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Abstract

The streaming rays(SR) method is improved and extended to multigroup, anisotropic scattering,
and three-dimensional angular space(x-y-z(infinite))problems. This method is applied to the shield-

ing problems in which the ray effect occurs seriously. For verification, the results of MORSE-CG

code are used as reference solution and the results of TWODANT code are compared. The results
show that solutions of the SR method are much better than those of the TWODANT code and are
in good agreement with those of the MORSE-CG code. Also, to reduce computing time, two accel-
eration algorithms are implemented in the SR method : the standard coarse-mesh rebalance and a

new angular two-grid acceleration.

1. Introduction

Although the discrete ordinates method (Sn met-
hod) has been effectively used in various neutron
transport calculation, the method is difficult to apply
to complex geometries and can be subject to the ray
effect [1]. The term ray effect refers to the anomal-
ous scalar flux distortion that appears when the con-
ventional discrete ordinates method is applied to cer-
tain problems having strong absorbers and localized
sources. The problems with isolated sources in ab-
sorbing media are encounted in shielding calcula-
tions where streaming from isolated sources is domi-
nant. The ray effect is due to the discretization of
angular variable of the transport equation in the dis-
crete ordinates approximation, that is to say, destruc-
tion of rofational invariance of the transport equa-
tion. In the problem that has a localized source in a
streaming dominant medium, the edge flux is mainly
ascribed to the uncollided neutrons from the source
and the flux distribution is highly peaked.
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In the Sn method, the ray effect occurs because of
two reasons ; the one is inability of estimating the flux
contributing to streaming, and the other is inability of
quadrature formula in approximating reasonably the
scalar flux from the discrete angular fluxes by using
proper angular weights. Consequently, many efforts
to mitigate this defect have been made and applied
to the previous codes. Monte Carlo method [2] is
very accurate for most problems and applicable to
geometrically complicated problems but is subject to
large variance for deep penetration problems and to
long computing time. With a view of preserving the
rotational invariance, many discrete ordinate trans-
port equations in two dimensions equivalent to the
P, approximation [1] have been developed success-
fully in reducing the ray effect. However, these met-
hods have common defect that the convergence of
iteration is very slow and that the computational
scheme is much more difficult than that of Sy met-
hod. The finite element method(FEM) approach [3]
to the transport problem, where angular and spatial
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variables are expanded by using piecewise linear or
bilinear basis functions, have also been developed.
The results of these methods show that scalar flux
distribution on the edge is very smooth and undistor-
ted, but the accuracy is very poor when low order
functions of angular variables are used.

The SR method [4, 5, 6] combines the character-
istic method[6] where the outgoing flux is calculated
by integrating the transport equation along the char-
acteristic line, with the conventional local mesh met-
hods where discrete ordinate angular quadrature sets
are used as in the Sy method. Therefore, computa-
tional simplicity of the Sy method is preserved, but
the entire medium is overlaid with streaming rays for
each direction. In the SR method, to improve accu-
racy of the streaming portion, the uncollided flux is
calculated analytically by integrating transport equa-
tion along the streaming rays and the collided flux is
calculated as in the Sy method. Another feature of
the SR method is that a finer angular quadrature set
is used for the streaming portion of transport calcu-
lation than in the determination of scattering source,
which provides efficient means for the ray effect for
anisotropic problems.

In this paper, the SR method developed by Filip-
pone on the basis of the characteristic methods is
applied to the problems where the ray effect is ser-
ious, with extensions to multigroﬁp. anisotropic scat-
tering problems and to three-dimensional angular
space (x-y-z{infinite)) [7]. The extension to three-dim-
ensional angular space (x-y-z{infinite)) has significant
importance for improving accuracy of the SR met-
hod. In addition, as acceleration schemes, the stan-
dard coarse-mesh rebalance is implemented and a
new angular two-grid acceleration scheme is devel-
oped.

