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ABSTRACT 

 

We develop a computational model to address the question of when a new, incompatible 
technology can survive in competition with an incumbent technology in the presence of 
network effects. We experimented mainly with network topology and the timing of new-
technology introduction. Like much of prior work, our study does show that the survival 
of the new technology depends on the timing or the installed base. But our findings 
suggest that network topology may be more important and essential. Our study shows 
that delayed entries do not exclude the possibility of the new technology’s sustainability 
when the customers’ social networks are characterized by a high degree of clustering 
with no or few shortcuts (e.g., co-worker networks for instant messaging). In this 
network topology, we also find that it is worthwhile for an entrant to attempt to win the 
market with a new incompatible technology by offering stand-alone customer benefits 
such as price discount or higher quality. On the other hand, when shortcuts are 
substantial, the market dynamics show tipping, and the entrant’s strategy would quickly 
become ineffective beyond some delay in entry. That is, an entrant would be better off 
by offering its product compatible with the existing one. 
 

Key Words: Network topology; Network effects; Technology; Standard  
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INTRODUCTION 

As the Internet has recently influenced the competitive landscape in many industries, 

researchers and practitioners have begun to recognize the importance of networks in 

shaping market dynamics and competitive strategy. For example, Shapiro and Varian 

(1999: 173) noted: “[T]he new information economy is driven by the economics of 

networks.” Similarly, Kelly (1998) argued that understanding how networks work 

would be the key to understanding how the new economy works. Indeed, a driving 

force behind many of the giant mergers of the late 1990s is attributed to firms’ desires 

to own customer networks (Cairncross, 2000). Among the key managerial questions 

associated with networks are often the followings: Will a new, incompatible technology 

survive in competition with an established one that has built up its customer networks? 

Could an entrant sponsoring the new technology drive out the established one if it 

aggressively takes some strategic action? Or should the entrant make its technology 

compatible with the existing standard? 

Seemingly, answers depend on the types of customer networks firms would build 

up (Lee, Lee, and Lee 2002). However, much of prior work on network effects has 

sidestepped the complexity of network topologies, while highlighting market dynamics 

driven by installed bases. For example, Shapiro and Varian’s (1999) popular book, 

Information Rules: A Strategic Guide to the Network Economy, emphasizes economics 

of networks. Yet, installed bases rather than networks lie at the heart of their discussion. 

In general, prior studies of network effects suggest that the benefits of obtaining a 

large installed base will pay off over time when incompatible technologies compete. As 

a consequence, the early mover with the largest installed base will corner the market 

(e.g., Arthur 1989, 1994). This argument has led to an acrimonious debate in the 
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academic community. In particular, Arthur’s emphasis on lock-in and the difficulty of 

gaining a footing by a new, incompatible technology stimulated counter-arguments. It 

has been argued that cases of lock-in are not common in history and that many new 

incompatible technologies instead are introduced successfully (Lebowitz and Margolis 

1990, 1995, Katz and Shapiro 1994). The richness of seemingly confirming and 

disconfirming examples has deepened confusions and disagreements. The debate has 

stimulated theoretical research for technology competition with sequential entry—that 

is, at stage one, an incumbent technology builds its installed base; at stage two, a new, 

incompatible technology is introduced, thereafter competing for customer base (e.g., 

Katz and Shapiro 1994, Lee, Lee and Lee 2003). Among the key findings of this 

research is that the new technology’s survival depends on the timing of new-technology 

introduction, the size of the incumbent technology’s installed base, strategic pricing, 

and the presence of technology enthusiasts. 

Although the impressive contribution of prior work is evident, it has ignored the 

role of a network itself in the discussion of network effects. The prince of Denmark has 

been missing in discussing Hamlet. This ignorance is rather understandable given the 

complexity of specifying social networks. Recently, however, unprecedented advances 

in graph theory (e.g., Watts and Strogatz 1998, Barabasi, Albert, and Jeong 1999, 

Strogatz 2001) have allowed social scientists to tackle the complexity of social 

networks and their dynamic implications. It is believed that scientists could discover 

underlying laws behind all rich behaviors of complex systems by pushing the surface 

level appearances to the background and brining the more abstract structure of 

interacting elements into focus (Buchanan 2002). Lee, Lee, and Lee (2002) took an 

early step in this direction by developing a dynamic model of technology competition 
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when two technologies are introduced simultaneously. We attempt to build upon this 

work. The primary difference is that we build a sequential model, which is more 

appropriate to address the acrimonious debate described above. We also consider 

incompatible entry by a sponsored product by assuming that the sponsor of the 

technology can take some strategic action. 

A motivating case is the instant messaging (IM) service market, where multiple 

companies are now competing for users by offering incompatible services. This market 

was first opened in 1996 as AOL introduced Buddy List. Since then, AOL has been 

taking the lead in the IM market. The conventional wisdom in the literature suggests 

that latecomers with smaller user bases will become disadvantageous in attracting users. 

Indeed, Varian predicted it in an interview with New York Times (2001): 

  
The power of the network effect can be seen in technologies like America Online's Instant 

Messenger. Once teens realized that they could gab after school online, it became a must-have, 

Mr. Varian said -- and its use exploded, rapidly bringing AOL a near-lock on a market of more 

than 100 million people that Microsoft is struggling to break into.  

 

When MSN and Yahoo! entered this market in 1999, there was an enormous gap 

between them and AOL. However, there has been no sign of the demise of the late 

entrants to date. To the contrary of Varian’s expectation, the gap between AOL and 

MSN Messenger Service has been narrowed very rapidly.  

This paper endeavors to offer insights into how this could have been possible. More 

generally, we explore when a new, incompatible technology can survive in competition 

with an established technology. The key to our explanation lies in connection topologies. 

IM users build up a highly clustered network like a coworker network, where any pair 

of acquaintances will share common acquaintances and where strangers’ contacts are 
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deliberately blocked. Unlike chat room, email or fax, where contacts with strangers are 

sources of customer benefits, the IM service does not grow valuable simply because 

more and more people use it. Indeed, the majority of adopters in the installed base are 

irrelevant to customer benefits. Instead, network benefits come from a swift exchange of 

notes between close acquaintances. In such a network, a lead technology may not be 

able to drive out its smaller rivals in the long run. We confirm this intuition by 

developing a computational model. 

