Supply Chain Coordination in New Product Development

Nov. 7, 2007

Chulsoon Park and Bowon Kim

Korea Advanced Institute of Science and Technology, Korea

INFORMS 2007 WC01

Supply Chain Coordination in NPD

- Supplier Involvement in New Product Development
 - Early supplier involvement is generally defined as a form of vertical cooperation in which manufacturers involve suppliers at an early stage in the product development and/ or innovation process (Bidault et al., 1998).
 - Involving suppliers in NPD is one way of gaining strategic flexibility through reduced cost, reduced concept-to-customer development time, improved quality, and access to innovative technologies that can help firms gain capture market share (Handfield et al., 1999).

Research Motivation

- "Conflicting" Effects of Supplier Involvement
 - Companies have involved suppliers in their NPD processes, achieving *fast project times* (Clark, 1989; Clark and Fujimoto, 1991), *better product quality* and *lower project costs* (McGinnis and Vallopra, 1998;Ragatz et al., 1997).
 - However, other researchers have found that suppliers have *little practical influence* on the overall project technical success (Hartley et al.,1997), and *even a negative impact* on project development time if they delay their activities (King and Penleskey, 1992). Also, in a literature review of product development, Brown and Eisenhardt (1995) show that it is *not clear* exactly how or when it is appropriate to involve suppliers in the development process.

Research Objective & Question

- Investigate whether the supply chain coordination efforts improves the performance of new product development and, if so, whether there exists any moderators
- Generate hypotheses that make it clearer the relationship between supply chain coordination and the performance of new product development project

NPD Characteristic

- NPD Process
- Product definition
- Task interdependency

SCM Characteristic

- Timing of supplier involvement
- Supplier's capabilities
- Strategic/organizational similarities

Coordinated Project Performance

Meta-Analysis: (1) Data Collection

- Electronic database
 - Computer search of the *National Digital Science Library (NDSL)** using the following Boolean expression based on a review of the abstracts
 - AB= supplier [AND] (involvement [OR] integration) [AND] product
 - Year: 1995 or later
 - Journals from the management, management science, marketing, operations management, service management, and technology management literature
- Reference sections of articles
 - Google scholar
- Published articles only in English

Meta-Analysis: (2) Characteristics of Research Samples

					Sample size —		
			~				
No.	Study	Methods	Country	Industry	Firm Size	Years	N
1	Ledwith and Coughlan (2005)	Correlation	Ireland,UK	Electronics	Mixed	N/A	60
2	Eisenhardt and Tabrizi (1995)	Regression	Mixed	Computer	N/A	N/A	72
3	Hartley et al. (1997a)	ANCOVA, Regression	US	Mixed	Small/Med	N/A	79
4	Saxton (1997)	Correlation, Regression	Mixed	Chemical	N/A	1994-1995	98
5	Tan and Tracey (2007)	Path Analysis	US	Manufacturing	Mixed	N/A	175
6	Sobrero and Roberts (2001)	Regression	Europe	Home appliances	N/A	N/A	50
7	Primo and Amundson (2002)	Regression	N/A	Electronics	N/A	N/A	38
8	Zirger and Hartley (1996)	Regression	US	Electronics	N/A	N/A	44

Meta-Analysis: (3) Corrections for Artifactual Attenuation of Study Correlations

- Correction for sampling error $\sum N_i r_i$ Corrected estimate of mean correlation: $\overline{r} = \frac{i}{\sum_{i} N_{i}}$ Corrected estimate of study correlation variability: $S_r^2 = \frac{\sum_i \left[N_i (r_i - \overline{r})^2 \right]}{\sum_i N_i}$ Corrected estimate of sampling error variability: $S_e^2 = \frac{K(1 - \overline{r}^2)^2}{\sum N_i}$ (*K*=number of studies)
 - Corrected estimate of variability of the population correlation:

