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Abstract 
 
   Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of 
magnet powder. This process claims that it can accomplish both densification and anisotropication in one step 
forming. This process is distinguished from other processes since it uses a deformable copper tube for densification 
of magnet powder. In this paper, simulation has been carried out for the Tube Process in a closed die considering 
the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B 
magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an 
important role in the stage of preform design. 
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1. Introduction 
 
   Since permanent magnets of Nd-Fe-B group were produced on a commercial scale in 1984, they have kept a key 
post in the permanent magnet market and are expected to continue steady and remarkable growth. The magnets are 
currently used in electric machines, high energy motors, generators, sensors and so on. The Nd-Fe-B magnet is 
manufactured by the sintering process, the GM Process (Rapid Solidification and Hot Forming Process) or the 
HDDR Process (Hydrogenation Decomposition Desorption Recombination Process). All processes are protected by 
patents against its application without license. In order to overcome this obstacle of the patents, Tube Process (TP) 
was developed and patented by Mando Machinery Corporation in Korea. TP is one of the processes to produce 
permanent magnets by sinter-forging in the closed die with the use of deformable tube. Advantage claimed for this 
process is that it can accomplish both densification and anisotropication in one step forming. This process is 
distinguished from other processes since it uses deformable copper tube for densification of magnet powder. TP has, 
however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder because of folding from 
large height reduction and localized densification. Therefore, a through study on preform and near net shape 
manufacturing is necessary for commercial scale production [9]. 
   Numerous studies have been made both theoretically and numerically for the forming of the powdered metals[1-



8]. These researches were, however, confined to a single powder material. Compared to previous researches, TP 
should be carried out with a deformable tube and magnet powder. Preform design for TP is not easy due to the 
complexity of the process. The design cost and time can be remarkably reduced with the aid of the finite element 
analysis. 
   In this paper, a rigid-plastic finite element code has been developed to consider the compressibility of the 
powder material and deformable body contact with 8-node hexahedral isoparametric elements. The analysis deals 
with curved die and punch surfaces since commercial powdered magnet has the shape of circular arc. For the 
treatment of punch and dies, the code uses arbitrary curved surfaces by finite element patch. The code adopts a 
Lagrange multiplier method for contact treatment. There are two types of contact: one is contact between die 
surfaces and material surfaces; and the other is contact between magnet powder and a tube. The simulation has been 
carried out for a full TP in a closed die considering the compressibility of material, arbitrary curved shape and two 
contact types. TP for flat-type square magnets is simulated with simple finite element meshes to evaluate the 
validity of the present code and arc-shaped magnets for EHPS (Electro-Hydraulic Power Steering) system is 
simulated for preform design. In order to achieve the net-shape manufacturing by reducing the flash and folding of 
the tube, the optimum preform of slanted shape is chosen with the proper initial dimension. Results show that the 
finite element analysis of TP is indispensable in the stage of preform design. 
 
2. Theoretical derivation  
 
2.1  Constitutive equations 
 
   An yield function for powder material (P/M) can be expressed by the second invariant of the stress deviation 
tensor  and the first invariant of the stress tensor  as [10]: 2J ′ 1J
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where is the uniaxial yield stress of a matrix material, oY σ~  is the flow stress of P/M and A , B , η  are the 
function of the relative density. For the uniaxial stress state, the constitutive equations can be expressed as [10]:  
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where  is the strain rate tensor, &ε ij ijσ  is the stress tensor, &
~
ε  is the effective strain rate of P/M, σ m  is the 

mean stress and &ε v  is the volumetric strain rate. For the uniaxial stress state, the effective strain rate and 
volumetric strain rate can be expressed as follows: 
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where V is the volume of P/M and ρ  is the relative density. 
 
2.2  Finite element formulation 
 
   The plastic potential energy for P/M can be defined by a functional as follows[11]:  
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   For general metal, it is reported that good results can be achieved if the relative density of metal is set as 
0.999[11]. The velocity field u and strain rate vector ε&  of the element can be approximately interpolated within an 



element by the shape function N and nodal velocity vector v as follows: 
vNu T= , vB=ε&       (7) 

   The effective strain rate of P/M is defined as follows: 
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   The matrix P can be decomposed with the shear deformation energy term and the volumetric deformation 
energy term  while the material constant matrix D can be decomposed with 

1P
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   The functional of Eq. (6), then can be approximated in a finite dimensional space with finite elements as 
follows: 
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   And the potential energy of i-th component Φ i  is expressed as follows: 
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   The velocity field that minimizes the potential energy can be acquired by the Newton-Raphson iteration method. 
 