Through an extensive review of the literature, Farrell and Klemperer (2001: 69) 

recently noted: “Incompatible entry even by a sponsored product is often hard.” In a 

network like the coworker network mentioned above, we show that the entrant 

sponsoring the new technology could drive out the established one by offering customer 

benefits such as improved quality, price discount, bundling with other products, and so 

on. Thus, engaging in a standards war with an incompatible technology may not be a 

bad idea. On the other hand, we confirm Farrell and Klemperer’s intuition in networks 

like chat room, email, and fax networks, where incompatible entry is not likely to be 

rewarded. The upshot is that network topology should be an important variable for an 

entrant to choose whether to make its technology compatible or not. 

This paper is organized as follows. First, we take a close examination of the 

evolution of the IM service industry. Second, we briefly survey the literature on network 

effects as well as network topology. Then, we develop a computational model to address 

these questions. Fourth, we show the results of our computer simulations. At last, we 

discuss our findings in light of the extant literature. 
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THE EVOLUTION OF THE INSTANT MESSAGING MARKET 

Instant messaging allows users to exchange displayed message with others. 

Two or more buddies using compatible IM programs can connect instantly to exchange 

small talks just as they would do in a phone conversation. They can also exchange work 

files, graphics, and other items of mutual interest. In a small software window on a PC, 

a user can watch a list of her acquaintances to see who is currently logged onto the 

Internet. It also alerts the user immediately when her acquaintances are online. 

Although instant messaging initially appeared on the Internet in the 1980s, it 

was the province of geeks until AOL capitalized on it by introducing its popular “Buddy 

List” in 1996. A typical list in instant messaging consists of buddies, coworkers, or 

family members. Such a network of close acquaintances is quite in contrast to a chat 

room, which is designed to facilitate contact with strangers. 

The IM service has drawn a growing attention from Internet experts as a next 

generation killer application. Some analysts even believe that IM may become a 

communications platform as important as the telephone (Washington Post, August 15, 

2001). An explosive increase in user hours for IM has made it central in competitive 

strategies of major portals like AOL, MSN, and Yahoo!, which are now seen more as 

communication platforms than an information platforms (Morgan Stanley Dean Witter, 

February 21, 2001). 

Despite the explosive growth, IM services have lacked a standard for 

interoperable messaging to date. The Media Metrix study found that many U.S. users 

are juggling more than one instant-messaging service to connect to their buddies who 

are using different IM services (The Jerusalem Post, November 21, 2000).  
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DOMINANCE OF AMERICA ONLINE 

AOL built its dominance by first offering instant messaging called the “Buddy 

List” on its proprietary online service in 1996, where it became one of the best-used 

applications. Buddy lists are like an interactive address book—names light up when 

someone is online and ready to chat. The primary reason why AOL introduced the 

buddy list was to enhance the loyalty of its paid subscribers by strengthening the bond 

among its subscribers.  

The company decided in 1997 to open its messaging to anyone who downloads 

a free copy of America Online Instant Messenger, also called AIM. The primary 

purpose for opening its service was to make it more valuable to its paid subscribers 

since they can be connected to their friends, even those who are non-AOL subscribers 

(Berstein Research Call, September 19, 2000).  

Although AOL pioneered the concept of the buddy list, it was ICQ that 

triggered a boom of IM services on the Web. ICQ (pronounced “I seek you”) was 

introduced in July 1996 by an Israeli startup named Mirabilis. As the first free, third-

party IM program, ICQ became an instant sensation to computer-savvy young user 

groups such as college students and Net denizens. These people who are dubbed by 

some the “ICQ Generation” encouraged their friends, family members, and colleagues 

to join the ICQ so that they can be added to contact lists (The Toronto Star, December 

21, 2000). After realizing that it cannot drive out ICQ from the IM market, especially 

outside the United States where AOL is relatively weak, AOL decided to acquire the 

company (Friedman, Billions, Ramsey, and Co, June 8, 1998). At the time, ICQ had 28 

million users worldwide, many of them were savvy, sophisticated techies who have 

avoided AOL before. 
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RAPID GROWTH OF LATECOMERS 

As IM emerged as a new killer application, Microsoft and Yahoo introduced 

their own IM services in summer 1999. Microsoft’s MSN and Yahoo were among the 

leading portal sites in the world. Moreover, when MSN and Yahoo launched their IM 

services, they had 40 and 47 million account holders for their e-mail programs. To 

encourage their existing e-mail account holders to open IM accounts, MSN and Yahoo 

enabled users to integrate e-mail and IM. 

To the surprise of some experts, the late entrants such as Microsoft’s MSN 

quickly caught up with AOL. When Microsoft and Yahoo launched its IM service in 

summer 1999, AOL was a dominant IM service provider, and ICQ was the distant 

second company. According to Media Metrix, by August 1999, AOL had already built 

up user bases of 18 million people for AIM and 10.4 million for ICQ in the United 

States. In spite of such early dominance of AOL, MSN has narrowed the gap with the 

market leader quickly. By April 2002, MSN increased the number of unique visitors to 

29.1 million, while AIM had 31.5 million unique visitors (Media Metrix, May 2002).

 The rapid erosion of the AIM’s market share by the emergence of MSN and 

Yahoo in conjunction with the survival of ICQ suggests that incompatibilities can 

persist in the presence of network effects. In spite of the dominance of AOL, Microsoft 

as a latecomer has quickly caught up with the leader. How has this been possible? In the 

next section, we offer a conceptual framework to address this question by sorting out 

different types of customer networks. 
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NETWORK EFFECTS AND NETWORK TOPOLOGY 

Networks have been subject to economic analysis since the value of connecting to a 

network depends on whether other people are connected to it (Shapiro and Varian, 1999). 

This section sketches the literature on network effects and highlights how the central 

issue of the present work fits into this literature. Then, we discuss the importance of 

specifying a network topology in the studies of network effects. 