Meta-Analysis: (4) Hunter and Schmidt's Heuristics

- RATIO1 \overline{r} >> 2
 - RATIO1($=\frac{\overline{r}}{S_{\rho}}$) $\geq 2 \Rightarrow$ reasonably safe to say "Corr_pop > 0 "
 - \implies The factor affects the performance positively
 - RATIO2 • RATIO2($=\frac{S_e^2}{S_r^2}$) $\ge 0.75 \Rightarrow$ reasonably safe to say " there is one Corr_pop " \implies Other variables are not likely to act as moderators

Meta-Analysis: (5) Performance Measure and Supplier Involvement Characteristics

No.	Study	Methods	Performance Measure	SCC Characteristic	N	Corr.	Signif?	Country	Industry
1	Ledwith and Coughlan (2005)	Correlation	Project Success	Level of Cooperation	- 36	-0.122 h	٩o	Ireland	Electronics
1	Ledwith and Coughlan (2005)	Correlation	Project Success	Level of Cooperation	- 24	0.44 <u>r</u>	o≤0.05	UK	Electronics
1	Ledwith and Coughlan (2005)	Correlation	Project Success	Level of Cooperation	- 33	-0.105 h	٩o	Ireland,UK	Electronics
1	Ledwith and Coughlan (2005)	Correlation	Project Success	Level of Cooperation	- 33	0.329 h	٩o	Ireland,UK	Electronics
1	Ledwith and Coughlan (2005)	Correlation	Project Success	Level of Cooperation	60	0.163 h	٩o	Ireland,UK	Electronics
2	Eisenhardt and Tabrizi (1995)	Regression	Development Time	Stage number of supplier involve	72	-0.13 h	٩o	Mixed	Computer
3	Hartley et al. (1997a)	ANCOVA, Reg	Project's overall delay	Supplier's technical capabilities	79	0.22 h	٩o	US	Mixed
3	Hartley et al. (1997a)	ANCOVA, Reg	Project's overall delay	Length of the supply relationshi	79	0.04 h	٩٥	US	Mixed
3	Hartley et al. (1997a)	ANCOVA, Reg	End product quality	Supplier's technical capabilities	79	0.2 h	٩o	US	Mixed
3	Hartley et al. (1997a)	ANCOVA, Reg	End product quality	Length of the supply relationshi	79	0.14 h	٩o	US	Mixed
4	Saxton (1997)	Correlation, Re	Alliance outcome	Prior relationship	98	0.24 h	٩o	Mixed	Chemical
4	Saxton (1997)	Correlation, Re	Alliance outcome	Strategic similarities	98	0.32 g	o≤0.05	Mixed	Chemical
4	Saxton (1997)	Correlation, Re	Alliance outcome	Organizational process similaritie	98	0.01 h	٩o	Mixed	Chemical
4	Saxton (1997)	Correlation, Re	Alliance outcome	Degree of shared decision makin	98	0.29 g	o≤0.01	Mixed	Chemical
5	Tan and Tracey (2007)	Path Analysis	Customer satisfaction	Collaborative NPD environment	175	0.35 g	o≤0.01	US	Manufactu
5	Tan and Tracey (2007)	Path Analysis	Customer satisfaction	Degree of supplier involvement	175	0.192 <u>r</u>	o≤0.05	US	Manufactu
б	Sobrero and Roberts (2001)	Regression	Efficiency of relationship	Design scope of relationship	- 50	0.23 1	٩o	Europe	Home appli
б	Sobrero and Roberts (2001)	Regression	Efficiency of relationship	Level-of-task interdependency	- 50	-0.15 h	٩o	Europe	Home appli
б	Sobrero and Roberts (2001)	Regression	Learning of relationship	Design scope of relationship	- 50	0.49 <u>r</u>	o≤0.01	Europe	Home appli
б	Sobrero and Roberts (2001)	Regression	Learning of relationship	Level-of-task interdependency	- 50	0.37 g	o≤0.01	Europe	Home appli
7	Primo and Amundson (2002)	Regression	Quality index	Supplier involvement	38	0.522 g	o≤0.05	N/A	Electronics
7	Primo and Amundson (2002)	Regression	Project speed	Supplier involvement	38	0.185 1	٩o	N/A	Electronics
7	Primo and Amundson (2002)	Regression	Projected R&D budget	Supplier involvement	38	0.195 1	٩o	N/A	Electronics
7	Primo and Amundson (2002)	Regression	Time-to-market objective	Supplier involvement	38	0.031 1	٩o	N/A	Electronics
7	Primo and Amundson (2002)	Regression	Product cost objective	Supplier involvement	38	0.077 1	٩o	N/A	Electronics
8	Zirger and Hartley (1996)	Regression	Development Time	Supplier involvement	- 44	0.017 h	٩o	US	Electronics

