or an ES can be viewed as a
special case of the GEA. The word ’generalized’ was used
in that sense.

2. Generalized self organizing evolutionary algorithm

A generalized self organizing evolutionary algorithm
(GSOEA) consists of GEA described in the previous
subsection and an adaptive mechanism determining its
control parameters automatically.

In optimizing unimodal functions, it is important that an
evolutionary algorithm (EA) should be able to converge to
the optimum in as few generations as possible. For
multimodal functions, there is a need to be able to locate the
region in which the global optimum exists, and then
converge to the optimum. An usual EA possesses poor
hill-climbing capability, and it is vulnerable to getting stuck
at a local optimum, especially when the populations are
small. The significance of p. and p,, in controlling EA
performance has long been acknowledged in EA research.
The higher the value of p. the quicker are the new

solutions introduced into the population. As p. increases,

however, solutions can be disrupted faster than selection
can exploit them. Large value of p,, transform the EA into

a purely random search, while some mutation is required to
prevent the premature convergence of the EA to suboptimal
solutions. The population size also affects the EA
performance. Premature convergence may occur when the
size of a population is small, while a population of large size
makes the algorithm slow. Usually, the choice of p., .,
and the population size is left to the user to be determined
statically prior to the execution of the EA. Typical values
of p. and p,, are in the range [0.5, 1.0] and [0.001, 0.1],
respectively.

In order to overcome the above-stated problem of
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difficulty in choosing the EA parameters, we suggest the
following expressions which are the main components of
the GSOEA, and they determine p. and p,, adaptively in
response to the fitness values of the solutions.

De=ki(Fmax —F M Frax —Fuin) + k2 oy
ki +k<1

D= k3(Faax =PI Frax = Fmin) + By 2
by +h<1

where f .. is the maximum fitness value and f,, is the
minimum fitness value of a population. £’ is the larger of
the fitness values of the solutions to be crossed, and £ is
the fitness of the solution to be mutated. %, %,, and %, are
positive constants. k; and the population size, N,, are
changed adaptively using the following procedure.

1. Initialize /s

2. i<i+l, generation {

3. If the fittest is the same for #,.. generations, then

Nyoy—Nyptn, and go to step 1.

4. Npy—Npp—n3, ky—cx ks, go to step 2.
where n,, n;, and 7, are positive constants of integers,
and 0<c<1. As we can see from (1), p. is a linear function
of f’, and it varies from %, +4; to k, as f' changes from
Smin 10 frax. Similarly, p,, varies from k;+k, to k, as f
changes from fo, tO fmax. Thus, the higher (lower) the
fitness of a solution, the lower (higher) the probability of
crossover or mutation of the solution. The idea behind the
equations is that the near-optimal (high fitness) solutions
should be prevented from the disruption by crossover or
mutation, and they can aid in the convergence of the
GSOEA. Inferior (low fitness) solutions have higher values
of p, and p,,, which promote the GSOEA to explore the
search space. Therefore, we are able to preserve ‘good’
solutions of the population while the low fitness solutions
prevent the GSOEA from getting stuck at a local optimum.
Note that #; is designed to decrease exponentially over
generations. After few generations k; vanishes to near zero
from its initial value and the mutation operator becomes to
behave like a normal one with the probability of k. It has

been empirically proved that the adaptive mutation
probability accelerates the convergence and improves the
hill-climbing property of an EA [3]. When the fittest (the
best solution) is the same for #,.. generations, that is, the
algorithm is getting stuck at a local optimum, p, is
enlarged to its initial value to possibly direct the search to
the global optimum, and the population size Ny, Is
increased by #», to search wider region of the search space.
Otherwise, N, is decreased by #, at every generations to
speed up the algorithm.

