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ABSTRACT 
 

In this paper, we focus on developing robust saturation controller for the linear time-invariant 
(LTI) system involving both actuator’s saturation and structured real parameter uncertainties. The 
traditional suboptimal bang-bang control method only guarantees stability for nominal LTI system. 
The controller suggested in this paper can analytically prescribe the upper and lower bounds of 
parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of 
actuator’s saturation. The suboptimal bang-bang control method is extended to LTI system with 
parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust 
saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient 
existence conditions for this controller are presented. The effectiveness and the availability of the 
proposed controller are investigated by an example of three-story building model. Also, some 
characteristics of the proposed controller are examined. Through numerical simulations, it is 
confirmed that the proposed robust saturation controller is robustly stable with respect to parameter 
uncertainties over the prescribed range defined by the upper and lower bounds. 
 
 

 
INTRODUCTION 
 

In active control system, actuator’s saturation must be considered for most of actuation devices. 
Because the physical inputs such as force, torque, thrust, stroke, voltage, current, and flow rate of all 
conceivable applications of current technology are ultimately limited. Unexpected large amplitude 
disturbances can push systems' actuators into saturation, thus forcing the system to operate in a 
nonlinear mode for which it was not designed and in which it may be unstable (Bernstein et al. 1995). 
In recent years, research on the active control of civil engineering structures such as bridges and 
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buildings has received increasing attention (Kobori 2002, Spencer Jr. et al. 1997, Housner et al. 1994). 
Many control strategies have been developed with the goal of protecting buildings subjected to weak 
and moderate earthquakes. But one of the main difficulties in realizing the active control systems to 
protect the building against strong earthquakes is the demand of unrealistic large control force. With 
the linear active controller such as linear quadratic regulator (LQR) which has been used extensively 
in many structural control applications, the applied control force is a linear combination of the 
structural responses. Therefore, the maximum control force will correspond to the peak response 
which actually occurs only for a few times during strong earthquakes. Thus the design of an actuator 
based on the maximum demand of control force is inefficient and uneconomical. Saturation control 
considering the limit of control force is known to be able to embrace this problems and, furthermore, 
to be more effective in the reduction of structural response than the linear control algorithms under 
strong earthquakes (Mongkol et al. 1996, Indrawan et al. 1994, Wu et al. 1996, Lim et al. 2003, Yang 
et al. 1995a). Most of the existing saturation control algorithms are developed in nominal LTI system. 
Because inherent modeling errors between mathematical models and real-world systems are 
unavoidable, active controller for systems with actuator's saturation should be designed to be robust 
with respect to system uncertainties. 

The bang-bang control, which minimizes a performance index subjected to the control force 
constraint, has been continuously investigated by several authors in optimal control theory (Wonham 
et al. 1964, Friendland 1971, Meirovitch 1990). The main shortcoming of the bang-bang control 
becomes clear when one wants to apply this control method to the structural control. First, because 
control force is not a function of state but of co-state, the on-line computation process of it will 
significantly increase the time delay and may lead to instability due to the accumulated error in on-line 
numerical evaluation. Second, the undesirable control chattering near the origin of state-space due to 
high frequency switching of control force often occurs and great care should also be taken against 
spillover instability at higher modes. Some studies have been investigated to overcome these 
shortcomings. Mongol et al. (1996) proposed the linear saturation control method which consists of a 
low-gain linear control when the system is close to the zero state and the bang-bang control otherwise. 
They showed a scheme to synthesize the switching surface that is needed to implement the bang-bang 
control as well. Wu et al. (1996) introduced the suboptimal bang-bang control described by a function 
of state. In the suboptimal bang-bang control, the control force is determined by minimizing the time 
derivative of a quadratic Lyapunov function under the control force constraint. Wu et al. (1996) also 
proposed the modified bang-bang control method which overcomes control chattering problem of the 
suboptimal bang-bang control. This method is found to be effective under a certain range of control 
force but it can be unstable outside of this range. To overcome this instability Lim et al. (2003) 
proposed an adaptive bang-bang control algorithm. All of the aforementioned bang-bang type control 
algorithms guarantee only stability for nominal LTI system and don’t explain analytically the 
robustness with respect to parameter uncertainties of the system. 