Meta-Analysis: (6) Funnel Plot

 Funnel shaped ⇒ sampling error decreases as sample size increases ⇒ satisfying the assumption that there is one underlying effect size

Meta-Analysis: (7) Results of the Meta-Analyses

Corrected Estimates

 $\overline{r} = 0.198, \ S_r^2 = 0.021, \ S_e^2 = 0.013, \ S_o^2 = 0.007$

- Does supplier involvement improve the project's outcome? RATIO1($=\frac{\overline{r}}{S_{2}}$) =2.319 $\geq 2 \Rightarrow$ reasonably safe to say "Corr_pop > 0 " Supplier involvement improves the project's outcome
- Is there any moderator to affect the improvement? RATIO2(= $\frac{S_e^2}{S_e^2}$)=0.646 < 0.75 \Rightarrow Not safe to say " there is one Corr_pop "

• Other variables are likely to act as moderators

Product Strategy of Players • Competitive priorities • Cost/Quality/Time/Flexibility NPD Characteristic • NPD Process, Product Def. •Organization/Teaming Fitness of Players **Coordinated Project** • Business model fit Performance • Fit of strategy SCM Characteristic • level of responsibility • degree of information sharing Capabilities of Players • Manufacturer's capability **Moderators** • Supplier's capability

Extended Framework

12/16

Hypothesis 1

H1a: In the *mature* industry, *early* supply involvement improves the coordinated project performance.

H1b: In the *mature* industry, supplier having *more responsibility* improves the coordinated project performance.

Hypothesis 2

H2a: In developing the *innovative* product, *early* supply involvement improves the coordinated project performance.

H2b: In developing the *innovative* product, supplier having *more responsibility* improves the coordinated project performance.

Contribution

- Through the meta-analysis of relevant literatures, this research shows that it is reasonably safe to say "the supplier involvement improves the performance of new product development project"
- Based on the detailed literature review, we find the highly possible moderators that change the effect size of supplier involvement.
- Generate the hypotheses that can identify the relationship between the supplier involvement and new product development.

Limitation and Future Research

- For meta-analysis
 - Small numbers of studies that provide the correlation information between relevant variables.
 - Performance are not measured with same dimension.
 - Little literature have studied the performance of coordinated product development project with the perspective not only of supply chain but also of new product innovation.
- Empirical studies are needed to test the hypotheses we proposed.

Thank You For Listening Questions or Comments?

Supplier Involvement Model

Variables

• Control Variables

 t_1 = timing of supplier involvement,

u(t) = investment efforts of manufacturer at time t.

• State Variable

x(t) = product quality level (or technology achievement level) at time t. $x^+(t_1)$ = product quality level after the supplier involvement $x^-(t_1)$ = product quality level before the supplier involvement

• Notations

T = duration of NPD project

b =decay rate of technology achievement

P(T,x(T)) = lump sum profit at time *t*

f(t,x,u) = cost function of product development during project period

Optimal Control Model

$$\max_{\substack{u\geq 0\\0\leq u_1\leq T}} \int_0^T f(t, x, u) \, dt - c(t_1)(x^+(t_1) - x^-(t_1)) + P(T, x(T))$$

subject to

$$\dot{x} = u - bx,$$

 $x(0) = x_0 > 0, \quad x(T) \text{ free},$
 $u \ge 0,$
 $x(t) = \begin{cases} x(0) + \int_0^t (u(s) - bx(s)) ds, & 0 \le t \le t_1 \\ x(0) + \int_0^t (u(s) - bx(s)) ds + (x^+(t_1) - x^-(t_1)), & t_1 < t \le T \end{cases}$

