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Abstract—Timing analysis 1 , 2  is an essential process for 
development of real-time embedded system and knowledge 
about the worst-case execution time (WCET) of real-time 
programs is critical to validation of temporal correctness of 
implemented system. Recently, automated static timing 
analysis methods are introduced to facilitate timing analysis 
process for real-time software, and to provide safe and tight 
WCET. But static WCET analysis methods have drawback 
as they do not provide accurate WCET for hardware-
dependent software or application software where input data 
rate from external environment needs to be considered. 
Also, the WCET obtained from static WCET analysis needs 
to be verified at target system before system deployment. In 
this paper, we propose a framework of WCET analysis for 
real-time embedded software which complements static 
WCET approach and provides tight and safe WCET by 
combining static timing analysis approach with dynamic 
measurement.  The application of proposed framework to 
the WCET analysis of command processing and data 
acquisition part of KOMPSAT-2 satellite flight software is 
presented to show effectiveness of the proposed approach.  
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1. INTRODUCTION 

Flight software is real-time embedded software which 
resides in spacecraft on-board computer and controls in-
orbit operation of satellite. As tasks of flight software are 
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usually designed to be scheduled in synchronous and 
deterministic way to prevent occurrence of unexpected 
faults in orbit from asynchronous scheduling, timing 
analysis of flight software is important. Underestimation of 
timing can cause overrun error endangering mission 
success, while overestimation can cause waste of valuable 
resource or degraded system performance from restricted 
function of codes due to limited processing resource 
available for space environment. Traditionally additional 
processor throughput margin is reserved in timing analysis 
to compensate for inaccuracy in timing estimation and to 
prepare for possible code modification to alleviate hardware 
failure or to fix a software bug found after launch. This 
conservative approach imposes timing analysis as an 
essential process on the development of flight software. 
Estimation of required CPU throughput is performed from 
the beginning of satellite development project to select 
proper CPU for required mission, and throughput usage 
margin requirement is usually specified in software 
requirements specification. Periodic timing estimation is 
performed during flight software development phases and 
throughput usage is checked with requirement at major 
program milestone until satellite launch.  

There are two approaches of timing estimation used for 
development of satellite flight software, measurement and 
estimation by analysis. Measurement is to run a program 
with proper input data at target environment and measure 
execution time using measurement tools, such as 
oscilloscope, logic analyzer, or in-circuit emulator. It 
requires codes to execute, target system or simulator 
environment. But measurement is infeasible for programs 
with complex program execution paths, because it is 
difficult to execute all execution paths of industry-sized 
program with all possible input data. The WCET obtained 
by measurement is actually a lower bound to WCET. 
Estimation is a method to predict execution time of software 
by analyzing program code and characteristics of target 
processor without running them.  Recently research on 
static analysis is actively in progress to automatically find 
tight and safe bound of WCET by analyzing program codes 
and modeling processor hardware characteristics. But 
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currently available automatic WCET analysis methods have 
restrictions on program size and programming language 
constructs supported (e.g. no indirect procedure calls, no 
dynamic data structures, no recursive functions, etc.) or 
require additional user annotations to be provided. It also 
has drawback that it cannot accurately estimate WCET of 
hardware-dependent codes because timing behavior of real-
time embedded system depends on the hardware 
characteristics of specific target system, such as DMA, 
interrupts, or shared memory, nor can it take into account of 
feasible processing load scenario of the system (e.g., 
maximum amount of external input from environment). 
These constraints/limitations of static WCET analysis 
necessitate finally validating correctness of static WCET 
analysis result by measurement in the target system. 

This paper presents a framework to perform worst-case 
execution time analysis for real-time embedded systems on 
the premise that dynamic timing analysis is required at final 
stage of timing analysis. Section 2 introduces traditional 
timing analysis methods used for the development of real-
time embedded software and presents their problems taking 
satellite flight software as an example. Section 3 provides 
overview of static WCET analysis methods for real-time 
embedded systems. In Section 4 we propose a framework of 
hybrid WCET analysis for real-time embedded system 
software. Application of the proposed framework and 
experimental results are presented in Section 5. Finally 
Section 6 gives a conclusion and outlines future plan. 