There remains the problem of the choice of values for &,
ko, initial ky, k4, n), n,. ky+ky (ky3+k) and k, (k) are
the upper and the lower limit of p, (p,), respectively.
Considering the typical ranges for p. and p,,, we assign k,
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and &, a value of 0.5 and 0.01, respectively, and use a value
of 05 for k; and initial A;. %, and #x, are determined by
trial and error. Other parameters are adopted from [3].

M. Control applications
1. System identification
The problem considered here is the same as those in

[1][2). 1t is presented for comparison purpose. The object
system is a discrete time system:

A(g D =B(g Hu(t—d) 3
where ¢ 7! is the backward shift operator and the objective
is identifying the system polynomials, A(g¢~™Y), B(g™"),
and delay d using the given input #(f) and the output »(#).
We define the error sequence as

XD=3D— y(d (4)
with
AlgMHy(d= Blg Hult—ad) (5)
The fitness function to be maximized is
AD=1/  (nt=)* ®)

where w represents the window size. The system
polynomials, poles and zeros in the re-parameterized plane
[1] are the following:

A(g™)=1.0-1.5¢ ' +0.7¢ 2 W

B(g ™) = b4(1.0+0.5¢ ' +0.0¢ 9 ®

[ 5, :)=[0.75, -0.37], [ 21, 2,]=[-0.25, 0.25] )

where b, is 1 and the delay 4 was set to 1. We apply a

simple GA and the GSOEA to identify p,, p,, 2, 23, b,

and 4. The gain b, is assumed to be in the range [0, 2],
and the poles and zeros in [-1, 1].
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Fig. 1. Identification of the poles using a simple
GA.
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Fig. 2. Identification of the zeros using a simple
GA.
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Fig. 3. Identification of the poles using the GSOEA.
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Fig. 4. Identification of the zeros using the GSOEA.

We use a binary encoding for the simple GA. 7 bits are
assigned to each parameter except d (2 bits), so the
resolution is slightly smaller than 0.02. A string consists of
37 (=7 x5 + 2) bits. A real valued vector with 6 elements
which correspond to the parameters of the poles, the zeros,
the gain, and the delay is used for a string of the GSOEA
since the current problem to be solved involves real valued
parameters. We use p.=0.8, p,=001, N,,=100, and =30
for the simple GA. k= ky=initial £,=0.5, k,=0.01, initial N,
=50, #,ee=D, 1176, 73=2, ¢=0.9, and w=30 are used for the
GSOEA. Input for the sample data is given as

u(#) =sin(H —sin(#/2.5) + random(—1~1) (10)

where random(-1 ~1) is a uniform random number in the
range (-1, 1). One simulation is done using 200 samples
with 3 generations per one sample, that is, 600 generations.
Both the algorithms are simulated 10 times. Figure 1 ~2

- show the average of the identification results of the poles

and zeros with the simple GA. Figure 3 ~4 show the
average of the results with the GSOEA. The GSOEA
shows the better hill-climbing and optimum finding
capability than the simple GA. The average of the average
population sizes of 10 simulations is 43.4, which is much
smaller than that of the simple GA though the performance
of the GSOEA is much better.
2. Multi-agent system control

2.1 Problem description

Our objective here is to investigate how relatively simple
agents can adaptively learn to solve a complex problem.
Each agent should learn simple behaviors which are
collectively sufficient to solve the problem. Agents have to
decompose the problem effectively but this decomposition
should be an emergent property of adaptive learning and not
pre-programmed. It is an important motivation of this
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application that a problem should be solved with the
minimal possible direction from the programmer or the
trainer. We apply the simple GA and the GSOEA to finding
a rule table for agents.

The experimental problem in this section is a soccer
game in a simplified soccer model environment which will
be explained later. The players (agents controlled by rule
tables) have to learn to play the game. Two players with
the same agent-type make up a team in our simulation. It
is assumed that the behavior of the players of one
agent-type is pre—-defined, because it is difficult to design
an appropriate fitness function capable of evaluating the
behavior of two teams simultaneously. The task of a team
is to score a goal in a limited period while at the same time
not to lose control of the ball to the opposing team. Success
of a team depends on players learning to co—operate in
order to score a goal.