NETWORK EFFECTS 

When the market exhibits positive network effects, the value of a product or service one 

uses depends on how many other users there are. Over the last two decades, numerous 

theoretical studies have examined how such interdependence of customer choices 

influence market dynamics and equilibrium outcomes (e.g., Katz and Shapiro 1985, 

Farrell and Salnor 1986, and Arthur 1989, Farrell and Klemperer 2001). One of the 

outcomes that have drawn a lot of attention not only in academia but also in industries is 

marketing tipping or the winner-take-all hypothesis (Arthur 1994, 1996, Farrell and 

Klemperer, 2001, Lee et al. 2002, Shapiro and Varian 1999). This hypothesis states that 

when incumbents compete with incompatible technologies and when customer benefits 

are positively affected by other customers’ choices, a dominant winner will emerge and 

will corner the market. The theoretical literature could be divided up into two 

categories: (1) technology competition with simultaneous entry and (2) that with 

sequential entry. 

Among the key issues that have drawn much attention is the difficulty of late 

entrants with incompatible technologies when an incumbent technology builds up its 

installed base. From his formal analysis of technology competition with simultaneous 

entry, Arthur (1994: 24) conjectured: “[A]n early-start technology may already be 
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locked in, so that a new arrival, although potentially superior, cannot gain a footing.” 

This conjecture has ignited an acrimonious debate in the community. Leboiwtz and 

Margolis (1990; 1995), for example, argued that the history of technology competition 

has rarely shown the possibility of lock-in to an inferior technology. Katz and Shapiro 

(1994) called for research to resolve this debate. 

A stream of theoretical research has tried to shed light on this debate by 

building sequential entry models (e.g., Farrell and Saloner 1986, Katz and Shapiro 1992, 

Lee, Lee, and Lee 2003). A typical setup of these models is that an early-start 

technology builds up its market share alone at stage one. Then, a new, incompatible 

technology is introduced, competing for customer bases. Among the key findings of 

prior work is that the survival of the new, incompatible technology depends on the date 

of new-technology introduction, the size of the installed base of incumbent technology, 

the costs of the two technologies, strategic pricing, the presence of technology 

enthusiasts and so on. The present work builds upon and extends this stream of research. 

We wish to add new insights to the literature by exploring how the topology of 

customers’ social networks affects the long-run dynamics of technology competition. In 

particular, we show that not all network effects lead market dynamics to tippy behavior.  

 

NETWORK TOPOLOGY 

In determining the value of a network, researchers as well as practitioners have 

predominantly regarded its overall size (or the size of installed base) as the most 

important strategic variable (e.g., Farrell and Saloner, 1986; Arthur, 1989; Shapiro and 

Varian, 1999). The implicit presumption has been that everyone in a network is 

connected to everyone else. This presumption is rather too simple to characterize 
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various kinds of networks and their long-term effects. Apparently, there could be a gain 

from classifying network topologies and sorting out their dynamic consequences. 

Strogatz (2000: p. 268) noted such a gain as follows: 

 

Why is network anatomy so important to characterize? Because structure always affects 

function. For instance, the topology of social networks affects the spread of information and 

disease, and the topology of the power grid affects the robustness and stability of power 

transmission. From this perspective, the current interest in networks is part of a broader 

movement towards research on complex systems. 

 

Usually, configurations of networks are modeled by graphs, which consist of 

two main elements, nodes and links (or edges). Germane to our discussion here are 

complete graph and sparse graph. A network is classified as a complete graph when 

every node of the network is connected to every other node. E-mail, telephone, and fax 

networks can be approximated as a complete graph if user benefits reflect whether a 

user can contact not only her acquaintances but also any strangers in the world. Indeed, 

Metcalfe, who invented Ethernet, formulated the value of a network with this sort of 

approximation. His formulation is well-known as “Metcalfe’s law,” which states: as the 

number of users increases by n times, the value of a network increases by n(n-1) times, 

or approximately n2 times. 

There are two things that are worthy of note regarding Metcalfe’s law. First, the 

values of small networks will be much smaller than those of large networks. That is, it is 

difficult for small networks to compete with large networks. Second, once a network 

grows beyond some critical mass, it has the potential to grow very fast. Much of prior 

work modeled network effects with this sort of approximation. The aforementioned 

Varian’s prediction of the AOL’s dominance in the IM market also hinges on this 
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assumption, too. 

There are instances when users’ benefits come mostly from connections to their 

acquaintances in a network rather than the majority of strangers in a communication 

network. Furthermore, it is reasonable to assume that each individual maintains 

relationships with a small number of acquaintances relative to the size of population.1 

Then, the network could be better approximated by a sparse graph, which is 

characterized by partial connections among nodes in a graph. Consider a buddy list for 

instant messaging. AOL estimated that its clients built up lists of about 20 to 50 people 

(The Ottawa Citizen, 1999). Apparently, a user will not build up a list of all the 

members in the AOL network. Neither such a long list can be feasibly covered over her 

computer screen, nor it is useful to her, since her delight comes from exchanging talks 

with her close acquaintances. 

In characterizing a sparse network, a key issue lies in how to construct a 

network architecture for an individual’s relationships with her neighbors. The 

sociological literature has suggested two basic types of network architecture 

(Granovetter, 1973; Rogers, 1995). First, a network can consist of small subnetworks of 

individuals, and within each subnetwork, individuals closely interact with one another. 

Each subnetwork is a densely knit clique or a cluster of highly overlapping 

acquaintances. An extreme version of such a cliquish subnetwork is cavemen (Watts, 

1999). Consider cavemen in the prehistoric era. Cavemen in a cave would interact with 

one another quite well, but the whole group would be isolated from cavemen in other 

remote caves. Because of the ingrown nature of each subnetwork, the connectivity 

between subnetworks is low. An example for such networks is a buddy network or a 
                         
1 Studies have shown that connectivity distributions for social networks follow either a gaussian or a 
power-law (Barabasi 2002, Lilijeros et al. 2001, and Strogatz 2001). 
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coworker network for instant messaging users. Individuals in this type of network tend 

to exchange talks with highly overlapping acquaintances. Suppose that individual A has 

built up a coworker list, which includes individuals B and C. It is highly likely that B 

and C also exchange talks with each other. 

