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ABSTRACT

In this paper, we consider the routing and wavelength assignment problem in survivable WDM trans—
port network without wavelength conversion. We assume the single—link failure and a path protec—
tion scheme in optical layer. When a physical network and a set of working paths are given, the
problem is to select a link—disjoint protection path for each working path and assign a wavelength for
each working and protection path. We give an integer programming formulation of the problem and
propose an algorithm to solve it. Though the formulation has exponentially many variables, we solve
the linear programming relaxation of it by using column generation technique. We devise a branch—
and—price algorithm to solve the column generation problem. After solving the linear programming
relaxation, we apply a variable fixing procedure combined with the column generation to get an inte—
gral solution. We test the proposed algorithm on some randomly generated data and test results
show that the algorithm gives very good solutions.
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1. INTRODUCTION

Wavelength division multiplexing (WDM) technology is used to accommodate sev-
eral wavelength channels on a fiber. All-optical networks based on WDM tech-
nique are prime candidates for wide-area backbone networks. In WDM network,
an optical path (lightpath) with a dedicated wavelength is established for each
required connection and no two paths using the same wavelength pass through
the same link to avoid wavelength collision. The routing and wavelength assign-
ment (RWA) problem is to select suitable paths and to assign wavelengths for re-
quired connections without collision. RWA is important to increase the efficiency
of WDM networks. Thus, many studies on RWA have been performed [6, 7, 8, 16].

Survivability is an ability to recover the traffic when a network component
fails and it has been an important issue in designing the fiber-optic based tele-
communication network. In WDM network, several lightpaths pass a link and the
failure of a network component such as a fiber link can lead to the failure of all
those lightpaths. Moreover, each lightpath is expected to operate at a rate of sev-
eral Gbps, such a failure can lead to a severe disruption in the network’s traffic.

A layered transmission network such as WDM network, several layers (such
as SONET, ATM and IP) may have their own recovery procedures. However, the
recovery time for higher layers (such as ATM and IP) is still significantly large
(on the order of seconds), whereas we expect that restoration times at the optical
layer will be on the order of milliseconds to minimize data losses [3]. Furthermore
it is beneficial to consider protection mechanisms in the optical layer for the fol-
lowing reasons : (a) the optical layer can efficiently multiplex protection resources
among several higher-layer network applications, and (b) survivability at the op-
tical layer provides protection to higher-layer protocols that may not have built-in
protection [13]. Gerstel and Ramaswami [4] gives more detailed needs of optical
layer protection and its limitations.

There are several protection schemes in optical layer when a failure occurs.
Among them, the path protection is to set up the backup paths for the failed
lightpaths and to switch data to them. The scheme is being implemented in novel
0OXC (Optical Cross-Connect) which has the capability to change the routing pat-
terns at a node [14]. In wavelength assignment for protection paths, there are two
possible methods [10, 11]. One method assigns the same wavelength to the pro-
tection paths as its corresponding working path (method-I). The other method
assigns an arbitrary wavelength for each protection path (method-II). In method-I
because of the more strict limitation on wavelength reuse throughout the network
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the inefficient use of network resources such as wavelengths and optical fibers
may be caused. Method-II entails the cooperation of the electrical level path cross-
connect because the failed working path of a certain wavelength must be replaced
by the protection path with another wavelength [11]. Thus, in method-II, the
higher the bit rate of lightpath, the more significantly the protection performance
is affected by the processing capability of the electrical level switching and
method-II may face some difficulties when rapid protection is required.

Many studies on RWA considering survivability have been performed. Na-
gatsu et al. [11] decompose the problem into two subproblems and solve them se-
quentially. One is to construct working paths and the other is to construct protec-
tion paths. They proposed a heuristic procedure for each subproblem. Miyao and
Saito [9] proposed an integer programming formulation considering a path protec-
tion when full wavelength conversion is permitted in every nodes. Then, the prob-
lem is free from wavelength assignment for each path. They assume that the set
of possible pairs of a working path and corresponding protection path is given and
solve the formulation by CPLEX. Narula-Tam et al. [12] considers the RWA on
WDM ring networks. They calculated the lower bound on required wavelengths
and proposed routing and wavelength assignment algorithms. Kennington et al.
[5] consider RWA problem under a path protection scheme. They proposed a
mathematical formulation but they proposed a heuristic algorithm to solve the
problem. Zang et al. [17] also consider the RWA under a path protection scheme.
They consider a problem to route a working path and a link-disjoint protection
path and to assign wavelength for the paths. They proposed a mathematical for-
mulation with flow variables and developed a heuristic algorithm to solve the
problem. They solve the problem by separating routing and wavelength assign-
ment.