2. TIMING ANALYSIS OF FLIGHT SOFTWARE 

Many spacecraft today contains on-board computers which 
automatically maintain spacecraft’s attitude, periodically 
check safety of the spacecraft hardware, support the science 
instruments, and perform a variety of other tasks. Flight 
Software which runs on spacecraft on-board computer is 
real-time embedded software. It’s mission-critical software 
whose correct system functionality depends both on logical 
correctness and temporal correctness.  

Flight software timing analysis is crucial for the following 
purposes: 

Firstly, some satellite control functions are required to be 
executed within a predefined time duration, which requires 
prior knowledge about their execution times. Generally, 
satellite flight software tasks are scheduled in predictable 
ways, i.e., they should be executed in a periodic or 
synchronous ways to reduce faults caused from 
asynchronous, unpredictable scheduling. Their scheduling is 
usually based on a predefined duration of time called ‘minor 
cycle’ or ‘major cycle’, and tasks allocated for spacecraft 
subsystems need to be synchronized. Also in a distributed 
multiprocessor system, inter-processor communication and 

execution of tasks in each processor need to be 
synchronized. 

Secondly, there are timing constraints for a task to process 
inputs from external environment and to respond them. 

Thirdly, software timer function or delay routines is 
required for certain application where hardware timer is not 
supported. 

Fourthly, satellite flight software is required to have 
sufficient timing and sizing margin to prepare for 
unpredictable asynchronous events in space environment 
and to meet unexpected software modification during in-
orbit operation. This imposes periodic check and trace of 
throughput and memory usage during flight software 
development because those margin requirements at launch 
time are usually specified in software requirements 
specification document [15]. 

Figure 1 shows these requirements of flight software timing 
analysis. 
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Figure 1 - FSW Timing Analysis Requirements 

Traditional Flight Software Timing Analysis Approaches 

Timing analysis for satellite flight software is performed in 
an incremental, iterative way as shown in Figure 2. 
Required processor throughput is roughly estimated during 
system requirements analysis and conceptual design phase. 
This estimation is performed in system-level, and analysis 
result is used for selection of CPU type or for trade study of 
hardware/software design. During design phase, software 
timing is predicted or estimated using pseudo code or 
heritage code. Execution time is estimated roughly by 
counting number of floating-point operations or lines of 
pseudo code. A processor simulator is used to measure 
execution time of code during coding and unit testing phase. 
Usually WCET of program is estimated in bottom-up 
manner starting measurement of leaf node modules in call 
tree. To find the WCET of code, the longest execution time 
path is searched explicitly by running the executable paths 
of code using simulator. The selection of execution paths or 
test cases largely depends on programmer’s heuristic 
decision if there are too many paths to execute. To measure 
time-critical function, oscilloscope or logic analyzer is used 



 3

in this phase. During software integration and test phase, 
WCET of task is measured by running code in target system 
using in-circuit emulator, oscilloscope, or logic analyzer.  
The input data used for WCET measurement is chosen by 
programmer assuming feasible processing load scenario. 
The WCET of integrated software is obtained by 
considering functional or data dependency between 
modules. Usually domain-specific knowledge is utilized in 
selecting execution path or test cases during this process. 
The timing profile data obtained at this phase can be used 
for code optimization of critical section. During verification 
test phase, WCET of overall flight software executing in the 
on-board computer is measured under the maximum 
feasible processing load to verify throughput usage 
requirement.  
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Figure 2 - FSW Timing Analysis Flow 

 
Problems in Traditional Flight Software WCET Analysis 

A WCET estimation method generally used for timing 
analysis of flight software was to search for all the 
executable paths of program by the programmer, and then 
he/she finds test cases for each path to run the program 
using target processor simulator or in-circuit emulator. The 
number of instruction cycles executed for each executable 
path is obtained and the largest is chosen as WCET of the 
program. The WCET of modules corresponding to the 
higher nodes of call tree is obtained similarly in bottom-up 
manner by finding test cases first then executing them. This 
manual approach requires much effort and time of 
programmers and error-prone because a flight software 
module usually contains many executable paths and 
generating test cases for them to measure the execution 
times of the paths is very hard. 