To explain robust stability of the saturation control, Yang et al. (1995a, 1995b) presented the 
saturated sliding mode control method based on the theory of the sliding mode control (SMC) and 
proved it to be effective method in vibration control for civil building structures. Even though this 
method is robust with respect to parameter uncertainties of the system, it cannot prescribe the bounds 
of parameter uncertainties of the system within which closed-loop robust stability is guaranteed for 
certain. Also the robustness is not guaranteed over the complete response of a SMC system because 
robustness of the SMC with respect to parameter uncertainties is guaranteed only in the sliding mode. 

In this paper, we focus on developing robust saturation controller guaranteeing robust stability of 
uncertain LTI system over the prescribed upper and lower bounds of structured real parameter 
uncertainties. In high-rise building, masses, stiffnesses, and damping coefficients are physical system 
parametric uncertainties. Because these uncertainties are regarded as time-invariant, we can model 
high-rise building as LTI vibrating system with uncertain masses, stiffnesses, and damping coefficients 
(or uncertain natural frequencies and damping ratios). Approach of expressing system uncertainties as 
structured real parameter uncertainties is known to be an effective way of describing the modeling 



errors in state space. Through this approach, the controller can be designed to guarantee robust 
stability and/or performance for given bounds of each parameter uncertainty. To reduce conservatism 
of the classical quadratic stability test, both uncertain LTI system and its Lyapunov function are 
assumed to be affine in time-invariant uncertain real parameters. Suboptimal bang-bang control 
method, which is designed based on Lyapunov stability condition for nominal LTI system, is extended 
to this uncertain LTI system. Based on affine quadratic stability (AQS) definition and multi-convexity 
concept (Gahinet et al. 1996) to reduce the problem to an LMI problem, a robust saturation controller 
is proposed and the LMI-based sufficient existence conditions are presented to design this proposed 
controller. A practical numerical example is illustrated to verify the availability and the effectiveness 
of the proposed controller. 

 
 

AFFINE QUADRATIC STABILITY 
 
We first review the AQS test which is used as an analytical tool for our robust saturation control. 

Even though it is much more difficult to deal with its analysis mathematically, the AQS test can 
analyze robust stability of linear systems with uncertain real parameters which are time-invariant or 
time-varying. In robust controller design, the classical quadratic stability test guarantees robust 
stability against arbitrarily fast parameter variations (Khargonekar et al. 1990). As a result, this 
quadratic stability test can be very conservative for constant parameters or slow-varying parameters. 
However, the AQS test is applicable to both constant and time-varying uncertain parameters and much 
less conservative than the quadratic stability test in the case of constant parameters or slow-varying 
parameters. This AQS test is an extension of the notion of quadratic stability where the fixed quadratic 
Lyapunov function is replaced by a Lyapunov function with affine dependence on uncertain 
parameters. 

This paper is concerned with the LTI system with constant uncertain real parameters that can be 
described by state space equation of the form 

 
00) x)x(x(t),A(θ(t)x ==&                            (1) 

 
where state vector is nx ℜ∈ , K

K ℜ∈= ),,,( 21 θθθθ L  is a vector of uncertain real parameters, and 
the system matrix )(θA  is assumed to be stable and depends affinely on the parameters of iθ . That 
is 
 

KK AAAAA θθθθ ++++= L22110)(                      (2) 
 
where KAAAA ,,,, 210 L  are known fixed matrices. 
We assume that lower and upper bounds are available for the parameter values. Specifically, each 
parameter iθ  ranges between known external values iθ  and iθ . 

 
Kiforiii ,,2,1],[ L=∈ θθθ                           (3) 

 
This means that the parameter vector θ  is valued in a hyper-rectangle called the parameter box. In 
the sequel 
 

}},{:),,,{(: 21 iiiK θθωωωω ∈=Θ L                       (4) 
 
denotes the set of the K2 vertices or corners of this parameters. 
The following notion of parameter dependent Lyapunov function is introduced to reduce conservatism 
of the classical quadratic stability test when system (1) is affine in θ  with time-invariant parameters. 
 



xPxxV T )(),( θθ =                               (5) 
 
where )(θP  is an affine function of θ . 
 