In this paper, we consider the routing and wavelength assignment (RWA)
under a path protection scheme when the working paths are given. We assume
the single-link failure scenario and method-II for wavelength assignment. Single-
link failure means that at most one link can be failed at a time and it is com-
monly used in survivability studies. To minimize the number of wavelengths, it is
efficient to decide the routing and wavelength assignment of working and corre-
sponding protection path simultaneously. But, the problem is very hard. In this
paper, we consider an intermediate problem which is to determine the routing of
protection paths and the wavelength assignment of working paths and protection
paths when working paths are given. When a physical network and a set of work-
ing paths are given, we must select a link-disjoint protection path for each given
working path. When a link fails, it is needed to use the predetermined protection
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paths without wavelength collision instead of the working paths passing the
failed link. Thus, we must assign a wavelength for each working and protection
path without wavelength collision. In other words, the working paths are given
and we decide the routing of protection paths and the wavelength assignment.
Constraints in wavelength assignment are described in the following section. The
objective is to minimize required wavelengths and it means to maximize the
wavelength reuse.

We call the problem survivable routing and wavelength assignment (SRWA)
problem. We give an integer programming (IP) formulation of SRWA. The formu-
lation has exponentially many variables but we can solve the linear programming
(L.P) relaxation of the formulation by column generation technique [1, 15]. The
column generation problem is also an NP-hard problem. We formulate it as an IP
and we propose a branch-and-price algorithm to solve it. After solving the LP re-
laxation, we propose a variable fixing procedure combined with column genera-
tion to obtain an integral solution.

This paper is organized as follows. In section 2, we describe SRWA and give
an integer programming formulation. We give an algorithm to solve the column
generation problem in section 3 and we present the overview of our algorithm for
SRWA in section 4. In section 5, we show computational results and conclusions
are given in section 6.

2. PROBLEM FORMULATION

As mentioned in the previous section, we consider the routing and wavelength
assignment problem in survivable WDM network. We assume the single-link fail-
ure and the following path protection scheme against the link failure. When a
working path is established, a protection path for the working path is also deter-
mined and the protection path is activated when the working path fails. The pre-
determined protection path for each working path is independent to the location
of the failure. In other words, a working path and the corresponding protection
path are link-disjoint. Thus, we assume that each working path has at least one
link-disjoint path.

In wavelength assignment, two working paths or a working path and a pro-
tection path which share links cannot use the same wavelength. But, the con-
straint between two protection paths can be relaxed. Two protection paths shar-
ing links can use the same wavelength if one protection path does not share any
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link with the working path corresponding to the other protection path. Consider
an example in Figure 1. Two protection paths r, and r, sharing link (1, 2) can

use the same wavelength because , and r, don’t be activated at the same time.

r
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Figure 1. An example for wavelength assignment constraint

We introduce the concept of identical survivable independent routing configu-
ration (ISIRC) which is a set of paths such that all contained paths can be estab-
lished using one wavelength under above protection scheme. If working path p is
contained in an ISIRC, then a corresponding protection path r must be con-
tained in it because p and r must use the same wavelength. A walk in graph is a
finite non-null sequence v,e,v,e,v,--e,u, whose terms are alternatively vertices

and edges such that the ends of e, are v,, and v, for 1<i<k. A walk is

closed if its origin node and terminal node are the same and a closed trail of a
graph is a closed walk that traverses each link at most once [2]. Because p and r
are link-disjoint, p and r form a closed trail. In other words, an ISIRC consists of
several closed trails and each closed trail is divided into a working path and a
corresponding protection path.

To formulate SRWA, we introduce some notation.

G = (V,E) : physical network
P : set of given working paths
0,.d, : two end nodes of working path pe P
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R(p) : set of all possible protection paths for working path pe P
R= U R(p)
peP
E@) : set of links used by path p
H(p) : set of all possible closed trails on G which contain working path
peP
H= U H(p)
peP
Eh) : set of links used by closed trail h e H
C; : set of all ISIRC'’s.