3. OVERVIEW OF STATIC WCET ANALYSIS 

Static Worst-Case Execution Time (WCET) analysis is to 
provide a priori knowledge about the worst-case execution 
time of a program without running it, while dynamic timing 
analysis is based on measurement of execution time [1, 2, 
3]. The WCET provided by static WCET analysis methods 

should be safe and tight estimation of WCET as shown in 
Figure 3. 
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Figure 3 - Approximate WCET 

Static WCET analysis proceeds through phases of program 
flow analysis, low-level analysis and calculation as shown 
in Figure 4. The program flow analysis phase analyzes the 
code of the program, and determines the possible program 
flows. It provides information about which functions get 
called, how many times loops iterate, if there are 
dependencies between if-statements, etc., by automatically 
analyzing program’s dynamic behavior or by user 
annotations. The low-level analysis phase analyzes the 
object code and target hardware to determine the timing 
behavior for instructions running on the target hardware, 
giving the execution time for each atomic unit of flow (i.e., 
basic block). The calculation phase combines the results of 
the flow and low-level analyses to calculate a WCET 
estimate for the program. There are three categories of 
calculation methods: tree-based, path-based, and Implicit 
Path Enumeration Technique (IPET)-based calculation. 

Program

Flow Analysis

Low-level 
Analysis

Calculation

WCET
estimate  

Figure 4 - Static WCET Analysis Phases 

Program Flow Analysis 

The purpose of program flow analysis it to get information 
about which functions are called, how many times loops 
iterate, if there are dependencies between if-statements, etc 
[4].  The flow information such as maximum loop iteration, 
branch constraints, and infeasible paths can be extracted 
from program code by automatic flow analysis methods or 
with manual annotations. It has three sub-phases: flow 
extraction, flow representation, flow information conversion 
for calculation. Flow extraction actually determines flow of 
code, flow representation represents the information 
obtained in the analysis phase, and flow information 
conversion for calculation is to process the information to 
be useful for the particular calculation method. The 
automatic flow analysis is still limited to well-structured 



 4

programs which do not use pointers, dynamic data 
structures, or recursion. In this case, automatic flow analysis 
needs to be complemented with manual annotations 
providing additional flow information such as bound of 
loop iteration and description of flow dependencies. Further 
research on automatic flow analysis to get tighter WCET is 
in progress by detecting loop bounds or infeasible paths 
automatically instead of manual annotations which may be 
error prone [5, 6, 7]. 

Low-Level Analysis 

The low-level analysis is to determine the execution time of 
basic blocks given the architectural feature of the target 
hardware. It determines the timing effect of machine-
dependent factors that need to be modeled such as cache, 
branch predictor and pipeline. But as modern processors 
utilize various performance-optimizing features to enhance 
performance, modeling of processors’ timing behavior 
becomes more complex and hard to predict. Research on 
modeling complex processor’s timing behavior as well as 
validation of the hardware model is in progress [8]. 

Calculation 

Calculation phase is to calculate the WCET estimate for the 
program, given the program flow and low-level analysis 
results. There are three categories of calculation methods: 
tree-based, path-based and IPET (Implicit Path Enumeration 
Technique). 

(1) Tree-based Calculation. 

In tree-based calculation, the WCET estimate is generated 
by a bottom-up traversal of a program syntax tree [9]. The 
program syntax tree is a representation of program whose 
non-leaf nodes corresponds to structure of the program 
(e.g., sequences, loops, conditionals) and whose leaf-nodes 
represent basic blocks. This method is simple and 
computationally cheap, while it has drawback that the 
computation is local within a single program statement and 
cannot consider dependencies between statements.  