This type of ingrown network can be modeled by regular (lattice) graphs (Watts 

and Strogatz, 1998; Watts, 1999). An example is shown on the right in Figure 1. An 

interesting mathematical property of a regular graph is that the average degree of 

separation between nodes is long because there are few bridges or shortcuts between 

remotely dispersed subnetworks (Granovetter, 1973; Watts and Strogatz, 1998; Watts, 

1999). When such shortcuts are absent, information can travel slowly throughout a 

chain of adjacent cliques.  

Second, an entire network may consist of subnetworks that are less dense and 

more open, allowing the focal individual to exchange information with a wider scope of 

individuals (Rogers, 1995). Internet chat rooms and Internet auctions belong to this 

extreme class. Here, each individual contacts other individuals, who are not likely to 

share common acquaintances. Put another way, the network is characterized by a low 

degree of clustering. Such networks have been modeled by random graphs of Erdös and 

Rényi, in which each node is randomly linked to other nodes. An interesting 

mathematical property of these graphs is that the average degrees of separation between 

nodes become small. This is so even when the total number of nodes is very large. 

Thus far, we have discussed either completely regular or completely random 

networks. Many social networks appear to lie between these two extremes. Recently 

Watts and Strogatz (1998) developed graph models that can be turned through the 

middle ground between the two extreme cases, calling them as “small-world graphs”. 
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These graphs are built on a ring substrate with n nodes and k links per node. Each of n 

persons is assumed to maintain k relationships with others, where k is strictly smaller 

than n. Examples are shown in Figure 1. Here n = 20, and k = 4. 

 

Figure 1 about here 

To construct small-world graphs, one should start from a connected, regular graph 

on the left in Figure 1, which has the highest degree of clustering. One can rewire each 

edge from a node with a randomly chosen, other node with probability β. When β = 0, 

no edge will be rewired, and the regularity and the clustering will be preserved. When β 

is sufficiently small, the high degree of clustering will be preserved with a few random 

connections among cliques—some of these connections, what are called “shortcuts,” 

reduce the degrees of separation between distant nodes. On the right, a network 

becomes completely random, when β = 1. Here, shortcuts are abundant, and the average 

degrees of separation or the network diameter is the smallest. In this graph, however, the 

clustering is almost destroyed. 

The most interesting topological property of the Watts and Strogatz (1998) (WS) 

model is that only a small number of random shortcuts are sufficient to dramatically 

reduce the diameter of a network. That is, there exists an interval of small β, where the 

average degrees of separation is as small as that in a completely random graph, but the 

clustering of a regular graph is preserved more or less. In particular, Watts and Strogatz 

(1998) discovered that for small β, the introduction of a few shortcuts has a nonlinear 

effect on the size of a network diameter. Furthermore, a few edges removed from a 

regular graph at small β will not affect the local density or clustering much. 

The upshot is that shortcuts lie at the heart of the WS small-world networks. 
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Research in sociology has provided some insights on the role of shortcuts. A study of 

homosexual networks in the early spread of AIDS illustrates how a shortcut can spread 

the disease beyond a local boundary. When investigators at the Centers for Disease 

Control and Prevention (CDC) interviewed the first forty patients with AIDS symptoms, 

they found that nineteen of these patients lived in Los Angeles, and twenty-one other 

patients resided in San Francisco, New York, and elsewhere in the U.S. (Rogers, 1995). 

It was discovered that one patient, who was a flight attendant for Air Canada, played a 

role of shortcut in the spread of the disease across wide geographical areas. Granovetter 

(1973) also identified random contact, or meeting with strangers, as a source of 

shortcuts. An anecdotal example of such random contact was cited in Rogers (1995: 

309): 

 

An example of successful job searching through weak network links was an accountant who 

flew to Boston to attend a convention. The accountant shared a taxi at Logan Airport with a 

Bostonian businessman. They began a conversation, and the businessman disclosed that his 

company was seeking to hire an accountant. You can imagine what happened next. The 

accountant, who later resided in Newton, was one of Granovetter’s respondents.   

 

In both contexts, the important characteristic of shortcuts is that they reduce the role of 

physical distance, which otherwise constrains social interactions within some physical 

proximity. 

We believe the network topologies reviewed here can equip social scientists to 

tackle complex, social networks. Barabasi et al. (1999: p. 174) noted: “Uncovering the 

universal properties characterizing the formation and the topology of complex networks 

could bring about the much coveted revolution beyond reductionism.” In particular, 

social scientists can incorporate some of these graph models into their dynamic models, 
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investigating phenomena that have been considered intractable before. Below, we 

develop computer simulation models to examine the important issues in the literature on 

network effects. The issues are: Could a new, incompatible technology survive in the 

market where an early-start technology established its customer networks? Would the 

answer depend on the topology of customers’ social networks (e.g., the presence of 

shortcuts)? 

 

MODEL 
We now develop a computer simulation model to address the central question of 

this paper: Would a new technology have difficulty establishing a foothold in the 

market when the old technology builds up its installed base? Like Lee, Lee, and Lee 

(2002), this paper incorporates users’ acquaintance networks with diverse coupling 

topologies shown in Figure 1. When some users adopt a firm’s IM service, they 

influence their friends to adopt it. If some of these friends adopt the service, they in 

turn will affect their friends. Thus, a firm can build their user base through this sort of 

chain of friendship network.  

 

ADOPTION DECISION 

Let us first consider the basic diffusion process of incompatible instant messaging 

services when they are not bundled with other services such as e-mail. Since the 

essence of competition in this market lies in building user base, our model restricts 

attention mostly to the demand side dynamics. Strategic action in the supply side will 

be considered in a limited fashion in the additional analysis section. In our model, each 

individual’s willingness to adopt the service is represented by two factors: consumer’s 

reluctance to adopt the service and the effects of friendship network. The reluctance 
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can be regarded as a threshold value, whereas the network effects are customer benefits. 