2.3  Formulations for arbitrary shaped die and contact treatment 
 
   An arbitrary shaped die can be described by a finite element patch method[12] with which the data storage is 
relatively small and treatment for the contact and a searching scheme is easy to deal with. Although triangular linear 
patch for the arc shaped die needs a lot of patches and special treatment for treating the curved part, it can describe 
complex geometry easily and carry out computation conveniently. 
   A contact problem can be treated by the penalty method or the Lagrange multiplier method [13]. In order to deal 
with the deformable body contact problem, the Lagrange multiplier method has been adopted for stable 
convergence, although unknowns and computation storage are larger than those with the penalty method. The skew 
boundary condition is used for the contact treatment between die and a material. The Lagrange multiplier method 
for contact between two bodies can be described as follows[13]: 
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where C is the constraint vector, λ is the Lagrange multipliers and Q is the gap function. 
   In the contact problem of a deformable body, master segments and slave nodes take a role of die and contact 
nodes in the case of the rigid contact respectively. For the case of the master segment and slave nodes as shown in 
Fig. 1, a relation between the slave node and the master element can be expressed as: 
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Fig.1 Schematic relation between the slave node and master segment. 

 



where n is the normal vector of the virtual flat plane of the master element, Nα is the shape function and s and t are 
the local coordinate in an element. Fig. 2 shows the gap function between the master element and the slave node. 
The exact gap function (g = Q) and the penetration position (s,t) can be obtained by applying the Newton-Raphson 
method after differentiating Eq. (13). The relation, then, can be expressed as { }{ } { }QUC =  and the displacement and 
the gap function can be expressed as follows: 
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Fig.2 Schematic relation between the gap and the displacement. 

 
   C can be obtained with the use of Eq. (15) as follows: 
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   And the corresponding { }U and can be expressed as follows: { }Q
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   The slave nodes, which contact die surface and the master element simultaneously, should be transformed in the 
skew coordinates. The global stiffness matrix and the global external force vector can be constructed by the 
transformation between the skew coordinates and the global coordinates. 
 
3. Numerical results 
 
3.1  Flat magnet model 
 
   A flat magnet model is analyzed to investigate the effectiveness of the code developed. The initial relative 
density of powdered magnet is 0.75, which is used in the real Tube Process (TP) and the relative density of a copper 
tube is fixed as 0.999 for a rigid-plastic material. The strain-stress relation of the two materials have been obtained 
by the experiment at the real TP temperature of 700 oC as follows[9]:  

Copper Tube    : (MPa)2417 120.. εσ =     (19-a) 

Nd-B-Fe Magnet : (MPa)49789 2150.. εσ =     (19-b) 
   A quarter model using 8-node hexahedral isoparametric elements is analyzed for the sake of geometric 
symmetry. Fig. 3 shows a finite element mesh model and die geometry for a flat magnet model. 
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Fig. 3 Initial F.E. mesh and die geometry for simple model 

 
   Fig. 4 shows the deformed shapes with the variation of the height reduction. It can be seen that a tube separates 
from the magnet powder in the early stage of deformation. Both contact treatment between magnet and die and that 
between tube and magnet have been properly carried out. 
 

 
        Initial shape            21.6% H.R.           41.2% H.R          55.8% H.R.  

 
Fig. 4  Initial and deformed shape for simple model 

 
3.2  Magnets for EHPS model – full Tube Process Simulation 
 
   Simulation of TP for EHPS magnet model is carried out with the same material properties as in the section 3.1. 
The magnet for EHPS are arc shaped with the upper die radius of 18.5 mm and the lower die radius of 21 mm. Fig. 
5 describes a finite element mesh, dimensions and die geometry. Finite element patches of punch and dies are 
shown in Fig. 6. Slanted preform is adopted to reduce the folding of copper tube and obtain uniform 
densification[9]. 
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Fig. 6 Finite element die patch EHPS  
magnet model 



   Deformed shapes and relative density distributions with the variation to the height reduction are shown in Fig. 7. 
For the optimum process, a tube is located in the lower part of magnet powder. The relative density distribution 
becomes more uniform with the preform suggested than with others 
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      Initial shape           25.4% H.R.              42.2% H.R.            65% H.R.  

 
Fig. 7 Initial and deformed shape with relative density distribution for EHPS magnet model 

 
 
4. Conclusion 
 
   The simulation has been carried out for a full TP in a closed die considering the compressibility of material, 
arbitrary curved shape and two contact types. TP for flat-type square magnet is simulated to verify the validity of 
the present code. TP for arc-shaped magnets for EHPS (Electro-Hydraulic Power Steering) system is simulated for 
the optimum preform design. In order to achieve net-shape manufacturing by reducing the flash and folding of the 
tube, the optimum preform of slanted shape is selected with the proper initial dimension. Results show that the finite 
element analysis of TP is indispensable in the stage of the preform design. 
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