
An Object-Oriented Software Development Framework for
Autonomous Decentralized Systems*

Stephen S. Yau' Keunhyuk Yeom, Bing Gao, Ling Li and Doc-Hwan Bae
Department of Computer Science and Engineering

Arhona State University
Tempe, AZ 85287-5406, USA

Abstract
Developing software for distributed computing systems
i s challenging due t o lack of good software development
methodologies f o r distributed computing systems. It is
very important t o develop reliable, adaptable and ex-
pandable application software for distributed computing
systems. Autonomous Decentralized Systems (ADS i s a

on-line maintainability and fault-tolerance capability. In
this paper, a framework f o r developing A D S application
software is presented. Our framework consists of object-
oriented requirements analysis, system design, imple-
mentation, allocation, verification .and maintenance. It
i s based on the object-oriented computation model devel-
oped f o r A D S application software development which
supports on-line expandability and on-line modifiability.
CASE environments for A D S software development are
also discussed.
Keywords: autonomous decentralized system, appli-
cation software development, object-oriented approach,
CASE environment.

distributed computing system with on-line expanda l!. tlaty,

1 Introduction
Due to the rapid development of computer and com-
munication technologies, distributed computing systems
are used widely in various areas of applications [l]. In
some application areas, it is required that the system
be continuously operating at any time, including par-
tial system failure, system expansion and system main-
tenance. Hence, these systems should not only have
the fault-tolerance capability, but also on-line expansion
and on-line maintenance properties. In order to have
these properties, the Autonomous Decentralized Sys-
tem ADS), which is composed of largely autonomous

on-line expansion, fault-tolerance, and on-line mainte-
nance, has been developed [2, 31. The ADSs have been
applied to several areas, such as the steel production
process control systems and train traffic control systems.
In order to effectively utilize ADSs, effective applica-
tion software development methodologies for ADSs are
needed.

and 6 ecentralized components with the capabilities of

*This work is supportedunder the collaborative research agree-
ment between the University of Florida and Etachi, Ltd., and the
collaborative rcsereh agreement between the Arieona State Uni-
vcnity and Hitachi, Ltd.

t Formerly with Computer and Information Sciences Depart-
ment, Univenity of Florida, Gainerville, FL 32611-6120

405
0-8186-7087-8195 $4.00 Q 1995 IEEE

Computer and Information Sciences Department
University of Florida

Gainesville, FL 32611-6120, USA

Developing software for distributed computing sys-
tems is more challenging than that for centralized com-
puting systems due to additional complications of in-
terprocessor communication, synchroniration, etc.[1, 41
Because the object-oriented paradigm reflects the dis-
tributed structure of the problem space and is suitable
for representing inherently concurrent behavior, it is
suitable to support the software development for large
scale distributed computing systems, like ADSs. We
have developed an object-oriented computation model
[5] for software development for ADSs.

In this paper, we will present an object-oriented
software development framework for ADSS based on
this computational model. Our framework consists
of object-oriented requirements analysis, system de-
sign, implementation, allocation, verification and main-
tenance. We will also discuss our CASE environment
supporting these phases and use an Automated Teller
Machine (ATM) to illustrate our framework.

2 The Object-Oriented Computational
Model

Before we present our software development framework,
we will briefly summarize the computational model [5]
which is the basis for our framework.

The computation model is based on the object-
oriented concept and supports on-line expandability and
on-line modifiability at the application software level.
In the computation model, ADS software is represented
as a set of modules. Each module has its own control
thread, the object base, the interface base, and base
management mechanism (BMM). An object base con-
tains instances of object classes defined in the module.
The objects in the object base of a module is called lo-
cal objects of this module, and the objects in the object
bases of other modules is called remote objects of this
module. An interface base contains the object meth-
ods and the object names to which these methods be-
long. There are two types of interface: import interface
and export interface. The import interface is a list of
methods in other objects invoked by itself. The export
interface is a list of methods of its own to be invoked
by other objects. The BMM provides functions used to
modify the object base and interface base dynamically
to support on-line features.