2. Theory and Methodology of SR Method

2.1. Decomposition into Uncollided and Collided
Angular Fluxes

The starting equation of the SR method is the well
known neutron balance equation that is used in Sy
method :

UnACE, 12— T iv1/2.9)
+ 72, B( ¥ i j—12— i j+1/2)
+q,.;V=0¥,.;V, (1)

where A and B are surface areas of the vertical and
horizontal faces of the ij'th cell, respectively. V is the
volume of the ij’th cell and ¢...; is the total source.
Subscript n denotes the direction for each streaming
ray. Unlike the Sy method, the interior and edge flux-
es of each cell are decomposed into the uncollided

and collided parts :
U,= 0+ ¥, (2)

where the superscripts “0” and “c” indicate the cell
uncollided and collided parts, respectively, and the
indices i and j are suppressed. The terms “cell collid-
ed” and “cell uncollided” have meaning only in the
cell. Therefore, the incoming cell collided flux is set
to zero, since neutrons comprising this flux did not
make collisions vet in the cell. The balance equation

for the cell uncollided part becomes :

R AT ici i — P i) (3)
+09,B(E icip— T i) = 0V i

In the above equation, the source is zero, since
uncollided neutrons in the cell are totally ascribed to
incoming neutrons. The balance equation for the cell
collided flux is obtained by subtracting Eq.{(3) from
Eq.(1):

qn, t,jV_ (/lnA wjl i+l/2,i+ 7]an: i,i+1/2)
= 0¥V, (4)

If the diamond difference approximation in the SR
method :

12, =200 i = iivi

is used, the following equation is obtained :

LV
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This equatiorn always gives positive cell average
flux even though diamond approximation is used.
This is an important advantage of SR method since
standard Sy method may give negative flux under cer-
tain situations when diamond approximation is used.

To obtain uncollided flux, the characteristic form
of the Eq.(3) is used :

sin 6, L5284 5075, D=0, )

where p represents coordinate of projected direction
of neutron moving direction onto x-y plane, k coordi-
nate perpendicular to p and 6, polar angle of neu-
tron moving direction. In deriving Eq.(6), the follow-
ing geometric relation is used :

p = ssin @

where s represents coordinate of neutron moving di-
rection (see Fig. 1).

Integrating Eq.{6) over the mesh cell, the following
equation is obtained :

sinf, k=
wf;,f,;=7 A de{ U (pin, R

- w'o(poufok)}; (7)

where p. and p.. mean incoming and outgoing
p-coordinates, respectively, and & is projected area
of the medium on a plane perpendicular to neutron
moving direction. Since the above integration cannot
be performed analytically, it is approximated by using
values of streaming rays as :

~ Sinon { in__ , ou
=y 2, W (=), @)

where W' is spatial weight of /’th streaming ray. The
spatial weights are chosen so that summation of the
weights is equal to %me. The outgoing uncollided flux
along the /’th streaming ray is obtained by analyti-
cally integrating Eq.(6). The result is as follows :

. oyt
P = e ©)

Inserting this result into Eq.(8), the equation for the
cell uncollided flux becomes
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is the spatial weight for the ' th ray.

For the next cell calculation, total outgoing surface
flux (collided and uncollided flux) is set to incoming
surface flux for the next cell :

Ri;s1= R+ W' (20, vie12)
if next cell is (i,j+1) {11)

and

Ris1j=RIAW'T, [z, v))

if next cell is (i+1,j). (12

Now that all the required equations are obtained,
the solution of SR method can be found via the con-

ventional scattering source iteration algorithm.
2.2. Angular Quadrature Set

The SR method requires a special azimuthal
angles for computational simplicity but polar angles
are arbitrary. The angular weights corresponding to
each direction are chosen carefully since an inappro-

priate choice leads to inaccuracy of the solution. The

Fig. 1. Coordinates System
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following conditions for azimuthal angles must be sat-
isfied [4] :

tang, = (A/B)% r/(N,+1—7),

r=1,2,3,-, N,
PoN,+1~r =A@y, ¥= 1,2,3, '",N(p;
Pon,+» =7+ e¢,,v=1,2,3,-2N,, (13)
where N, is the number of azimuthal angles for an

octant, with weights determined by

u}p =(§01+¢2)/2,

w, =(e,y1—¢,-1)/2,r=2,3,4,,4N,—1,

w:N’ =21—(@n, -1t o an)/2. (14)

Here, the polar angles are simply determined by the

following equation :
&,= cos§,=(p—1/2)(1/Ny),
»=1,2,3,, Ng, (15)

where N._ is the number of polar angles for upper

hemisphere. with uniform weights :

wh= Al/:, »=1,2,3,-, Ne. (16)

4

The total weights are products of the azimuthal and
polar weights. These total weights are normalized so
that the summation is unity.

The numerical results we obtained show that the
shape of the edge flux distribution depends mainly
on the number of azimuthal angles and associated
weights, while amplitude of the distribution depends
on the number of polar angles and polar weights.
For most problems, only two polar angles in half

hemisphere are sufficient.