Note that a closed trail in H (p) consists of a working path p and a protection
path re R(p). In other words, E(h)=E(p)UE®F) and |H(p)l=l R(p)i. Then,

an ISIRC can be represented by a binary vector a, € B, The p™* element of
a,,denoted as a,, =1 if a closed trail in H (p) is contained in ISIRC ¢, otherwise,
a, =0.

With above notation, we can formulate SRWA as the following integer pro-
gram.

(SRWAP) min )z

ceCy

s.t. > a,z 21, for all peP )

pcec
ceC;

z, €{0,1} for all ceC, 2)

Each decision variable z =1, ceC; if ISIRC c is established, otherwise,
z, = 0. Constraints (1) ensure that at least one closed trail for each working path

must be selected. It also means that a protection path for each working path
should be established. We can easily obtain the wavelength assignment by assign-
ing the same wavelength to paths contained in an ISIRC. Then, a working path
and corresponding protection path use the same wavelength.

Let SRWALP be the LP relaxation of SRWAP, i.e. the problem obtained after
changing constraints (2) to z, >0 in SRWAP. We can omit z, <1 because that

a, €{0,1} and the objective function is to minimize z 2z, . Then the optimal ob-

ceCy

jective value of SRWALP provides a lower bound on the optimal objective value of
SRWAP since SRWALRP is a relaxation of SRWAP. Note that SRWALP has expo-
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nentially many variables. However, we can solve SRWALP by using the column
generation technique. In the column generation technique, first, we assume that a

subset C; of C, is given. Then we construct a restricted LP relaxation
SRWARLP, whose solution is suboptimal to SRWALP, by replacing C; by C; in
SRWALP. Let @, be the dual variables corresponding to the p™ constraint in

(1). We can solve SRWARLP and let z° be an optimal solution to SRWARLP énd
o’ be the values of the dual variables in SRWARLP. Then, z* is an optimal so-
lution to SRWALP if Z a*apc <1 for all ce C;\C,' because the reduced costs

peP
of all variables are nonnegative [1]. In other words, o is a feasible solution to
the dual of SRWALP. Therefore, the column generation problem can be formu-

lated as follows and we can check whether the current solution z”is optimal to
SRWALP or not by solving the problem.

(CGP) max ada,
5 ®)
s.t. ce(C,

Note that CGP is the problem to find a maximum weight ISIRC, where closed
trail h e H(p) has weight a; . If the optimal objective value of SP is greater
than 1, the obtained ISIRC is added to SRWARLP as a new entering column and
the updated SRWARLP is solved to optimality again. Otherwise, z* is an opti-
mal solution to SRWALP because that the above optimality condition is satisfied.

3. ALGORITHM FOR COLUMN GENERATION PROBLEM

As noted in the previous section, column generation problem is to find a maxi-

mum weight ISIRC, where closed trail h for p has weight a;. In an ISIRC, note

that no two protection paths are activated at the same time because the corre-
sponding working paths must be in the ISIRC and they don’t share any link. Thus
a link can be used either by only one working path or the link can be used arbi-
trary number of protection paths or the link can be shared by protection paths in
an ISIRC. Then, column generation problem can be formulated as follows.
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(SP1) max Y 3 ax,

peP heH(p)

st. > > dux, -|Pll-y)<0 for all ecE 4)
peP heH(p)
> > dhx, -y, <0 for all ecE (5)
peP heH(p)
x,,,y, €{0,1} for all he H and ec E

A closed trail consists of working path p and a corresponding protection path

r € R(p). The coefficient d], =1if the protection path r in closed trail h passes

edge e, otherwise d], =0. Similarly, d’ =1 if working path p in closed trail h

passes edge e, otherwise d% =0. Each decision variable x, =1 if closed trail
h € H is selected, otherwise, x, =0 . Decision variable y, =1 if edge ec E can
be used by a working path , otherwise, y, =0. Constraints (4) ensure that link e

may be used by protection paths if the link is not used by any working path. Con-
straints (5) ensure that at most one working path can pass on a link. Constraints
(4) and (5) satisfy the restriction for an ISIRC described in the previous section, so
a feasible solution to SP1 is an ISIRC.

The optimal objective value of the LP relaxation of SP1 gives an upper bound
on the optimal objective value of SP1. In constraint (4), | P, the coefficient of
¥,, can be changed any other sufficient large number such that all possible pro-

tection paths can pass the link. But, when the coefficient is large, the LP bound
might be bad. To get a better LP bound, consider the following another formula-
tion.