(2) Path-based Calculation. 

Path-based calculation is to find longest execution time path 
using graph search algorithm after converting source codes 
into control flow graph [10]. This method explicitly 
represents possible execution paths but has problems with 
handling flow information of loop-nesting levels.  

(3) IPET Calculation 

IPET (Implicit Path Enumeration Technique) calculates 
WCET by solving the objective function which satisfies 
structural or functional constraints extracted from program 
CFG or provided by user [11, 12].  

 
The result of IPET calculation is a worst-case count for the 
basic block instead of explicit execution paths. IPET 
constraints systems can be solved using constraint-solver or 
ILP (Integer Linear Programming) technique. IPET-based 
approach can handle more complex flow information 
compared to other calculation methods. Comparison with 
path-based calculation is performed in [13].  

Issues and Research Area in Static WCET analysis 

Modeling the timing behavior of modern microprocessors 
becomes more complex as they utilize performance-
optimizing features such as pipeline, caching and branch 
prediction. Recently research on precisely modeling these 
advanced features is actively in progress. However it 
becomes more difficult to obtain the detailed timing 
characteristics of processor internals because processor 
manufacturers are reluctant to release them for competition 
with other manufacturers, and this make it difficult to 
validate target processor’s timing model. Also fully 
automated static WCET analysis tools which support most 
of modern embedded processors and can be applied to real-
world programs without reprogramming or user annotation 
are not developed yet. Research on integrating WCET tool 
with existing compilers is actively in progress, too. 
Research on the use of evolutionary algorithms in 
assessment of execution time, research on parametric timing 
analysis, research on probabilistic approach for WCET 
analysis, and research on WCET analysis for component-
based software are in progress. 

4. HYBRID WCET ANALYSIS FRAMEWORK 

Static WCET analysis is a technique to find out WCET by 
analyzing software codes without executing it. But this 
static WCET analysis has drawback compared to dynamic 
WCET analysis technique which measures WCET by 
running the software at target system environment. 

Limitation in analyzing WCET of hardware-dependent 

software 

For example, data acquisition module shown in Figure 5 
which polls hardware ready status after writing request 
waits for data ready up to predefined timeout duration. In 
most of nominal cases, hardware data is available much 
earlier than the timeout which is set conservatively with 
sufficient margin. But with static WCET analysis method 
which calculates WCET theoretically, the path which takes 

                N 
WCET = MAX ( ∑ ti xi ) 

i 

where xi is the execution count of basic block Bi, 
ti is the execution time of basic block Bi 
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timeout is always chosen causing overestimation compared 
to real-world.   

Start

Write command to HW output port

Read status from HW input port

Data ready ?

Read data

End

Yes

NoNo

Wait for a delay time

Timeout ?

Return error status

Yes

 

Figure 5 - Timeout Loop for Hardware Polling 

Another example is target system specific features, such as 
access to shared memory, DMA, or interrupt. These features 
cannot be considered in static WCET analysis technique, 
even though non-preemptive scheduling is assumed. Timing 
effect due to contention in accessing shared memory 
between CPU and I/O controller cannot be covered in low-
level analysis, which considers only internals of CPU such 
as pipeline, cache, or branch prediction.  

Lack of consideration for constraints on input data from 

environment 

Typically real-time embedded systems acquire input from 
environment, process them, and control system hardware to 
perform their mission. The program execution time in the 
system is dependent on input data (amount of input data, 
type of input data) from environment. To estimate the 
WCET of real-time embedded system, we need to consider 
the constraints on input data from environment. Without 
considering the constraints on input data, the WCET 
obtained from the static analysis technique will be 
unacceptably overestimated.  

Requirement to validate correctness of static WCET result 

Static WCET analysis techniques estimate WCET by 
analyzing program codes. But the WCET result from static 
analysis need to be validated before its application to design 
of real-time embedded system since the estimation process 
often involves human interaction such as user annotation 
which may be prone to error. 