2.3. Scattering Source

The directions of the streaming rays need not to
correspond to directions used to describe the angular
fluxes and sources. In SR method, a finer angular
quadrature set is used to calculate the streaming
component than that used in determination of the

source. In this treatment, the fine angular fluxes are
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not saved, but used only in forming the coarse angu-
lar fluxes. Therefore, this leads to large savings in
computer storage requirement without significantly
affecting accuracy of the calculation. The scattering

source for m’th angular group is given by

Swe= 22 0"S} (17)
nem
where
G N ) ,
Se= Zl le” Oy (W' —m) ¥y (18)
g=1n=
Defining
0" D 00y (0 —n) L
0 T nem nem .
mm
88 Z 'WZ'
nem (19)

and approximating this equation under the assump-
tion that the number of angular groups(M) is chosen
large enough to adequately represent the anisotropy

of the scattering kernel, the following equation is

obtained :

Cmm'gg’ = 2 . 2 " WOy (0 —m).

neEm nem
Then, Eq.(18) becomes
G M

Smg: gz=:l m,2= . Cmm' gg’ qrrn'g' , (20)
where .
Vpe=1wn 2 0"P; and wWn= 2 o

nem neEm

Finally, the scattering source for the streaming ray is

given by
S
Se=—"%, nem.
wm

For isotropic scattering problems, this treatment is
exact. However, for anisotropic scattering problems,
the scattering cross section can be expanded by us-
ing Legendre polynomials. For example, in case of
linearly anisotropic scattering, the scattering cross sec-

tion is given by the following equation :
O mm'gg’

= 2 w”‘w”(osgg'0+305gg~1/10(n, n))

nem nem
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=asgg'0w,,,'w,,,
+3dsggl Z  Holn, n) 0" 0", @21)

where uoln, n ") is cosine of the angle between direc-
tion {» and Or

3. Acceleration of SR Method

Since the SR method requires more arithmetic

operations than Sy method for each iteration, the cor-

responding computing time is longer. Therefore, im-
plementation of acceleration scheme in the SR met-
hod is needed. The potentially most effective acceler-
ation methods used to date are coarse-mesh rebalan-
ce methods and diffusion synthetic methods. In par-
ticular, the diffusion synthetic acceleration (DSA) [8,
9, 10} is a powerful scheme for the Sx method, but it
is not considered in this study since the stable differ-
ence scheme of the diffusion equation is difficult to
find. In this study, a simple angular two-grid acceler-
ation method is developed as an alternative to the
DSA scheme, to avoid the algebraic complexities re-
lated with the derivation of the DSA equation and
the standard coarse-mesh rebalance method is imple-
mented. It is well known that, to have a stable DSA
scheme, the DSA equation must be derived from the
discretized transport equation [8, 9], but this deri-
vation is extremely difficult to perform in higher-order
differencing schemes and in multidimensional prob-
lems. On the other hand, the coarse-mesh acceler-
ation method is applicable to any transport problems
with balance equation. But it requires more iterations
than the DSA scheme and has instabilities in optical-
ly thick problems. The angular two-grid acceleration
method uses a transport equation of lower order as
the lower operator to reduce the error. Since our
angular two-grid acceleration method uses simply less
number of discrete angles, the implementation is very
simple and the instability does not occur. But a lon-
ger time is required to solve the diffusion equation in
DSA This method is described only in one-dim-
ensional geometry with isotropic scattering but vari-
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ous numerical tésts are performed in x-y geomeiry.
The one-dimensional transport equation for isotropic
scattering medium is as follows :

9 @m.IH/Z

1+l/2
Hy dx +

=c¢p+S" (22)

and
=2 0n¥h,
m

where ¢ is the ratio of scattering to total cross section

m=1,2,3,-,M, (23

and, for convenience, g, is set to unity. If we consider
Eq.(22) only for the coarse angular set{C.), where its
element is denoted by subscript @, we obtain

P w.a 1+1/2

A+172

pa 5 ——+ T = c4i 48", aeCo,
(24)

Also, the equation with source ¢g, ™' 2 can be written

as follows :

a, l+1/2 o

e 8uax o= FI L g8 pe o
(25)

Subtracting Eq.(25) from Eq.(24), we obtain

a, 1+1/2

ﬂa_@%?r+ca.1+1/2= o B gy

(26)
where
Ca. +1/2 u® +172 __ wﬂ I+l/2 (27)