(SP) max Y 3 a,x,

peP heH(p)

s.t. > dhx, ~(1-y,)<0 for all peP, ecE (6)
heH(p)
> Y dhx, -y, <0 for all ec ¢
peP heH(p)
x,,y, €10,1} for all he H, ec E

Constraints (6) mean that link e can be used by a protection path for each
working path if the link is not used by any working path, so SP is also a valid
formulation. SP has more constraints than SP1. But, constraints (6) dominate
constraints (4) because the summation of (6) for each link gives constraints (4).
Thus, the LP relaxation of SP may give tighter bound than that of SP1 and we
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use SP for column generation.

The number of variables x, in SP is exponentially many. But, we can solve the

LP relaxation of SP by the column generation technique. After solving the LP relaxa-
tion, we develop a branch-and-price procedure to get an optimal solution to SP.

3.1 Column generation procedure for SP

Now, we explain the column generation procedure to solve the LP relaxation of
SP. Let SLP be the LP relaxation of SP and let RSLP be a restricted LP

relaxation obtained by replacing H(p) in SLP by H (p)< H(p),forall peP. Let
B, for all pePand ecEand p,, for all ec E, be the nonnegative dual
variables associated with constraints (6) and (7), respectively. We can solve RSLP
and let (x",y") be the obtained optimal solution to RSLP and let (B, p) be the

corresponding optimal dual solution. Then, the reduced cost of each closed trail
h e H(p), denoted ¢, is as follows.

ch:a;_ z ﬂpe_ Z 158
ecE(r) ecE(p)
If there is no closed trail whose reduced cost is positive, then current solution
(x",y") is optimal. Thus, column generation problem is to find a closed trail
whose reduced cost is maximum. For a working path p, the problem is to find a

closed trail containing p whose reduced cost is maximum. Note that a; and

> p, are determined values for a working path p because E(p) is known. Thus,
ecE(p)

we only find a protection path between o , and d, which has maximum weight
where link e has weight Bpe and the path must be link-disjoint with p. Then, the
column generation problem for p e P is to find a shortest path between 0, and
d, on a given network G =(V,E\ E(p)) with the link weight Epe . Because the
link weights are nonnegative, we can solve the problem in polynomial time. De-

note the obtained shortest path as r; and the weight of r; as lpr‘ If

a; —lpr* - z p, <0 for all peP, then (8,p) is an optimal dual solution to
ecE(p)

the dual of SLP and (x",y") is an optimal solution to SLP. Otherwise, we add
h e H(p) suchthat E(h)=E(p)UEGF") to RSLP for each p e P with a; - Zpr* -
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Z P, > 0and solve RSLP again. We can solve SLP by repeating the above col-

ecE(p)

umn generation procedure until no more columns is generated.

3.2 Branch-and-price procedure for SP

If the obtained optimal solution to SLP is integral then we solved SP. Otherwise,
we perform branch-and-price procedure to get an optimal solution to SP. Branch-
and-price procedure is the same as the branch-and-bound procedure except that
the column generation procedure is used to solve SLP at every node in the
branch-and-bound tree. In the branch-and-price procedure, a branching rule is
required such that the column generation is possible after branching. Devising
such a branching rule is an important key in the branch-and-price procedure [1,
15]. We devise a branching rule such that the column generation problem does
not be changed after branching.

Suppose that an optimal solution (x",y") to SLP is obtained. First we check
whether y: €{0,1} for all ecE. Denote U(x",y")c E as the set of links such
that corresponding y  has fractional value. If |U(x",y")|> 0, we branch on Yy

such that e’ = argmax . . We make two new branches, one of them would

ecU(x",y") Ve
force y. tobe 1, the other would force y. be 0. In the branch such that y. =1,
the column generation problem is not changed. In the other branch, link e” can-
not be used by any working path. So, column generation for the working paths
passing link ¢" does not be needed. For a working path which does not pass link
e, we can generate columns by solving above shortest path problem.

If |U(x",y")|=0, then either (x",y") is integral or x* is not integral. Sup-
pose that x* is not integral. We define P(x",y";e)c P for all ec E such that
working path pe P(x",y";e) if and only if there exists a closed trail h e H(p)
with x, >0 such that e e E(p). Note that it is determined whether each link is

used by a working path or not because |U(x",y")|=0. Then, we can derive follow-

ing proposition.