When these benefits are greater than a user’s reluctance, she will begin to use it. 

In the basic model, there are only two incompatible services, A and B for simplicity. 

In simulation, we extend this into four, eight, and sixteen technologies cases to show 

that model behavior does not change much. We assume that there is no difference in 

quality among the two services. Then, individual i ’s willingness to use service j (j = A, 

B) at time t  is 

 

)1( −+= tijiijt aNRU                                    

(1) 

 

where Ri is user i’s inherent reluctance to adopt any service,2 a represents the 

importance of network effects, and Nij(t-1) represents a proportion of user i’s friends who 

are using service j at time t −1. More specifically, Nij(t-1) = (the number of i’s friends 

who adopted service j at time 1−t )/(the total number of i’s friends). Thus,  

0 ≤ Nij(t-1) ≤ 1. 

Note that Ri is time-invariant. It is because the reluctance is assumed to represent a 

user’s inherent disposition to the service itself. Ri is assumed to follow a normal 

distribution with mean µ and variance σ2. 

ADOPTION RULE FOR TECHNOLOGY ENTHUSIASTS 

Users with Ri > 0 are enthusiasts or geeks who will adopt a service first. At t = 0, 

their network benefit from choosing between the services is absent. That is, NiA0 = 0. 

An enthusiast’s adoption stem from her inherent positive valuation of the service, i.e., 

                         
2 One can consider that customer i’s reluctance Ri is the sum of his or her reservation price ri and price p. 
That is, Ri = ri − p. Given that ri < 0 for the majority of customers, both ri and p negatively affects i’s 
willingness to adopt a service. 
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Ri > 0. Initially, some enthusiasts adopt A with probability p while other enthusiasts 

(with probability of 1 − p) do not adopt it. This inaction may happen because these 

unactivated enthusiasts are not aware of the service or because it is not available to 

them—these users may be geographically isolated from zones where the service is 

available. The unactivated enthusiasts may adopt the service simply by the influence of 

their acquaintances during the diffusion of A like normal users. If this does not happen, 

these enthusiasts will adopt the new service, B, when it is introduced to the market. 

Obviously, whether any enthusiasts will remain to wait for the new service or not 

depends on chance events as well as the timing of the new service introduction. 

ADOPTION RULE FOR NORMAL USERS 

In the case of a majority of normal users, Ri < 0. That is, normal users will wait 

until the benefits due to network effects exceeds their negative valuation of the service. 

So, the adoption rule is Uijt > 0. This condition can be satisfied when their more 

enthusiastic friends use a service, thereby influencing normal users. A normal user’s 

choice of service A depends on the size of NiA(t-1) in comparison with that of service B. 

Between A and B, she chooses a service of which Uij(t-1) is the largest. Enthusiasts and 

normal users can switch to an alternative service at every period. Switching decision 

criterion is the same as the normal users’ decision criterion described just above. 

 

RESULTS 
The simulation results here numerically demonstrate competition between incompatible 

technologies when network effects are present. We first show typical simulation runs to 

illustrate dynamics of the technology competition by network topology. Then, we 

conduct simulation experiments by varying two key parameters, network topology and 
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the timing of new-technology introduction. 

 

TYPICAL SIMULATION RUNS 

As a starting point, we show the behavior of our sequential entry model when the 

customer network is ill-clustered with abundant shortcuts or when β = 1. As shown in 

Figure 2A, the early-start technology quickly builds up its customer base. When the new 

technology is introduced at time step ten, there is little room left for it to gain its 

foothold. The early-start technology corners the market at the steady state, which was 

quickly reached at time step 11. When beta is set to 0.1—at this level, there should be 

some shortcuts (less than 10% of links) that dramatically reduce the degree of 

separation between any two customers—, the speed of adoption dynamics is a little bit 

slowed down. The steady state as well as 100% market penetration was obtained at time 

step 14. As was the case for β = 1, the new technology fails to survive, and the early-

start technology monopolizes the market. This is reminiscent of Arthur’s (1994: 24) 

argument: “[A]n early-start technology may already be locked in, so that a new arrival, 

although potentially superior, cannot gain a footing.” 

 In contrast, when β = 0 or when the customer network is highly clustered with 

no shortcut, the diffusion process is the slowest. As shown in Figure 2C, it took 55 time 

steps for the diffusion process to reach 100% market penetration. When the new 

technology enters at time step ten, there is enough room for it to establish its foothold 

and to survive. At the steady state, the two technologies share the market. Note that the 

market sharing is obtained even though the new arrival is not set up to be superior to the 

early-start technology. All typical realizations together seem to suggest that the survival 

of the new, incompatible technology depends on network topology as well as its entry 
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timing. 

 

Figure 2 about here 

 

SIMULATION EXPERIMENTS 

We conducted simulation experiments by varying the values of the two parameters, beta 

and the timing of new technology introduction. To reduce statistical errors, we ran each 

simulation two hundred times. All of the results reported here are the averages over two 

hundred runs. 

Figure 3 shows that whether a new incompatible technology survives at the 

steady state depends on the timing of the entry as well as network topology. When the 

value of beta is set to zero (diamond)—the close customers maintain a cliquish network 

where there are highly overlapping acquaintances among its members with no 

shortcuts—, two technologies tend to coexist at the steady state by sharing the market. 

Obviously, the degree of market share difference gets larger as the new technology 

arrives later. This happens because the late arrival gives time for the old technology to 

increase its market share more. On the other hand, when the value of beta is at least as 

big as 0.1, the degree of market share difference invariably jumps into the theoretical 

limit of 1. This value basically says that the old technology almost always corners the 

market, or the new incompatible technology has almost no chance to create its own 

niche to survive. This winner-take-all phenomenon is observed even when the new 

technology arrives at time step ten. The entry timing, when it is above 10, does not play 

an important role. 
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Figure 3 about here 

 

 Figure 3 could be misleading in understanding the long run behavior of the 

systems for various network topologies. For example, the values of average market 

share difference are close to zero for all values of beta when two technologies are 

introduced simultaneously at time step zero. Either this could mean that the two 

technologies evenly share the market, or it may simply reflect the fact that each 

technology completely drives out the other one half of the times. To eliminate this 

ambiguity, we construct another measure, what we call “tippiness,” by taking the 

average of the absolute values of realized market share differences.3 When the value of 

this measure is 1, this means that either of the technologies dominates the market with 

100 percent market shares. On the other hand, when two technologies evenly share the 

market, the value should be 0.  