Therefore the timing analysis for real-time embedded 
system requires validation at target system by actually 
executing software and measuring execution time before 
system deployment. But time and effort to find out WCET 

by measurement is inhibitive to perform because it is 
difficult to execute all execution paths of industry-sized 
program with all possible input data. 

This paper introduces efficient WCET analysis method 
which provides tighter WCET by utilizing constraints on 
input data from environment. It also presents hybrid WCET 
analysis technique which combines static and dynamic 
WCET analysis techniques to validate correctness of timing 
behavior of real-time embedded system. 

(1) Find longest execution time path using path-based 
static WCET analysis technique. 

(2) Generate input data which traverses the longest 
execution path. 

(3) Extract constraints on input data by analyzing system 
specification, equipment specification, and interface 
control documents, etc. 

(4) Measure WCET by running software at target 
environment with input data obtained as above. 

(5) Compare the result of static and dynamic WCET 
analysis. 
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Figure 6 - Proposed WCET Analysis Method 

Search of the Longest Execution Path using Static WCET 

Analysis Technique 

Path-based WCET analysis technique is preferred to IPET 
because the longest execution path is provided in addition to 
estimated WCET. After flow analysis and low-level 
analysis of software, timed CFG is generated. The longest 
execution path in the timed CFG is searched using graph 
search algorithm. As the number of execution paths of a 
program grows exponentially with the number of control 
flow branches and loops, it is difficult to check executability 
of all execution paths. In searching the longest execution 
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path feasible, [14] suggested a method to find k longest 
execution paths using heuristics, then to check their 
feasibility starting from longest execution path first. The 
first feasible execution path among the k longest execution 
paths is chosen as WCET path. If all the k execution paths 
are infeasible, then k-th path is chosen as WCET path.  

Generation of Input Data Traversing WCET Path 

Path-oriented automated test data generation can be used to 
find input data which traverses WCET path. The input data 
generation problem is converted to problem of finding 
solution of linear systems of equality/inequality of input 
data. Input data should include global variables in addition 
to input arguments of function/procedure.  

Analysis of Constraints on Input Data 

The WCET of real-time embedded system often depends on 
input data from environment. Figure 7 shows a typical 
structure of the input data processing task in a real-time 
embedded system. 
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Figure 7 - Input Data Processing Task 

Input data from environment is acquired and stored in the 
input data buffer by interrupt or polling scheme for 
processing by input data processing task. Usually input data 
buffer size is set with sufficient margin to prevent buffer 
overflow. When activated, the input data processing task 
processes input data in the buffer according to type of input 
data. The execution time of input data processing task 
depends on amount and type of input data in the buffer. If 
there are predefined patterns on input data or maximum 
input data rate is defined, then disregarding these 
constraints in WCET estimation will result in 

overestimation. Therefore constraints on input data such as 
amount of input data, type of input data, predefined pattern 
of input data, need to be considered in WCET estimation. 
As these constraints are not included in program codes, 
domain knowledge is required to extract them from 
documents, such as system specification, equipment 
specification, or interface control document, etc. Constraints 
on input data can be categorized into following criteria: 

- Maximum input data rate from environment/user 
- Predefined input data pattern 
- Exception handling 

 

These constraints can be specified in flow facts language as 
proposed in [12].  

(1) Representation of Maximum Input Data Rate 

Maximum input data rate can be represented as loop bound. 
Input data processing task of real-time embedded software 
usually processes input data in the input buffer until it is 
empty. The input buffer size is set large enough to hold 
maximum input data from environment with sufficient 
margin, but actual amount of input data from environment is 
usually much smaller than capacity of input data buffer. 
Without considering constraints on input data, static WCET 
analysis technique overestimates WCET of input data 
processing task. Constraint of the maximum input data rate 
can be given as specifying loop bound of input processing 
task in static WCET analysis tool.  