The followings are major features of the computation
model:

Requirements Statements

objectpriented
Requuements

Analysis I
Object Model & Dynamic Model

D

V
e System Design

Module Description in DDL
Computation

Model

Implementation

Allocation

ADS Application SoAwan L + z j
Figure 1: Our object-oriented framework for ADS a p
plication software development.

a

a

a

a

a

3

classes and objects used as bases of software devel-
opment

two level encapsulation: module level and object
level

asynchronous remote object method invocation and
synchronous local object method invocation

full logical location transparency achieved by the
location mechanism to determine the local object
method invocation and the remote object method
invocation

on-line expandability and on-line modifiability
achieved by the BMM to modify the object base
and interface base dynamically

Our Framework
Our framework has the following phases: object-
oriented requirements analysis, system design, imple-
mentation, allocation, verification and maintenance.
The framework for software development for ADS is
shown in Figure 1. We start the ADS software devel-
opment with a set of requirement statements, which is
transformed into the object model and dynamic model
using object-oriented requirements analysis (OORA)
technique. Our OORA technique is an extension of
Object Modeling Technique (OMT) [SI. The OMT is
based on constructing two visual projections of the sys-
tem, called the object model and the dynamic model.
The object model shows classes and their structures de-
rived from the knowledge about application domain and
the requirement statements. The dynamic model shows
a finite-state machine model for each class in the object

model. The object model and dynamic model are repre-
sented by the module description in Design Description
Language DDL [5 in the system design phase. Then,

the implemented modules are allocated into processors.
At the end of each phase, the adequacy of the results of
each phase is verified. The maintenance technique can
be applied to manage the ADS application software. In
this paper, while we discuss the overall framework for
the software development for ADS, our focus will be on
the requirements analysis and verification, system de-
sign and the CASE tools supporting these phases.

4 Object-Oriented Requirements Anal-

OORA is rapidly gaining popularity, promising to p r e
vide a more understandable specification and to better
support object-oriented design and implementation. In
this section, we will present our object-oriented require-
ments analysis and verification.

4.1 Object-Oriented Requirements Analy-

To generate precise, concise, understandable and correct
model of a real-world application problem, we must ex-
amine its requirements, analyee their implications and
restate them rigorously [SI. The analysis model consists
of the object and dynamic models.

each modu I e design in DDL is implemented in C++ and

ysis and Verification

sis

The object model can be constructed as follows [6]:

1. identify object classes from the requirement state-

2. identify associations between classes.

3. identify object attributes.

4. organize classes using inheritance to share common

We iterate the above steps until the object model is
correct. Finally, we apply topdown and/or bottom-up
approaches to build our hierarchical object model.

In most existing OORA methodologies, the results
of the requirements analysis only concerns static infor-
mation such as class definitions, hierarchies, and re-
lationships among classes. However, for distributed
computing systems like ADS, more information , such
as communication behavior, persistency of objects and
role of objects, are needed in the requirements analy-
sis phase and made available to the design phase. The
dynamic model in 61 using a state transition diagram
(STDL is not suita IJ le for representing communication
and c ecking consistency. We have developed a new
dynamic model to enhance the original STD. It can be
constructed as follows:

1. prepare scenarios.

ments.

structure.

We prepare scenarios of typical interaction se-
quences. These scenarios show the major interac-
tions, external display formats and information ex-
changes. The approach to construct the dynamic
model by scenarios ensures that important steps
are not overlooked and that the overall flow of the
interaction is smooth and correct.

406

construct event trace for each scenario.
An event trace is an ordered list of events between
objects. Examine the scenarios to identify all ex-
ternal events including all signals, inputs, decisions,
interrupts, transitions and actions.

build an STD based on event trace.
It starts with the event trace diagrams that affect
the class being modeled. Every scenario or event
trace corresponds to a path through the STD. Each
branch in control flow is represented by a state with
more than one exit transition.

Verify consistency.
Check for the completeness and consistency at the
system level. Every event should have a sender and
a receiver. Make sure that corresponding events on
different STDs are consistent.

______.___

In real-world applications, software systems have a
substantial number of object classes and associations.
To handle this, we developed a hierarchical object model
to "layer" the object model as follows:

After identifying object classes and associations, we
group the classes using the following bottom-up guide-
lines:

0 Tightly-coupled classes which frequently communi-
cate each other are grouped together.

Each association should generally be shown on a
single screen, but some classes must be shown more
than once to connect different sheets.