 Figure 4 plots entry time against tippiness. Unlike Figure 3, Figure 4 shows 

diverse average values across different network topologies when the two technologies 

are introduced simultaneously at time step zero. When the value of beta is as big as 0.5 

(or bigger), the degree of tippiness is 1 regardless of the timing of the new technology 

introduction. In other worlds, the market is completely tippy when there are sufficiently 

a large number of short cuts in customers’ social networks. On the other hand, when the 

                         
3 A static formulation of tippiness was introduced and discussed by Katz and Shapiro (1985, 1994). The 
notion basically reflects the condition that an interior pure-strategy equilibrium does not exist. For 
operational purpose, we measure tippiness θ as 

 θ = 
M

i

new
i

old
i∑ −ππ

 

where j
iπ is ith realization of technology j’s (j = old, new) market share at the steady state and M is the 

total number of simulation runs. Note that 0 ≤θ ≤ 1. The greater the value of θ is, the more tippy the 
market is. 
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value of beta is below 0.5, the degree of tippiness is lower than 1. This reflects that 

some realizations result in market sharing or coexistence of two incompatible 

technologies at the steady state. Interestingly, the tippiness of the system with β = 0 is 

not much sensitive to the timing of new-technology introduction. The degree of 

tippiness is consistently below 1 over all observations. 

 

Figure 4 about here 

 

The possibility of market sharing is more clearly shown in Figure 5, which 

presents cumulative distributions of market share difference when beta is set to 0. In this 

figure, we also add a common cumulative frequency distribution when the market is 

completely tippy or when the old technology completely drives out the new technology 

at the steady state. This winner-take-all outcome in favor of the old technology is 

observed for all values of beta above 0.1 when the new technology is introduced at time 

step ten or larger. 

On the other hand, when beta is 0, cumulative distributions show s-shaped 

patterns when the entry timing of the new arrival is early. An increase in the timing 

shifts the curves of the cumulative distributions to the right, but the shape is more or 

less robust in sharp contrast to the tippy market case. Even when the new technology’s 

entry is delayed as late as time step 50, the distribution curve does not overlap 

completely with the tippy case. That is, the probability that two technologies share the 

market at the steady state is nonzero. 

In sum, these results together suggest that the degree of tippiness is a function 

of beta. The greater the value of beta is, the more likely the market becomes tippy up to 
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some critical point. Beyond this point, the market’s tippiness takes the extreme value of 

1 independent of the timing of the new-technology introduction. Our results suggest that 

the timing of new-technology introduction may not be as essential as network topology 

in understanding the long-run behavior of adoption dynamics. 

 

Figure 5 about here 

 

 ADDITIONAL ANALYSIS WITH ENTRANT’S STRATEGIC ACTION 

In the previous model, each user’s decision to adopt a technology or service is 

assumed to be affected only by its network benefits, which result from interactions 

among acquaintances. There was no difference in effort between the incumbent and the 

entrant effort to induce new customers to adopt their services. In reality, a newcomer 

usually recognizes its weakness due to the smaller size of its networks, and may 

attempt to do what it takes to win (Farrell and Klemperer 2001). Such newcomer’s 

strategic actions may include offering price discounts,4 freebies, improved quality, 

bundling with other services or any other benefits that are associated with customer 

acquisition activities. The questions, then, are whether such an attempt is worthwhile, 

and if so, under what circumstances it would work. 

To address these additional questions, we now modify our model with this new 

assumption. Let service A denote the incumbent’s service. As was the case in the basic 

model, user i’s willingness to adopt service A is 

)1( −+= tiAiiAt aNRU                                         

                         
4 The theoretical literature suggests that firms often charge prices below their costs to win customers (see 
Farrell and Klemperer 2001). 
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(2) 

On the other hand, user i’s willingness to adopt service B introduced by the entrant is 

now 

caNRU tiBiiBt ++= − )1(                                         

(3) 

where c represents an extra customer benefit the entrant could offer (e.g., price discount, 

improved quality, freebies, etc.). In essence, c serves to reduce the level of customer 

reluctance in adopting the new service, given that Ri takes a negative value for the 

majority of customers. This is the only added feature in the extended model, and the 

other aspects of the diffusion process are the same as the one in the basic model. 

We report the results of the simulations of the entry with additional customer 

benefits under diverse network topologies. The results could be divided up into two 

parts: (1) the tippy market case and (2) the non-tippy market case. 

We are interested in how the timing of the entry affects the effectiveness of the 

entrant’s effort to overcome its weakness. Figure 6 shows the results of simulations 

when β = 1. The horizontal axis represents the level of additional customer benefit 

offered by the entrant, and the vertical axis represents an average market share 

difference (MSD) between the incumbent and the entrant. The simulation with entry 

time = 5 considers the case where the entrant quickly follows the early mover before the 

demand for the latter’s service takes off. One can easily expect that the success of the 

entry is a function of customer benefit offered by the entrant. Indeed, the result indicates 

that the bigger this benefit, the smaller the value of MSD. When customer benefit is 

above 40, the value of MSD approaches –1. This means that the entrant drives out the 

incumbent. This result suggests that a greedy entrant can try to win the whole customers 
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by aggressively offering a price discount, a freebie, or other customer benefits.  

In contrast, when the entry is somewhat delayed (e.g., entry time ≥ 15) as 

shown in Figure 6, the entrant’s effort to overcome its weakness becomes almost 

ineffective. For example, when there is a 15-period time lag between the incumbent and 

the entrant, the entrant cannot survive regardless of whether it increases the value of 

extra customer benefits or not. That is, the value of MSD is close to 1 over the whole 

range of the parameter values chosen.5 This extreme result happens primarily because 

the demand for the established technology quickly takes off in the tippy case or a 

network with a substantial number of shortcuts. Although sensitivity analysis is not 

reported here, we varied the value of β. We found that these results are rather robust 

when the market dynamics show tipping (e.g., β ≥ 0.4). 