For example, 

scope : [ ] : x header (scope) ≤  bound 

(2) Representation of Predefined Input Data Pattern. 

In a real-time embedded system, input data from 
environment can have predefined data pattern. 
Communication protocol processing software is an example, 
where input data is always in a predefined format as shown 
in Figure 8.  

Frame
Header

Packet
Header

Data 1 Data 2 Data 3 Data N…Frame
Header

Packet
Header

Data 1 Data 2 Data 3 Data N…

 

Figure 8 – Example of Input Data of Predefined Pattern 

The execution time of input data may be different according 
to input data type. Most of static WCET techniques choose 
the path which processes the input data type with the 
longest execution time regardless of predefined input data 
pattern, resulting in overestimated WCET.  

For example, if we assume in Figure 7 that: 
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Then actual WCET is   w1 + w2 + n * max (wj), 3 ≤ j ≤ N,    
 instead of Max_Loop * max (wi), 1 ≤ i ≤ N. 

These constraints can be specified in flow facts language as 
follows: 

 

If we further assume that input Type-3 and Type-4 cannot 
appear at the same time: 

scope : [] :  x TYPE-3 + x TYPE-4  ≤  1 
 

(3) Representation of Constraint on Exception Handling 

Error checking and logging is important to detect, isolate, 
and recover from fault in real-time embedded system. If 
error or exception occurs, error information such as error 
code, time of occurrence, and error description, is logged in 
the error table in addition to required exception handling. In 
static WCET analysis, the path to invoke error handling is 
chosen as WCET path if execution time to handle error is 
larger than that of normal operation. However occurrence of 
faults all the time is very unlikely and exception handling 
usually involves aborting input data stream in the buffer 
until new valid input data sequence appears. If static WCET 
analyzer considers subsequent input data as error without 
discarding them, the WCET will be overestimated. Figure 9 
shows an example of overestimated WCET in exception 
handling at data acquisition task which gathers hardware 
sensor data. 

− It invokes read_hardware_data routine to read sensor 
data from hardware  

− In read_hardware_data routine,  sensor data is 
acquired from A/D converter hardware 

 Output request command (channel number, gain, 
offset) 

 Wait for data ready (until timeout) 

 Read data 

 If data read timeout occurs, log timeout error in the 
error table 

 Usually timeout is set conservatively with 
sufficient margin (10 times of nominal case) 

 

The estimated WCET by static WCET analyzer will be 
overestimation, because the probability that all data 
acquisitions result in timeout is nearly impossible in 
practice considering the margin of timeout.  

 

Data
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log the error
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read data
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Figure 9 - Example of Exception Handling 

WCET Measurement at Target System 

After the WCET has been estimated along with the longest 
execution path and the input data which traverse it, 
verification of the result at target system before system 
deployment is important. As input data for WCET path is 
available, the execution time can be measured easily at 
target system using in-circuit emulator, digital oscilloscope, 
or logic analyzer.  The measurement should be non-
intrusive, so as not to affect execution time of program 
running. This measurement at target system will uncover 
system-dependent hardware timing effect, such as decrease 
of CPU throughput due to contention in accessing shared 
memory with I/O controller, DMA, or interrupt.  

5. CASE STUDY 

We performed a case study according to proposed WCET 
framework by applying it to estimate WCET of KOMPSAT 
satellite flight software components: CCI and DAQ. 
Command and communication Interface (CCI) receives and 

− Max loop count of input data processing task: 
Max_Loop 

− WCET of codes “process data type i” : wi, 1 ≤ i ≤ N 

− input data has predefined data pattern: Type-1 data 
 Type-2 data  Type-m1 data  Type m2 data 
  Type-mn data, where mi ∈ [3..N] and 1 ≤ n ≤

Max_Loop – 2 

scope : <1..1> : x TYPE-1 = 1 

scope : <2..2> : x TYPE-2 = 1 

scope : [3..Max_Loop] :  x TYPE-1 + x TYPE-2 = 0 
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processes telecommands from ground. Telecommands from 
ground are in CLTU (Command Link Transmission Unit) 
format of CCSDS (Consultative Committee for Space Data 
Systems) recommendation. It consists of 17 software units 
and total source line of codes is 979. Data Acquisition 
(DAQ) acquires telemetry data to be used by application 
software from serial, analog, or parallel ports, and formats 
them according to predefined telemetry format for downlink 
to groundstation. It consists of 5 units and total source line 
of codes is 583. Both CCI and DAQ are programmed in C-
language. 