Try to minimize the number of bridge classes which
are the classes which form the bridge between two
screens or subjects (which are logical constructs for
grouping classes).

A star pattern is frequently useful for organising
subjects: a single core subject contains the top-
level structure of high-level classes. Other subjects
expand each high-level class into a generalization
hierarchy and add associations to additional low-
level classes.

Because it is not realistic to apply existing OORA
approach directly to large and complex systems due to
the complexity of the problem statement itself, we use
the following top-down approach:

1. Identify the core activity areas of the system which
require analysis, and provide a basis for work parti-
tioning and parallel development. Domain knowl-
edge plays an important role in identifying these
areas.

2. Divide the problem statements according to the
core areas identified in Step 1.

3. Apply our OORA approach to each of the core ac-
tivity areas to generate the object and dynamic
models for each area.

A
,;Build Information Tree

0 --- *...

Figure 2: Our verification approach.

4.2 Object-Oriented Requirements Verifi-

Because the requirement statements are high-level de-
scription of a software system in a natural language,
and because we need to use the domain knowledge
and ignore redundant or unnecessary information from
the given requirement statements to derive OORS dur-
ing OORA, there may exist some differences between
requirement statements and OORS. Such differences
should be identified and their effects on the system
should be evaluated during the verification of OORS.
Our verification approach will identify the missing in-
formation in the OORS which may be deleted as unnec-
essary information and the information in the OORS
which is not specified in the requirement statements.

To verify the OORS, we check the completeness and
consistency between the requirement statements in the
natural language and the OORS [7]. To do so, we trans-
form the OORS which is expressed in terms of the ob-
ject model and dynamic model generated by OORA
into a formal specification using a formal specification
language, which is then transformed to a graphic form
called the information tree. We then verify the com-
pleteness and consistency of the requirements specifica-
tion by comparing the information in the information
tree with the given requirement statements in the nat-
ural language. The information tree is built to organise
the information so that the verification can be system-
atically performed without increasing the complexity of
the problem itself. The overall verification process is
shown in Figure 2.

The input of our verification approach consists of
OORS expressed in terms of the object model and dy-
namic model, and the requirement statements in the
natural language given by the client. Our verification
approach can be summarized as follows:

cation

407

1.

2.

3.

5

Transform the derived OORS into a formal require-
ments specification described by a formal specific&
tion language.

Build an information tree from the formal specifi-
cation obtained in Step 1.

Check the completeness and consistency between
requirement statements and OORS by comparing
each given requirement statement with the infor-
mation represented by its corresponding path or
relationship in the information tree.

System Design
During the system design, we determine the structure
of the system, which provides the context for more de-
tailed decisions made in later design stages. By making
high-level decisions for the entire system, the system
designer partitions the problem into modules so that
further work can be done by several designers working
independently on different modules. In our computation
model, ADS software is represented as a set of modules,
and each module has its own control thread, a number
of local objects and interfaces including import interface
and export interface. Based on this structure, we derive
the following procedure for the system design:

1.

2.

3.

Identify all objects and all inter-object communica-
tion from the requirement statements, object model
and dynamic model. At the requirements analysis
phase, we focused on classes rather than objects
in object modeling. However, individual objects
which play different roles in the system and their
communication behavior should be identified at the
system design phase.

Cluster the objects into modules. Based on our
computation model, a module is not an object nor
a function, but a package of objects, associations,
operations, events and constraints that are inter-
related and include a reasonably well-defined in-
terface with other modules. The formation of the
modules or the clustering of objects and related
items directly influences the performance of the sys-
tem being developed. A good clustering algorithm
will establish a modular design which will reduce
inter-module communication cost, exploit poten-
tial concurrency among objects, and achieve fault-
tolerance and reliability. For this purpose we use
a clustering algorithm to systematically group the
objects into modules according to a given set of cri-
teria: minimizing communication, exploiting con-
currency, functionality and user constraints. Our
clustering approach is a bottom-up heuristic algo-
rithm which optimizes communication with func-
tionality and concurrency as constraints.

Identify the control thread of each module. A con-
trol thread is a path through a set of state diagrams
in which only a single object at a time is active. In
our computation model, each module has only one
control thread constructing the body of itself, in
which objects are initiated and the process activi-
ties of the module are defined.