 

Figure 6 about here 

 

Now, let us consider the non-tippy market case, where network topology 

reflects a collection of semi-isolated cliques with no or few shortcuts. We again 

examined whether the entry would be successful when the entrant offers an extra 

customer benefit. Figure 7 shows that an increase in customer benefit allows the entrant 

to take away all the customers from the incumbent. Timing of entry changes the slope of 

the curve, but this relationship holds true even when the entry is delayed as late as 

period 35. This finding is somewhat surprising since the greedy strategy of winning all 

the customers is easier and more likely to work in the non-tippy case than the tippy case 

                         
5 When customer benefit c is extremely large, the entrant can take all the customers from the incumbent 
even when the entry is far delayed. For example, given that the possibility of under-adoption is absent, if 
c > a, the entrant will always win all the customers immediately after the entry. This possibility, however, 
is remote from reality where increasing customer benefit c is not that easy. 
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when the entrant increases its effort to offer standalone benefits. 

 

Figure 7 about here 

 

DISCUSSION 

We developed a computational model to address the question of when a new, 

incompatible technology can survive in competition with an incumbent technology in 

the presence of network effects. We found that the survival of the new technology 

primarily depends on network topology, which affects the tippiness of the system. 

When a customer network is highly clustered with no or few shortcuts that connect 

remotely-located individuals (e.g., coworker networks), the behavior of the system is 

found to be non-tippy—i.e., we can observe the persistence of incompatible 

technologies. In this case, the probability that the new technology survives at the steady 

state is positive. Unless the incumbent technology locks out the opportunity completely 

with 100% monopoly, the new, incompatible technology can carve out its own niche 

and survive even with a quite delayed entry. This was observed when the new 

technology is not superior to the old one and there is no sponsor’s strategic action. 

 On the other hand, when there are a substantial number of shortcuts that 

dramatically reduce the degrees of separation between any two individuals, market 

dynamics become tippy. That is, one technology tends to corner the market, and two 

incompatible technologies rarely share the market. In this case, the early introduction is 

crucial for the survival of the new, incompatible technology. Even a small time gap 

with the incumbent technology could allow it to quickly dominate the market, and as a 

consequence, the new technology has almost no chance for survival. 



 28 

Our findings speak to the acrimonious debate in the literature on network 

effects. Arthur (1994: 24) informally argued: “[A]n early-start technology may already 

be locked in, so that a new arrival, although potentially superior, cannot gain a 

footing.” Critics responded to this conjecture by arguing that the history of technology 

competition has rarely shown the possibility of lock-in to an inferior technology 

(Leboiwtz and Margolis 1990; 1995, Katz and Shapiro, 1994). A few studies have 

addressed this issue by building sequential entry models in the presence of network 

effects (e.g., Farrell and Saloner 1986, Katz and Shapiro 1992, Lee, Lee, and Lee 2003). 

Among the key findings of prior work is that the survival of the new, incompatible 

technology depends on timing of new technology introduction. Prior work was 

exclusively focused on the structure that generates tippy behavior, where the timing is 

closely related to the size of the early-start technology’s installed base. Our result is not 

inconsistent with this literature, indicating no reason to downplay the role of installed 

base. But our findings suggest that a deeper truth lurking behind all these appearances 

may be the structure of social networks. Our study showed that delayed entries do not 

exclude the possibility of the new technology’s sustainability when a network is 

structured in a way to constrain the tippiness of dynamics. Confusions and 

disagreements, which stem from the rich behavior of the system with network effects, 

can be better addressed in light of the network perspective. 

Farrell and Klemperer (2001) argued that incompatible entry even by a 

sponsored product is hard. To address this issue, we conducted additional analysis by 

assuming that the entrant sponsoring the new technology can aggressively offer price 

discount, bundle the product with other products, or improve the quality of the product. 

Obviously, this greedy assumption is more likely a scenario for a large firm like 
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Microsoft. The questions were: Is it worthwhile for the entrant to take such an 

aggressive strategic action?; if so, when would this more likely to work? Our findings 

indicate that the entrant’s greedy attempt is much easier and more likely to work in the 

non-tippy case than the tippy case. In the latter case, the customer benefit offered by 

the entrant would quickly become ineffective beyond some delay in entry timing, 

primarily because the network structure allows the incumbent’s technology to build up 

its benefits very quickly, where even Microsoft might have difficulty catching up with 

the market leader. The entrant would be better off by choosing to make its product 

compatible with the established technology. 

An important implication of these findings is that network structure can be a 

firm’s strategic variable. Our study suggests that the entrant’s survival depends on the 

network topology of its target customers. Some customer groups are structured with 

fewer shortcuts than others. For example, instant messaging services deliberately target 

groups of individuals who wish to communicate with highly overlapping acquaintances 

such as coworkers, where any pair of acquaintances will share common acquaintances 

and where shortcuts are often deliberately blocked. Our study suggests that in this case, 

installed base per se would not be as strategically important as much of prior work has 

emphasized. For example, AOL’s large installed base should have a limited effect on 

the diffusion of new, incompatible instant messaging services because customer 

benefits do not come from the majority of irrelevant links in the AOL’s total installed 

base but from interaction with close acquaintances. A small entrant has some hope by 

targeting non-adopters the majority of whose acquaintances have not adopted any 

service either. A large entrant may take a greedy strategy of winning the whole market 

by aggressively offering customer benefits. 
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Appendix: Parameter Values for Simulation 

Figure n k P µµµµ σσσσ a ββββ Entry Time 

2A 1000 10 0.5 -90 45 400 1 10 

2B 1000 10 0.5 -90 45 400 0.1 10 

2C 1000 10 0.5 -90 45 400 0 10 

3 1000 10 0.5 -90 45 400 Variation Variation 

4 1000 10 0.5 -90 45 400 Variation Variation 

5 1000 10 0.5 -90 45 400 0 Variation 

6 1000 10 0.5 -90 45 400 1 Variation 

7 1000 10 0.5 -90 45 400 0 Variation 

 



 31 

REFERENCES 

 
Arthur, W. B. 1987. Competing technologies: An overview. In G.iovanni Dosi (ed.), Technology 

change and economic theory. New York: Columbia University Press, 1987, pp. 590-607. 
           . 1989. Competing technologies, increasing returns, and lock-in by historical 

events.” Economic Journal 99 116-131.  
___________. 1994. Increasing Returns and Path Dependence in the Economy. University of 

Michigan Press, Ann Arbor, MI. 