Proposition 1. Suppose (x*,y") is an optimal solution to RSLP. If |U(x",y")|
=0 and |P(x",y";e)l<1 forall ec E then > x,=0 orlforall peP.

heH(p)
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Proof. Suppose that there exists p’ such that 0< Z xh <1, then there exist
. heH(p")

a closed trail h e H(p) such that xZ > 0 . Consider another solution (x,y) such

that y=y', %, =x, forall h=h', and x.=1- x, . It is easily known
heH(p\A'}

that (x,¥) is feasible solution to RSLP because |U(x",y")|=0 and |P(x",y";e)|
<1 for all e e E . Moreover, the objective value of (x,y)' is greater than or equal

to that of (x",y") because the objective coefficient of L. a;* , is greater than or
equal to 0. First, if a;. >0, then it is a contradiction since (x",y) cannot be an
optimal solution to RSLP. Second, if a;' =0, then no closed trail for p° has

positivé reduced cost and no closed trail in H(p") can be generated. Thus, it is
also a contradiction because Y. x, =0.
heH(p")
If (x",y") is an integral solution, then |U(x",y")|=0 and |P(x",y";e)|<1.

Converse is not always true. However, we can derive following positive results
from proposition 1.

Proposition 2. Suppose an optimal solution (x",y") to RSLP is obtained by the
simplex method. If |U(x",y")|=0, if | P(x",y";e)I<1 for all ec E then (x',y")

is integral.

Proof. Clearly, y is integral. Suppose that xis not integral, then there exists

p  such that there exist xh ’s whose value is fractional and Z xh =1 by pro-
heH(p")

position 1. Define H(p';x")c H(p') such that he H(p';x') if and only if
x, >0 and he H(p"). Consider a solution (%,y) ,je H(p ;x ) which is ob-
tained as follows. We let y=9y", %, =x, if he H(p';x"), X, =0 if he H(p';
£ )\ {j}, and x, =1 if h=j. It is easily shown that (%, %Y is a feasible solution
to RSLP. Moreover, (x",y )= > x,(x,y) and Y x,= > x,=1.1In

heH(p"x") heH(p"ix") heH(p")
other words, (x",y") is represented by a convex combination of other feasible
solutions to RSLP. It is a contradiction since the simplex method always finds an

extreme point optimal solution. Thus, (x",y") is integral.
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By the above propositions, when y* is integral (|U(x",y") |=0), we only check
if !P(x*, y*;e)‘ <1 forall €€ E instead of checking the integrality of (x",y"). For
a given solution (x",y") such that |U(x",y")|=0, we get P(x",y;e) for all
ee E. Then, we choose e’ such that e" =argmax, ; | P(x",y";e)|. If |P(x",y";
e)|=1, we get an integral solution by proposition 2. Otherwise, we divide
P(x",y";e") into two disjoint sets P(x",y";e") and Py(x’,y;e’), such that
P(x",y;e)={p’} and P,(x",y";e")=P(x",y";e")\P(x",y";¢"), where p" =arg

max ... > x,. We choose the lowest index p  if ties occur. Then we
peP(x" )y se )hEH(p)
make two branches in the branch-and-bound tree such that any closed trail for

peP(x",y;e’) can not be selected in the first node and any closed trail for
peP,(x",y";e") can not be selected in the second node. That is, for the first node,
we require x, =0, for all he H(p) such that pe Pl(x*, y";e’) and for the sec-
ond node, we require x, =0, forall h e H(p) suchthat pe Pz(x*,y*;e*) .

To satisfy the above requirements, for each variable x, which is already
generated, we set the upper bound of the variable to 0 if he H(p) and
peP(x",y";e") in the first node, i.e. we set x, =0. Further, for each peP,

(x",y";e"), we don't need to generate column in the first node. Thus, the column

generation is still possible in the branch. We perform similar bound setting and
column generation in the second node.

We use the above branching rule by giving priority to y in branching. We
branch on y first if there exists any one which has fractional value and we branch
on x if y is integral. We can get an optimal solution to SP by branch-and-price
procedure using above branching rule.

4. OVERVIEW OF THE ALGORITHM FOR SRWA

In this section, we present the algorithm to solve SRWAP. First, we construct a
restricted LP relaxation, SRWARLP, which has a subset of the variables at first
stage and then add other variables when they are needed. In the previous section,
we explained the algorithm to solve the column generation problem SP which
gives an ISIRC to be added. After solving SRWALDP, if the obtained optimal solu-
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tion to SRWALP is not integral, we perform a variable fixing procedure to get an
integral solution to SRWA. In the procedure, we select a variable which has frac-
tional value in final SRWARLP and fix the value of the variable to be 1. We solve
the SRWARLP with the fixed variable and we generate more columns. We repeat
the variable fixing and column generation until we get an integral solution.