References

"Are iPod's Hard Drive Days Numbered?" Business Week, October 10, 2007

"Return of The Easy Rider," Business Week, September 17, 2007

- Bidault, F., Despres, C. and Butler, C. (1998) New product development and early supplier involvement(ESI): the drivers of ESI adoption. *International Journal of Technology Management*, 15(1/2), 49-69
- Brown, S.L., Eisenhardt, K.M. (1995) Product development: past research, present findings, and future directions, and future directions. *Academy of Management Review* 20 (2), 343–378.
- Clark, K.B. (1989) Project scope and project performance: the effect of parts strategy and supplier involvement on product development. *Management Science* 35 (10), 1247–1263.
- Clark, K.B., Fujimoto, T. (1991) Product Development Performance: Strategy, Organization, and Management in the World of Auto Industry. Harvard Business School Press, Boston.
- Eisenhardt, Kathleen M. and Tabrizi, Behnam N. (1995). Accelerating Adaptive Processes: Product Innovation in the Global Computer Industry. *Administrative Science Quarterly*. 40(1):84–110 (March)
- Gerwin, D., Barrowman, N.J. (2002) An Evaluation of Research on Integrated Product Development. *Management Science*, 48(7), 938-953
- Handfield R.B., Ragatz G.L., Petersen KJ. and Monczka R.M. (1999) Involving Suppliers in New Product Development, *California Management Review*, 42 (1), 59-82.
- Hartley, J.L., Meredith, J.R., McCutcheon, D., Kamath, R.R., (1997). Suppliers' contributions to product development: an exploratory study. *IEEE Transactions on Engineering Management* 44 (3), 258–267.
- Hartley, Janet, Zirger, B.J. and Kamath, Rajan (1997). Managing the Buyer–Supplier Interface for On-Time Performance in Product Development. *Journal of Operations Management* 15(1):57–70.

References (cont'd)

- Hunter, J., F. Schmidt (1990). Methods of Meta-Analysis. Sage, Newbury Park, CA.
- King, B.E., Penleskey, R.J. (1992) Impediments to timely delivery of new products at an industrial product firm. International Journal of Operations and Production Management 12, 56–65.
- Ledwith, A. and Coughlan, P. (2005) Splendid Isolation: Does networking really increase new product success? *Creativity and innovation management*, 14, 366-373
- McGinnis, M.A., Vallopra, R.M., 1998. Purchasing and Supplier Involvement: New Product Development and Production/Operations Process Development and Improvement. Center for Advanced Purchasing Studies, Tempe, AZ.
- Primo, M., Amundson, S.D. (2002) An exploratory study of the effects of supplier relationships on new product development outcomes. *Journal of Operations Management*. 20. 33-52
- Ragatz, G.L., Handfield, R.B., Scannell, T.V. (1997) Success factors for integrating suppliers into new product development. *Journal of Product Innovation Management* 14, 190–202.
- Saxton, Todd (1997). The Effects of Partner and Relationship Characteristics on Alliance Outcomes. *Academy* of Management Journal 40(2):443–462 (April).
- Sobrero, M., Roberts, E. B. (2001) The Trade-off Between Efficiency and Learning in Interorganizational Relationships for Product Development. *Management Science*. 47(4). 493-511
- Tan, C. L., Tracey, M. (2007) Collaborative New Product Development Environments: Implications for Supply Chain Management. 43(3). 2-15
- Zirger B, Hartley J. (1996) The effect of acceleration techniques on product development time. *IEEE Transaction on Engineering Management*. 43:143–52.