4. Describe each module using DDL defined in our
computation model. Our DDL is used to represent
software design for ADSs. The DDL representation
of the software design reduces the gap between sys-
tem design and implementation.

5. Decide boundary conditions. The boundary con-
ditions such as initialization, termination and fail-
ure, must be taken care of during system design.
Constant data, parameters, global variables, tasks
and others need to be initialized. In ADS software,
content code [8] should be set for each module. On
termination, internal objects can simply be aban-
doned, and each task must release any external re-
sources it had reserved. In case of failure, a plan
must be developed for orderly failure, as well as
graceful exit on fatal bugs by leaving the remain-
ing environment as clean as possible and recording
or printing as much information about the failure
as possible before terminating. Exception handling
techniques for behaviors like retry, ignore, wait and
time out are being developed as defined in our com-
putation model.

6 Implementation and Allocation
In our framework, coding is done using C++ with ADS
constructs, such as invocation, receivexesult, guard
statement, etc., which are based on our computation
model. The advantages of using ADS constructs are
that the programmer will not have to be bothered by
the synchronisation, communication and/or location of
processors. The ADS constructs can be translated au-
tomatically into C++ by a control mechanism in our
computation model.

After the implementation, we need to allocate the
modules to processors in the ADS system. For the mod-
ule allocation, we use the criteria of minimizing commu-
nication and balancing the load among the subsystems
that constitute the distributed system [9]. Our module
allocation algorithm is heuristic and suitable for allo-
cating modules onto a distributed system whose sub-
systems are connected in the form of a LAN and com-
municating by means of broadcasting such as ADS. In
this algorithm we try to achieve load balancing and min-
imize the communication thereby attempting to increase
the concurrency. The algorithm includes fault tolerance
aspects such as duplication, that is, no two duplicated
modules are allocated to the same subsystem as this
would defeat the purpose of duplication. Our approach
also allows the user to specify constraints in allocation
such as a particular module needs to be allocated on to
a specific subsystem.

7 CASE Environment
We have developed a CASE environment to aid the
system analysts to generate object model and dynamic
models from the given software requirements according
to our OORA approach, and to aid the system designer
to design the system architecture according to our sys-
tem design approach. This CASE environment includes
a generic drawing editor using Graphical User Interface
(GUI), two levels of integration such as common user in-
terface and transferability of data among all the tools in
the environment, constraint maintenance which checks

408

Problem Statement
Domain Knowledge

Dynamic Mcdel

-1 I Dynamic
1 - I I

4 Obiea Communication

Modules
Described
in DDL

Detailed Design

Verification at

I. I

Implementation
Module Diagram
Communication

Application
nvironment

x-window

Figure 3: A CASE environment for our framework for
ADS application software development.

the connectivity between components, error checking,
and automation of output generation from the CASE
tools for OORA and for system design

Our goal is to provide a CASE environment for ADS
application software development as shown in Figure 3,
where two levels of integration are supported. The first
level is the common user interface. Commands and tools
are accessed uniformly in both the tools for OORA, such
as the object modeling tool, dynamic modeling tool and
event trace editor, and for system design, such as the
object communication modeling tool and module mod-
eling tool. The next level of integration is the transfer-
ability of data between the tools, which is another kind
of bridge between the tools. The CASE tools need to
communicate each other in order to fetch information
and check consistency. For example, the CASE tools
for the system design may need information from the
CASE tools for OORA, such as class definitions and
communication behavior.

The design of our CASE tool is based on the frame-
work of Unidraw [lo]. We implemented this tool using
the object-oriented language C++ and the CASE tools
are running on X windows. We also used some objects
from the object-oriented graphical toolkit Interviews
[ll] such as dialog boxes, text editor and structured
graphics.