Each player behaves independently of the other, and only
knows about the existence of other players and the ball in
the view window which will be described in the next
section. So there is no direct communication between
players, and their knowledge of the aims of other players is
also indirect. Hence each player interacts with a highly
dynamic environment. Learning (modifying the rule table)
takes place through feedback gained from actions in the
environment.

In our simulation, the simplified soccer model consists of
5 x6 cells. The goal posts are located at the center of the
top and the bottom of the ground, and each player and the
ball are located as shown in Fig. 5 at the beginning of a
game. There are two agent-types, A and B. The behavior
of the agent-type B is predefined and that of the
agent-type A is to be learned. We have simulated the
following two situations.

Case 1 : Agent B, and B, are fixed during the game,

that is, they just act like obstacles.

Case 2 : The ball is initially at the upper right corner of

the ground. B, in front of the goal post is fixed. It may

be thought as a goalkeeper. B, moves to capture the ball,

and dribbles to the opponent’s goal post when it captures

the ball. So, it interferes in other players’ actions.

2.2 Simplified soccer model

A simplified soccer (SS) model is similar to the effector
automata (EA) model(11]. Both in the EA and the SS
models, a cellular space is defined where individual
processing units (automata or agents), operating in parallel,
receive input from their local neighborhood, and produce an
output using a pre-defined rule. Each cell is a location in
space, and agents (automata) are entities that can occupy
the cells. In the SS model, the output is an action to effect,
such as moving to a neighboring cell. Agents with the same
agent-type use the identical rules.

Figure 5 shows a playground of the SS model with 4
agents, A,, A,, B,, and B,, and a ball. It is assumed that
each agent can move, or detect other objects (agents, goal
posts, and a ball) in one of the following directions: top, left,
right, and bottom. Figure 6 shows a view window of an
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agent. The orientation of a view window is fixed against
the playground during a game. The center of the view
window corresponds to the center of the agent. The agent
can detect an agent of the same agent-type in the region I,
II, and III, and can detect an agent of different agent-type
in the region 1. Goal posts in the region I and III can be
detected. The ball is always detected; the position of the
ball is either center, upper, lower, left, or right, according to
the sector it belongs to.
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Fig. 5. A playground of the SS model.
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Fig. 6. A view window of an agent. @ represents
the ball.

The behavior of each agent is governed by a rule table.
An entry of a rule table is a condition-action rule of the
form:

C(-+)L(++-)R(-+) T(++) B(++*)~>action (11)
where CLRTB stands for center, left, right, top, and bottom.

Table 1. Actions used for the SS model.
action
MOVE

description

[DIR] | move one cell in the specified direction.

move one cell with the ball in the
specified direction only when currently
possessing the ball.

kick the ball by two cells in the
specified direction only when currently
possessing the ball

DRIBBLE [DIR]

KICK [DIR]

The actions possible for the SS model are listed in Table
1. There are three actions; MOVE, DRIBBLE, and KICK.
We need a simulator for the SS model. The simulator
simulates the movements of agents and the ball according
to the rule table for a given time steps, and scores a game.
A game ends when a team scores a goal or the given time
steps is over. If there are n agents and the ball in a cell,
then one of the agents obtains the ball with the probability
1/n

2.3 Methodology

Some aspects to be considered to use the simple GA or
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the GSOEA are as follows:

- Chromosome representation and population size : A rule
table of condition—action rules is indexed implicitly by the
neighborhood pattern in the view window. In the view
window, there are 11=4Co+4Ci+4Co, 5=4Co*+4Ci, 2, and 2
possible configurations of agents of agent-type B, an agent
A, the goal post of B, and the goal post of A, respectively.
There are 5 (4 sectors and the center) configurations of the
ball. The action part of a rule requires three bits; two bits
for direction and one bit for an action type; MOVE or KICK.
When an agent has the ball, MOVE is automatically
recognized as DRIBBLE. Thus, a rule table encoded in a
binary string requires 3300 =11x5x2x2x5x3 bits. Both
the simple GA and the GSOEA use a binary string for a
solution.