We define the angular group correction as follows :

Cf,,“/ZE 1 > a)aca,l+l/2' (28)
m a€em
where
W= 22 . (29)

aEeEm
The angular group flux is updated as follows :

wl+1 w1+1/2+(9cl+1/2 (30)

where the relaxation factor 6 is chosen so that the
number of iterations is minimized. Finally, the scalar
flux is updated as follow :

1+1 g l+1/2+l9cl+l/2 (31)
where
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1+1/2 __ A+1/2
$o" = D", (32)
and
C/+1/2: a),l Z a)aca,H—l/Z (33)
@ 1 asCo )

In Eqs.(32) and (33), we assumed that there is only
one angular group per octant.

We analyze eigenvalues of this acceleration met-
hod for infinite system by using the following Fourier
Ansatz [10] :

L JAx
¢y =e”,
n {+1/2 — tnej/lx
Ca,l+l/2 — C(z

1+1/2 jA
0 / _Zw tn )x

CH—I/" Z Cwle Mx (34)
(U 1 asCo
¢/+1 — a)el}ix,
S§* =S8"=0.
Substituting Eq.(34) into Eq.{22), we obtain
e
1+7Au, (35)

and substituting Eq.(34) into Eq.(26), we obtain

= 7 (Zo

T /1 " —1), (36)

Finally, substituting Eqs.{34}, (35). and (36) into Eq.
(31),

we obtain
w =

M n 78
C{Z )g[l"f‘w,ltgz_g)'?%"i’]

n=1 1+/1 @ as Co 1+A“/.l:,
) w’

- 7 L9 5 . (37)
w ag:(.‘a 1‘*‘/"/12 }

4. Application and Numerical Results

Three benchmark problems, which are well known
to be difficult in shielding problems, are chosen to
compare results of SR method with those of other

methods. The numerical results are compared with
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those of the well known two codes : MORSE-CG {2]
and TWODANT [11]. The MORSE-CG code is the
most typical Monte Carlo code. In running the MOR-
SE-CG code for all problems in this study, to rep-
resent the infiniteness of z-direction, the length of
z-direction is taken large, e.g.. 200 m.f.p. This results
are used as reference solutions. And the TWODANT
code is used to obtain results of Sy method. In this
study, scalar flux (neutrons/cm® sec) distribution on
the edge is the quantity of interest to show reduction
of the ray effect. In all results, the order of SR met-
hod is denoted by SR~,, v, m,, v. where M, is the num-

ber of coarse azimuthal angular groups and M the
number of coarse polar angular groups for an octant.

vacuum
4.0cm
s 5
2 shield duct s
= =
= 3
05 -0.25 0.25
0.25 source
-2.0cm 2.0cm
vacuum

Fig. 2. Configuration of the Benchmark Problem I

Table 1. Cross Sections(cm ™) and Sources of the
Benchmark Problem 1

cross section group 1 group 2
I 0.0600 0.0960

a 0.0000 0.0000

o 0.0930 0.1080

Gs0g g 0.0100 0.0120

G0 i g 0.0230

Osig g 0.0089 0.0039

Osig 1.g 0.0090
source(n/cm>sec) 0.2000 2.0000
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0 3 5 8 10

Distance from left on the top edge(cm)

Fig. 3. Configuration of the Benchmark Problem 1
(group 1 flux)

2.00

>+ TWODANT(S1q)
1.75 |*++=+* SRig 21,1

1. -
50 e

125

Scalar flux
8
T

0.75 -

0.50 -

0.25 -

0.00 L ! - | S| ! I
0 3 3 8 10
Distance from left on the top edge(cm)

Fig. 4. Result of the Benchmark Problem Kgroup 2 flux)

4.1. Benchmark Problem I

This benchmark problem was chosen for the pur-
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pose of testing the capability of SR method that
estimates the flux in two group, linearly anisotropic
scattering problem. The configuration of this bench-
mark problem (see Fig. 2) is well known and this
problem has been dealt in many studies to analyze
the ray effect of discrete ordinate transport calcu-
lation. Informations for the cross sections are given in
Table 1. The problem domain is divided into 16X 16
meshes. The results of this benchmark problem are
shown in Fig. 3 (for the fast flux) and 4 (for the ther-
mal flux). The results show that the ray effect is sig-
nificantly reduced in comparison with the TWOD-

" ANT code.