4.1 Column generation procedure for SRWA

Now, we explain the column generation procedure to solve SRWALP. First, we
construct an initial SRWARLP with a subset of C,. As shown in the previous sec-

tion, SP is to find a maximum weight ISIRC. Thus, we can get an ISIRC by solv-

ing SP with weight o =1, where 1 is a vector with all of its components 1. We
remove the paths in the obtained ISIRC from requirements and solve SP again.
We can construct initial SRWARLP with the ISIRC's obtained by repeating above
steps. In addition to the obtained ISIRC's, we add a dummy column consisting of
all ones with a large objective value to SRWARLP and solve it to optimality. The
dummy column ensures that a feasible solution to the SRWARLP exists. This
dummy column will be kept in the variable fixing procedure described in the next
subsection for the same reason. Let z° be the obtained optimal solution to
SRWARLP and o be the optimal dual solution. Then, we solve SP with the
weight vector o . If the optimal objective value of SP is less than or equal to 1,

then 2z satisfies the optimality condition and we have found an optimal solution
to SRWALP. Otherwise, we add the obtained ISIRC by solving SP to SRWARLP
and solve it again. We repeat the same procedure until no more column is gener-
ated. Then, we get an optimal solution to SRWALP.

If the obtained optimal solution to SRWALP is integral then the solution is
an optimal solution to SRWAP. Otherwise, we perform variable fixing procedure
described in the following subsection.

4.2 Variable fixing procedure for SRWA

After solving SRWALP, we must use the branch-and-price procedure to obtain an
optimal solution to SRWA. But the procedure has some difficulty in column re-
generation after branching as mentioned in section 3. So, we use a variable fixing
procedure only consider the case that z, is fixed to 1. To overcome the difficulty,

we devise a branching rule to solve column generation problem in section 3. How-
ever, we can't devise any method to overcome the difficulty on SRWAP and we
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consider only the case that variable z, is fixed to 1 and generate more columns

Construct initial SRWAR LP and Solve |

'*————| Add column and Soive

4

after fixing the variable.

Any column yes
generated?

no
yes

Integral Solution?

Figure 2. Flow chart of algorithm

First, we select a variable which has maximum value among the variables
having fractional value in the last SRWARLP and then fixed the value of the
variable to 1. After fixing, we solve SRWARLP and we perform the column gen-
eration procedure until no more columns is generated. If the obtained solution is
integral then we have found an integral solution to SRWA. Otherwise, we select
another variable which has fractional value and fixed it to 1 and then generate
columns again. We repeat above steps until we get an integral solution. The pro-
cedure does not guarantee to find an optimal solution to SRWA. But the last
SRWARLP may contain many columns that are part of the optimal solution be-
cause the most profitable columns are generated and we generate more columns
in the variable fixing procedure. Thus, we can expect to find a good solution. We
can check the quality of our solution by comparing it with the lower bound ob-
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tained from the optimal value of SRWALP. Computational results in the next sec-

tion show that our solution is very good. The flow chart of overall algorithm is
given in Figure 2.

5. COMPUTATIONAL RESULTS

We tested our algorithm on two networks. One is the NSFNET(National Science
Fundamental Network) and the other is EON(European Optical Network) which
are shown in Figure 3 and 4. For the test, we randomly generated 20 randomly
generated problem instances for each network. In each problem instance, we gen-
erated 1 or 2 working paths for all possible pairs of nodes with the same probabil-
ity. We use the shortest path between two nodes as the working path. The tests
were run on a Pentium PC (2.0GHz) and we used CPLEX 9.0 callable mixed inte-
ger library as an LP solver.

Figure 4. 19—node European Optical Network
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Test results are summarized in Table 4.1 and 4.2. In the tables, the heading #
of coll and # of col2 refer to the number of generated columns until SRWALP is
solved to optimality and the number of generated columns in the variable fixing
procedure after solving SRWALP, respectively. The heading # of fix refers to the

number of fixed variables in the variable fixing procedure. [Zgpy,;p | refers to
the value obtained by rounding up the optimal objective value of SRWALP which
provides a lower bound on the optimal objective value of SRWA. Z refers to the
objective value obtained by our algorithm. Dif is defined as Dif = Z-[ Zgpy;p |
and it gives an upper bound on the difference between the optimal solution value

and obtained solution value. We give the objective value obtained by branch-and-
bound procedure without more column generation under the heading of Z,,, . The

time to solve the problem by our algorithm is reported under the heading of Time.