The object modeling tool consists of a viewer, a pull-
down menu containing controls that execute a specific
command, controls for engaging the current tool, a pan-
ner for panning and zooming the viewer and state vari-

409

-__

able views that display the values of state variables
maintained by the object modeling tool. A state vari-
able includes the name of the object model and modi-
fication status. The user engages the current tool by
clicking on the appropriate control on the tool’s left
edge. The dynamic modeling tool is very similar to
the object modeling tool. It also consists of state vari-
able views, pull-down menu, viewer and panner. We
can build the components of the dynamic model such
as state, event, class and transition, and manipulate
components such as move and select using this tool. In
implementation phase, our computation model provides
language constructs for ADS software that control com-
munication, synchronization and other ADS properties.
These ADS constructs are translated into C++ by a
preprocessor. The preprocessor scans the ADS applica-
tion modules, checks the syntax according to the syntax
defined by the computation model and generate source
code. The allocation algorithm has been implemented
under X window environment. The algorithm consists
of three main procedures: Cluster, Spillover and Up-
date-Load. The procedure Cluster clusters two nodes
to form a compound node. This is done by merging
the two nodes, a pivot and a non pivot node into a sin-
gle node. The procedure Spillover is for achieving load
balancing. It checks whether a module can be safely
allocated to a subsystem. Each time an allocation is
performed, the load on the subsystem to which the al-
location is performed is updated by a call to the pro-
cedure Update-load. Finally, we are going to construct
CASE environment tools and an integrated comprehen-
sive set of services to support software development for
dist ribu t ed computing systems.

8 An Example
We will illustrate our approach using a simplified Auto-
mated Teller Machine (ATM) system. The requirement
statements for the system is given as follows:

Develop the software to support a computerized bank-
ing system with automatic teller machines (ATMs) to be
shared by a consortium of banks. Each bank has its own
computer to maintain its accounts and make updates to
accounts. ATMs communicate with a central computer
of the consortium. A n A T M accepts a bank card, inter-
acts with the user, communicates with the central com-
puter t o process transactions, and/or dispenses cash.

For simplicity purpose, the system is assumed to have
two ATMs, two Banks and one Consortium.

For object-oriented requirements analysis, we obtain
the object and dynamic models of the ATM system ac-
cording to the procedures summarized in Section 4.1.
The object model is shown in Figure 4. The state tran-
sition diagram of class A T M is shown in Figure 5.

For object-oriented requirements verification, we first
transform OORS into formal specification and build an
information tree from the formal specification. Figure 6
shows the complete information tree of an ATM sys-
tem. For each statement in the requirement statements,
we check the consistency. For instance, A T M dispenses
cash. The corresponding path of this statement in the
information tree is identified by selecting nodes such aa
ATM, dispense-cash, cash and 5 200 as shown with the
arrows in Figure 6. We compare this path and the given

Consists of
I

Holds
Consists

of

Issues

U AccountI Accesses

I I
Consdum 9

I I

, lHa , I d e n 7 I , 1 1
Bank Card

Figure 4: The object diagram for the ATM system.

statement from the requirement statements for the con-
sistency. As a result, we find an inconsistency, < 200,
in the OORS. We also consider the path in the infor-
mation tree, ATM, dispense-cash, cash, and less than or
equal to $200, as an example. We make the statement
or the enumeration of words for that path as follows:
ATM dispenses cash (less than or equal to $200).
We search a statement in the requirement statements
matched with the statement represented by that path.
We find the statement in the original requirement state-
ment, "ATM dispenses cash". We determine whether
less than o r equal to $200 is from the domain knowl-
edge or a mistake made during OORA. Comparing it
with the domain knowledge added during OORA, we
find that "less than or equal to $200" is from the do-
main knowledge.

For system design, we first identify objects and in-
terobject communications. In this example, objects
are ATM1, ATM2, Bankl, Bank2, Consortium, Bank-
Cards, Card-Authorizations, Accounts, Transactions,
Updates and Users, and interobject communications are
"Consortium communicates with ATM1, ATM2, Bankl
and Bank2," "Bank-Cards, Card-Authorizations, Ac-
counts, Transactions and Updates communicate with
corresponding Bank," "Updates communicate with Ac-
counts and Transactions" and "Users communicate with
ATMs". Next step is clustering. The module commu-
nication diagram after clustering is shown in Figure 7.
Then, identify control thread of each module and de-
scribe each module by DDL. Finally, we should handle
boundary conditions. First, we initialize the database
using all available account data and set content code for
each module. The second condition is termination, but
we do not have termination conditions because the sys-
tem will operate forever. The last one is failure condi-
tion. For instance, if a user enters wrong password three
times continuously, the card is automatically ejected.