+ Fitness : The fitness function is defined as

f = ';Z‘_'::«F(i) (12)
2 fimal
F()=Fo+ 2 Feoat-a0) F Foses-a(D) (13)

+fg(ml—B(t) +fposess—B( t) )

where { represents the ith simulated game, ng. iS a given
iteration number of simulations, and f4,, represents the

time when the game ends. A game ends at =30 when no
goal occurs. In our simulation, #. is 5 and a value of 400

is assigned to F,. Other functions in (13) are defined as in
the following.

1000, If the team A scores
a goal at time ¢ (14)

fgoal—A( t) = [
0, Otherwise

—90, If the team B scores
a goal at time ¢ (15)

fgoal—B( t) = [
0, Otherwise

10, If a player in the the team A
possesses the ball at time ¢ (16)

fpassess~A( t) = {
0, Otherwise

—10, If a player in the the team B
possesses the ball at time ¢ a7

fpossas—B( t) = (
0, Otherwise

+ Control Parameters : We use the same parameters that
were used in the previous application.

2.4 Simulation results and discussion

Figure 7 and Fig. 8 show the average results of 10
independent simulations for the case 1 and the case 2 using
a simple GA. Figure 9 and Fig. 10 show the average results
for the case 1 and the case 2 using the GSOEA,
respectively. Each graph illustrates the average maximum
fitness values of the team A versus generation numbers.
Though we have used the elitist strategy the maximum
fitness value is fluctuating. This is due to our probabilistic
ball possessing policy. So, in absolute terms the fitness
values indicate little of importance. The trend is far more
revealing. In the case of the present experimental task the
increase over generations indicates that the team is learning
more and more appropriate behavior. The players have
displayed co-operative behavior such as passing (using

KICK action) the ball to their team-mate in order to make
it easier to score a goal.

In the case 1, the simple GA and the GSOEA found a
solution (rule-table capable of making the players of the
team A score a goal) in a few generations. It shows that
the result using the GSOEA is better and more oscillatory
than that using the simple GA, which means that the
GSOEA has more statistic hill-climbing capability.
Furthermore, the GSOEA shows steady results throughout
the generations.
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Fig. 7. The result of the case 1 using a simple GA.
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Fig. 8 The result of the case 2 using a simple GA.

1680

165@8 |-

1408 |

13e8

1288 |

1108 |

Avcrage {itnass

1888

Cenera tion

Fig. 9. The result of the case 1 using the GSOEA.
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Fig. 10. The result of the case 2 using the GSOEA.

The GSOEA found a solution after about 220 generations
in the case 2 which is a more difficult situation than the
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case 1. The fitness value is more oscillatory than that of the
case 1. The players moved to the ball first and scored a
goal using dribbles and passes. Usually, scoring a goal
occurs after 20 time steps in the case 2, while it occurs after
about 10 time steps in the case 1. Again the GSOEA shows
steady increasing fitness over generations.

IV. Conclusions

A generalized self organizing evolutionary algorithm
(GSOEA) was designed to generalize evolutionary algo-
rithms, to prevent the premature convergence, and to
sustain the convergence capacity of the GA. The GSOEA
determines p., pn., and N,, automatically using its own
rules, so we do not have to determine the values for the
parameters prior to the execution of the algorithm. The
GSOEA was applied to two problems; system identification
and control of multi-agents playing a simplified soccer
game. Simulation results indicate that the GSOEA has
adaptive characteristics and improved hill-climbing ca-
pability compared to the simple GA. Using the adaptive
population size, the execution time of the algorithm was
significantly lowered. The theoretical analysis of the
GSOEA remains for further study.
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