The WCET acquired by traditional measurement was 
compared to the estimated WCET obtained using a static 
WCET analysis tool called TimeBounder which has been 
developed at KAIST. TimeBounder takes C source code 
and user defined flow constraints as its input, and returns 
WCET with the number of executions of each basic block. 
Figure 10 shows a screenshot of the tool.  Current prototype 
version supports only Intel 80386 target processor. 

Then the tighter WCET obtained by applying constraints on 

input data provided by domain engineer was compared to 
them. The representative result of the experiment is shown 
in Table 1. 

Table 1. Summary of Case Study 

118%46,2106120%2,395,01039,135DAQ_RDHW.Cdaq_read_hardware_data

125%406,515 1127%3,649,220 323,928CCI_C016.Ccci_ccsds_frm_processing

117%373,474 558%1,787,030 320,052CCI_C003.Ccci_command_processing

Ratio-2Method-2Ratio-1Method-1

Timebounder 1.0 Estimation (cycles)
Measurement  

(cycles)File NameModule name

118%46,2106120%2,395,01039,135DAQ_RDHW.Cdaq_read_hardware_data

125%406,515 1127%3,649,220 323,928CCI_C016.Ccci_ccsds_frm_processing

117%373,474 558%1,787,030 320,052CCI_C003.Ccci_command_processing

Ratio-2Method-2Ratio-1Method-1

Timebounder 1.0 Estimation (cycles)
Measurement  

(cycles)File NameModule name

 

Column Method 1 represents result of static WCET without 
applying the proposed method and column Method 2 is a 
result obtained after applying constraints on input data. 
Measurement was performed at target system using in-
circuit emulator with input data obtained from static 
analysis. As the tool does not provide explicit WCET path, 
we have to identify the WCET path and input data for 
measurements manually with help of GUI information 

 
Figure 10 - TimeBounder 1.0 
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provided by the tool. In the experiment, we could get almost 
an order-of-magnitude tighter WCET estimation. 

6. CONCLUSION 

WCET analysis is critical to design and validate real-time 
system software. Traditional timing analysis techniques 
depend on measurement which requires much time and 
effort to find proper test cases, to execute and measure their 
execution time. The WCET obtained by measurement is 
usually not safe either due to large input data space 
infeasible to try. The static WCET analysis techniques are 
introduced to resolve the problems of traditional dynamic 
timing analysis techniques, and to facilitate timing analysis 
process for real-time software. But static WCET analysis 
methods also have drawbacks. They overestimate WCET of 
real-time embedded system where there are constraints on 
input data or hardware dependency which may not be 
analyzable from the code itself. Furthermore, the estimated 
WCET from static analysis needs to be ultimately verified at 
target system before system deployment.  

We propose an efficient WCET analysis method which 
provides tighter WCET by utilizing constraints on input 
data from environment. The proposed hybrid WCET 
analysis framework provides tight estimation of WCET 
using static WCET analysis at early phase of system 
development, and facilitates verification and validation of 
timing constraints of real-time embedded system at target 
system during implementation and verification phase of 
system development. We could show effectiveness of the 
approach through a case study of satellite flight software. 

As future work, we plan to investigate further constraints on 
input data for real-time embedded system and categorize 
them for tighter estimation of WCET. We also plan to study 
on automatic generation of input data which corresponds to 
obtained WCET path for measurement at target system. 
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