9 Discussion
In this paper, we have presented an object-oriented
framework for ADS application software development.
Our framework contains object-oriented requirements
analysis, system design, implementation, allocation,
verification and maintenance. We have introduced a hi-

I U

main screen

Figure 5: The state transition diagram for class ATM.

erarchical object modeling for managing large complex
systems. We have also constructed a dynamic model
from the event traces automatically using a CASE tool.

Since the requirement statements written in a nat-
ural language often contain ambiguities which lead to
diverse interpretations of the same requirements and
cause serious problem in requirements analysis, one of
future research is to deal with the ambiguities in the
requirement statements for requirements analysis. In
design verification, we deal with more specific design
issues, such as concurrency, communication and dead-
lock in software development for ADS. We also need
to deal with the testing of application software on the
ADS environments. We have developed an allocation
algorithm based on the criterion of minimizing commu-
nication and load balancing. On-line modification of
existing distributed software may degrade the perfor-
mance of the system unless the allocation is done all
over again which may be expensive in terms of time and
cost. Hence, we need to develop an efficient realloca-
tion algorithm due to on-line modication of distributed
software. To standardize our framework for distributed
application software development, we need to extend
our computation model to open system environments
to achieve the unification of system management. We
will also consider the object-oriented software develop
ment framework using CORBA. Since ADS can also be
operated in the multiple loop environment as well as
the single loop environment, we also need to extend our

410

i;;;;) System

success

Figure 6: The information tree for the ATM system.

computation model to the multiple loop environment.

Acknowledgment
The authors would like to thank K. Mori, K. Kavano,
H. Suzuki, M. Orimo, C. Sakai and T. Yamamori of
Hitachi, Ltd. for valuable discussions on various aspects
of the ADS systems.

References
[l] S. S. Yau, X. Jia, and D.-H. Bae, “Trends in Soft-

ware Design for Distributed Computing Systems,”
Proc. Second IEEE Workshop on Future Trends of
Distributed Computing Systems, 1990, pp. 154-160.

[2] H. Ihara and K. Mori, “Autonomous Decentral-
ized Computer Control Systems,” IEEE Computer,

[3] K. Kawano, M. Orimo and K. Mori, “Autonomous
Decentralized Systems: Concept, Data Field Ar-
chitecture and Future Trend,” Proc. Int’l Symp.
on Autonomous Decentralized Systems, 1993, pp.

[4] S. S. Yau, X. Jia and D.-H. Bae, “Software De-
sign Methods for Distributed Computing Systems,”
Journal of Computer Comm., Vol. 15, No. 5, May

[5] S. S. Yau, and G, -H. Oh, “An Object-Oriented A p
proach to Software Development for Autonomous
Decentralized Systems,” Proc. Int’l Symp. on Au-
tonomous Decentralized Systems, 1993, pp. 37-43.

[SI J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffi, New Jer-
sey, 1991.

Vol. 17, NO. 8, 1984, pp. 57-66.

28-34.

1992, pp. 213-223.

Figure 7: Module communication diagram of the ATM
system after clustering.

[7] S. S. Yau, D.-H. Bae and K. Yeom, “An Approach
to Object-Oriented Requirements Verification in
Software Development for Distributed Computin
Systems,” Proc. 18th Int’l Computer Software 8
Applications Conf., November 1994, pp. 96-102.

[8] K. Mori, H. Ihara, Y. Suzuki, M. Koisumi, M.
Orimo, K. Nakai, and H. Nakanish, “Autonomous
Decentralized Software Structure and Its Applica-
tion,” Proc. ACM-IEEECS Fall Joint Computer
Con$, 1986, pp. 1056-1063.

[9] S. S. Yau and V. R. Satish, “A Task Allocation
Algorithm for Distributed Computing Systems,”
Proc. 17th Int’l Computer Software tY Applications
Conf,, September 1993, pp. 336-342.

[lo] J. Vlisaides, “Generalized Graphical Object Edit-
ing,” Technical Report: CSL-TR-90-427, Com-
puter Systems Laboratory, Stanford University,
Stanford, CA, June 1990

1111 Mark A. Linton, Paul R. Calder, John A. Inter-
rante, Steven Tang and John M. Vlissides, “In-
terviews Reference Manual, Version 3.1,” Stanford
University, Stanford, CA, 1992

411