4.2. Benchmark Problem I

This benchmark problem models a duct {0.5cm
width) in a shield to estimate the leakage of the neut-
rons through the duct, since streaming ducts in shiel-
ds are a common design problem for which empiri-
cal rules of thumb are often used. The configuration
of this benchmark problem is given in Fig. 5 and the
cross sections are given in Table 2. The domain of
the problem is divided into 16 x 16 meshes (by sym-
metry about x=0, only the left half of the problem is
actually solved) and the cell average fluxes along the
uppermost row of mesh cells are estimated. Since a
vacuum duct is nearly penetrated into the shield re-
gion, it is expected that the main leakage through
the top surface is ascribed to streaming of neutrons
through the duct. Therefore, the capability that estim-
ates the streaming component is very important in
obtaining the accurate solution. Since the SR met-
hod calculates the uncollided flux by analytically
integrating the transport equation, the estimation of
the streaming component is very accurate and thus
the ray effect is strongly ameliorated in the overall
region, as shown in Fig. 6. In particular, the solution
in the vacuum region shows. good agreement with
that of the MORSE-CG code while the TWODANT
code does not only give seriously distorted solution
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but also significantly underestimated solution.
To show the improvement of accuracy with exten-
sion to the three-dimensional angular quadrature set,

the above result is compared with that obtained on

the assumption that neutrons move only on the plan-

e. As shown in Fig. 6, although the SR method with

two-dimensional angular quadrature set provides quit-

e good flux distribution in the vacuum region, the ac-

curacy in the shield region is highly degraded in com-

parison with that of SR method with three-dimension-

al angular quadrature set. lt is thus indispensable that

the three-dimensional angular quadrature set is need-

ed.
4.3. Benchmark Problem [l

This benchmark problem is the most difficult one
among the problems chosen in this study. Fig. 7
shows the configuration of this problem, where a
square source is surrounded by a void, which is in
tum surrounded by a purely absorbing medium and
then free space (i.e., vacuum). It is expected that the
ray effect occurs seriously due to the internal vacuum
duct. The problem domain is divided into 16X 16
meshes and the flux distribution along the uppermaost
rows is given in Fig. 8. The local ray effect is obser-
ved near the center region in SR method, while
more serious fluctuation is observed in the entire re-
gion in the result of the TWODANT code. Also the
rise of the flux in the vicinity of the boundary is not-
ed in the TWODANT solution. This behavior is main-
ly due to the existence of the internal vacuum out-
side of the source. For mitigation of this local ray ef-
fect, a larger number of polar angles are required in
SR method.

4.4. Acceleration

The two acceleration methods are applied to Ben-
chmark Problem @I (with differing, wider duct of 1
cm) for the reduction of computing time. The opti-

mal relaxation factor @a in angular two-grid acceler-

vacuum

4.0cm
< <
N o 8
2 shield duct e
= =1
3 3
0.5 -0.25 0.25
025 source
-2.0cm 2.0cm
vacuum

Fig. 5. Configuration of the Benchmark Problem I

Table 2. Cross Sections(cm™!) and Sources of the
Benchmark Problem 11, I

benchmark problem I benchmark problem [l

cross sections
shield duct shield duct
Ga 075 000 080 000
a 0.00 000 0.00 0.00
o 1.00 0.00 080 0.00
source
(n/em’sec) 200 640

s~ SR(2-D angles{20))
0.02 1~ ##aa2 SRygo.q 4
MORSE—-CG

Scalar flux
(=]
8

0.00 I | 1 1 Il ! Il
1 2 3 4

Distance from left on the top edge(cm)
Fig. 6. Result of the Benchmark Problem [I
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vacuum
10.0cm|
shield

g 5

.8. 50 E

:

void
1.25
source
1.25 5.0 10.0cm
reflective

Fig. 7. Configuration of the Benchmark Problem Il

0.005

~—>> TWODANT(Sq)
+++++ SR—method|
—— MORSE-CG

SRlB.?."M)