           . 1996. Increasing returns and the new world of business. Harvard Business 
Review, July-August 101-109. 

BankAmerica Robertson Stephens. 1998. “America Online acquires Mirabilis, a new brand of 
Buddy List for international Web audience,” June 8.  

Bernstein Research Call. 2000. “Opening AOL instant messenger natural evolution for AOL: 
Like making Email interoperable to benefit all online users,” September 19.  

Barabási, A. L. 2002. Linked: The New Science of Networks. Perseus Publishing, Cambridge, 
MA.  

Barabási, A. L., R. Albert, H. Jeong. 1999. Mean-field theory for scale-free random networks. 
Physica A 272 173-187. 

Cairncross, F. 2001. The death of distance: How the communications revolution is changing our 
lives. Boston, Mass.: Harvard Business School Press. 

Farrell, J., G.. Saloner. 1986. Installed base and compatibility: Innovation, product 
preannouncement, and predation. American Economic Review 76 940-944. 

_____________________. 1987. Competition, Compatibility, and Standards. In H. Landis 
Gable (ed.) Product Standardization and Competitive Strategy. Elsevier, Amsterdam. 

Farrell, J., P. Klemperer. 2001. Coordination and lock-in: competition with switching costs and 
network effects. Working paper. University of California at Berkeley, Berkeley, California. 

Friedman, Billions, Ramsey & Co. 1998. “Mirabilis acquisition: Building the major Web-centric 
portal!” June 8.  

Granovetter, M. S. 1973. The strength of weak ties. American Journal of Sociology 78 1360-
1380.  



 32 

Jerusalem Post. 2000. “Media Metrix says ICQ's popularity dropping,” November 21.  

Katz, M. L., C. Shapiro. 1985. Network externalities, competition, and compatibility. American 
Economic Review 75 424-440. 

            . 1986. Technology adoption in the presence of network externalities. Journal 
of Political Economy 94 822-841. 

            . 1992. Product Introduction with Network Externalities. Journal of Industrial 
Economics XL 55-83. 

              . 1994. Systems competition and network effects. Journal of Economic 
Perspectives 8 93-115. 

Kelly, K. 1998. New rules for the new economy: 10 radical strategies for a connected world. 
New York: Penguin Books.  

Lee, E., J. Lee, J. Lee. 2002. Reconsideration of the winner-take-all hypothesis: Does network 
structure make a difference? Presented at the International Conference on Complex 
Systems, Nashua, New Hampshire. 

Lee, J., J. Lee, H. Lee. 2003. Exploration and exploitation in the presence of network 
externalities. Management Science, forthcoming.  

Liebowitz, S. J., S. E. Margolis. 1990. The Fable of the Keys. J. Law and Econom. 22 1-26. 

 ,  . 1995. Path Dependence, Lock-in, and History. The J. Law, Econom. & 
Organization 11 205-226. 

Liligeros, F., C. R. Edling, L. A. N. Amaral, H. E. Stanley. 2001. The web of human sexual 
contacts. Nature 411 907-908. 

Media Metrix. 2002. Digital Media Report, May. 

Morgan Stanley Dean Witter. 2001. “Internet: New media, eCommerce & PC software,” 
February 21.  

New York Times. 2001. “The nation: The land of monopolies,” July 1.  

The Ottawa Citizen. 1999. “AOL, Microsoft battle over instant messaging: Users cut off as 
rivals decide future of Internet,” November 1.  

Rogers, E. M. 1995. Diffusion of innovations, Free Press, New York, NY. 



 33 

Shapiro, C., H. R. Varian. 1999. Information rules: A strategic guide to the network economy. 
Boston, Mass.: Harvard Business School Press. 

Strogatz, S. H. 2001. Exploring complex networks. Nature 401 268-276. 

Toronto Star. 2000. “The ICQ generation,” December 21.  

Washington Post. 2001. “AOL, IBM to test message linkup: Microsoft says deal means little,” 
August 15. 

Watts, D. J. 1999. Small worlds: The dynamics of networks between order and randomness. 
Princeton, New Jersey: Princeton University Press. 

Watts, D. J., S. H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393 
440-442 



 34 

FIGURE 1. COUPLING TOPOLOGY FOR SOCIAL NETWORKS 
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        Source: Watts J. Duncan (1999: p.68) 
 
 
 

FIGURE 2. ADOPTION DYNAMICS:  
 

A. Typical simulation run with ββββ = 1 
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B. Typical simulation run with ββββ = 0.1 
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C. Typical simulation run with ββββ = 0 
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FIGURE 3. AVERAGE MARKET SHARE DIFFERENCES AGAINST ENTRY TIME: 

AVERAGE OVER 200 SIMULATION RUNS 

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Entry time

M
ar

ke
t s

ha
re

 d
iff

er
en

ce

β = 0.1, 0.2,…, 1.0

β = 0

 

 

 

FIGURE 4. DEPENDENCE OF TIPPINESS ON ENTRY TIME: 

AVERAGE OVER 200 SIMULATION RUNS 
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FIGURE 5. CUMULATIVE DISTRIBUTIONS OF MARKET SHARE  
DIFFERENCE BY ENTRY TIME: WHEN BETA IS 0 
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FIGURE 6. AVERAGE MARKET SHARE  
DIFFERENCE BY CUSTOMER BENEFIT: WHEN BETA IS 1 
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FIGURE 7. AVERAGE MARKET SHARE  
DIFFERENCE BY CUSTOMER BENEFIT: WHEN BETA IS 0 
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