Table 1. Computational results on NSFNET

#ofcoll | #ofcol2 | #of fix [ZSRWALP-| Zy, Z Dif Time
1 132 32 6 28 29 28 0 95.7
S 2 235 39 12 25 26 25 0 1226.3
3 200 45 10 27 28 27 0 529.9
4 336 99 6 23 24 23 0 2093.4
5 172 114 8 29 30 29 0 981.6
6 176 62 5 25 26 25 0 131.0
7 247 70 15 . 29 30 29 0 1010.5
8 199 97 7 25 26 25 0 480.4
9 165 31 5 26 26 26 0 345.0
10 221 77 6 21 22 21 0 929.1
11 143 16 1 25 25 25 0 310.0
12 255 30 4 29 30 29 0 1151.3
13 179 14 2 24 24 24 0 268.7
14 177 125 12 24 26 24 0 1088.7
15 254 51 5 25 26 25 0 758.3
16 201 51 5 28 29 28 0 629.6
17 100 20 9 29 30 29 0 19.2
18 179 27 1 24 24 24 0 362.0
19 172 19 2 23 23 23 0 327.2
20 157 55 13 26 27 26 0 435.3

Test results show that our algorithm gives optimal solutions to all test prob-
lem instances. SRWALP gives a very tight lower bound on the optimal objective
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value of SRWA. As shown in the Table 1, # of col2 is much less than and # of coll
because most of the columns contained in an optimal solution are generated be-
fore variable fixing procedure on NSFN. Z, . shows that branch-and-bound pro-

cedure without additional column generation gives comparatively good solutions
on NSFN. But, the # of col2 is relatively large on EON and Z,,, is not good. This

means that the column generation after variable fixing is effective and our vari-
able fixing procedure gives an optimal solution to all test problem instances.

Table 2. Computational results on EON

#ofcoll | #ofcol2 | #offix |[Zsgmarr || Zow z Dif Time

1 109 32 14 53 54 53 0 36.3

2 109 84 29 52 55 52 0 129.6

3 118 49 16 57 60 57 0 60.6

4 92 79 23 56 58 56 0 82.7

5 127 159 27 49 54 49 0 131.4

6 97 29 17 57 58 57 0 53.6

7 116 138 31 48 53 48 0 210.9

8 117 195 27 51 55 51 0 208.8

9 102 43 17 52 55 52 0 52.5

10 113 155 27 49 54 49 0 108.7
11 98 30 15 52 55 52 0 85.9
12 114 74 25 55 58 55 0 59.7
13 89 45 28 56 58 56 0 44.7
14 110 77 20 52 56 52 0 62.5
15 112 60 18 52 55 52 0 49.6
16 115 117 24 51 54 51 0 133.6
17 106 42 18 55 58 55 0 45.6
18 92 47 25 57 60 57 0 82.9
19 87 38 12 57 58 57 0 59.0
20 104 72 26 54 57 54 0 220.0

6. CONCLUDING REMARKS

In this paper, we consider the routing and wavelength assignment problem on
survivable WDM network under the single-link failure. We assume that a work-
ing path and corresponding protection path use the same wavelength. We pro-
posed an integer programming formulation and an algorithm to solve it based on
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the column generation technique. To solve the column generation problem, we
developed a branch-and-price algorithm. In the algorithm, we devise a branching
rule not destroying the structure of the column generation. After solving the LP
relaxation, we applied a variable fixing procedure combined with column genera-
tion to obtain an integral solution. We tested our algorithm on randomly gener-
ated data and test results showed that our algorithm provided very good solutions

In this paper, we considered the path protection scheme. Considering other
protection schemes could be good research works. We consider the case that work-
ing path are given. Then, the routing of working path may affect the results. To
check the influence of the routing of working paths using the model in this paper
under various routing strategies of working path can be a meaningful work.
Moreover, the problem to decide the routing of working paths and corresponding
protection paths and wavelength assignment together may be a good research.
Researches on that case have been performed [5, 17] but they are concentrated on
developing heuristic algorithms.
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