Scalar flux

0.000 R | 1 1 1 1. L | 1
0.0 2.0 4.0 6.0 8.0 10.0
Distance from left on the top edge(cm)

Fig. 8. Result of the Benchmark Problem I

ation scheme is numerically searched. To give insight
into the convergency of angular two-grid acceleration
scheme, the eigenvalue distributions are found by
Fourier analysis. Fig. 9 shows the eigenvalue distribu-
tions obtained by Fourier analysis, where the discrete
ordinates in S; is used as the coarse set and the ratio
c¢=0.5. Two coarse angular set (SRi.1, SRy,2 ) are
tested to show that a set with only one angle per oc-
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tant can be effectively used as the coarse angular set.
That is to say, although numbers of iterations for the
two sets are nearly the same, the computing time req-:
uired in the case that SR 1 angular set is used is
much shorter than that of the other case. The com-
puting time achieved with the two coarse angular
sets is compared with that of coarse-mesh rebalance
acceleration in Tables 3 and 4. Note that the com-
puting time is comparable to that of coarse mesh reb-
alance acceleration. In all calculations above, the fol-
lowing convergence criterion for the scalar flux is
used :
/ I~1

maxlﬂ—,l— 1<10 74,

¢1j

We also compare the eigenvalue distributions for

for all ij. (38

angular two-grid acceleration method with that for P:
synthetic acceleration method. Fig. 10 shows the eig-
envalue distributions for ¢ =0.5. From this figure it is
observed that the spectral radius of angular two-grid
acceleration is comparable to that of Pi synthetic ac-
celeration for c<0.5.

1.000

0.900 -

o

AN ==
coNo

i

0.800 |-
0.700 +
0.600 }~

0.500 -

Eigenvalue

0.400 -
0.300
0.200 -

0.100‘

0.000 L L
0.0 20 4.0 6.0 8.0

Mode

10.0

Fig. 9. Eigenvalue Distributions for 6 values (c=0.5)
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Table 3. Comparison of Computing Times (c=0.5)

methods r?umb?r of  computing times*
iterations (sec)-
no acceleration(SRix 21 1) 17 334.3
AMG* SRz 7 1976
coarse set SR ¢ 8 1555
CMR 8(2) x 16(2)° 8 1655
coarse mesh 4(4)x 8(4) 8 1566
(12.4) x (4.28) 11 2006

*SUN SPARC2 s used
®angular multigrid acceleration, ‘coarse mesh rebalance method
“alAlxb(B) - a-number of coarse meshes on the x-axis
Anumber of fine meshes for each coarse mesh
b-number of coarse meshes on the y-axis
B-number of fine meshes for each coarse mesh
“la.blxlc.d) - a-number of fine meshes in the first coarse mesh on the x-axs
b-number of fine meshes in the second coarse mesh on the « axis
c-number of fine meshes in the first coarse mesh on the v-axs

d-number of fine meshes in the second coarse mesh on the s

Table 4. Comparison of Computing Times (c=0.9)

ethds n.umbver of  computing nmes
iterations {sec)

no acceleration{SRi~ 2 : 1) 35 0094
AMG SRy 2 12 3383
coarse set SR 13 2523
CMR 8(2) x 16(2) 10 2063
coarse mesh 4(4) x 8(4) 8 1760

124)x428 16 wa

5. Conclusions

In this study. Filippone's SR method. a class of
characteristic methods is applied to several streaming
dominant problems in which the ray effect occurs ser
jously, with extensions to multigroup. linearly aniso-
tropic scattering, and three-dimensional angular spac-
e(x-y-zlinfinite)) treatments for the purpose of im-
proving generality and accuracy. For verification, the
results of MORSE-CG code are used as reference
solution. The solution of Sy method is obtained by
using the TWODANT code. The results show that
the solutions of SR method are in good agreement

1.000

— ¥=1.6, AMG
»e+++¢ No acceleration
seeoo P1 gcceleration

0.900

T

0.800

0.700

T

0.600

0.500 ¢

0.400

Eigenvalue

0.2C0

0.0 20 4.0 6.0 8.0 10.0
Mode

Fig. 10. Comparison of Eigenvalue Distributions (c=0.5)

with those of the MORSE-CG code for most bench-
mark problems considered. and the ray effect is sig-
nificantly reduced. In particular. it is noted that the
solution of SR method is very accurate in the vac-
uum duct region. Also. to reduce the computing
time. two acceleration methods are applied to the SR
method. One s the standard coarse mesh rebalance
acceleration and the other is a new angular two-grid
acceleration The implementation of the angular
two-grid acceleration is very simple and the comput-
ing time is comparable to that of the coarse-mesh
rebalance acceleration. In particular. it is worthwhile
to note that the spectral radius of the angular
two-grid acceleration is smaller than that of P syn-

thetic acceleration for streaming dominant problems
{c?0.5).
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