KK PPPPP θθθθ ++++= L22110)(                       (6) 
 
Using this parameter dependent Lyapunov function we can define AQS for the LTI systems with 
constant uncertain real parameters (1) as followings. 

 
 

Definition 1. Affine Quadratic Stability (AQS) (Gahinet et al. 1996): The linear time-invariant system 
with constant uncertain real parameters (1) is said to be affinly quadratically stable if there exist 

1+K  symmetric matrices KPPPP ,,,, 210 L  such that 
 

022110 >++++ KK PPPP θθθ L                        (7) 
 

0)()()()( <+ θθθθ APPA T                           (8) 
 
hold for all admissible trajectories of the parameter vector ),,,( 21 Kθθθθ L= . 

■ 
 
 
The Definition 1 expresses that 0),( >θxV  and 0),( <dtxdV θ  for all admissible parameter 
trajectories. Recall that the AQS test is much less conservative than the classical quadratic stability test 
seeking a fixed parameter independent Lyapunov function along all admissible parameter trajectories. 
By imposing additional “multi-convexity” constraints on the parameter dependent Lyapunov function, 
finding an affine Lyapunov matrix )(θP  can be turned into an LMI problem with variables 

KPPPP ,,,, 210 L  (Gahinet et al. 1996). Efficient polynomial-time optimization algorithms are 
available to solve this (Boyd et al. 1994) because LMI problems are convex. 
 
 
ROBUST SATURATION CONTROLLER 

 
We focus on designing robust saturation controller, which guarantees stability of uncertain LTI 

system with actuator saturation, over the prescribed upper and lower bounds of structured real 
parameter uncertainties analytically. Suboptimal bang-bang control method (Wu et al. 1996), which is 
designed based on Lyapunov stability condition for nominal LTI system, is extended to uncertain LTI 
system. To reduce conservatism of classical quadratic stability, both uncertain LTI system (1) and its 
Lyapunov function (5) are affine in time-invariant uncertain real parameters. 

In this section, we propose sufficient conditions for the existence of robust saturation controller. 
To focus our attention on designing robust saturation controller based on AQS, we add control force 
term to (1). We consider a following uncertain LTI system 

 
00)() x)x(,tBux(t)A(θ(t)x =+=&                    (9) 

 
with control force constraint. 
 

max)( utu ≤                                   (10) 
 

where B  is control input vector, and u  is scalar control force. 
For uncertain LTI system (9), a parameter dependent Lyapunov function (5) is defined. The time 



derivative of this Lyapunov function is of the following form. 
 

)()()(2)()]()()()()[()),(( tBuPtxtxAPPAtxtxV TTT θθθθθθ ++=&          (11) 
 

To guarantee robust stability, the time derivative of parameter dependent Lyapunov function (11) 
under the control force constraint (10) is always less than 0. In this paper, a robust saturation controller 
(12) is considered. 

 
)]([)( 0 txPBsattu Tδ−=                             (12) 

 
This controller (12) has similar form to the suboptimal bang-bang controller 
( )](sgn[)( 0max txPButu T⋅−= ) for nominal LTI system and is expressed by using saturation function 
instead of sign function. Note that using saturation function is a typical choice to overcome control 
chattering problem occurring in sign function type controllers. To guarantee robust stability of 
controller (12), we propose the following Theorem 1 which gives the LMI-based sufficient existence 
conditions for this controller. 
 
 
 
Theorem 1. Consider an uncertain linear time-invariant system (9) where )(θA  depends affinely on 
the parameter vector ),,,( 21 Kθθθθ L= , iθ  satisfies (3), and control force has constraint of (10). 
Let Θ denotes the sets of vertices of the parameter box (4). Robust stability of the saturation 
controller (12) is guaranteed if there exist 1+K  symmetric matrices KPPPP ,,,, 210 L , and positive-
definite symmetric matrix aM  satisfying (13), (14), and (15), and if there exists 0>δ  which 
satisfies (16) for these matrices KPPPP ,,,, 210 L  and aM . 
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Proof :  We can express controller (12) as the following form introducing ))(( txβ . 
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where 1))((0 ≤< txβ . 
 
Along the trajectories of system (9) with the controller given in (17), the time derivative of ),( θxV  
in (5) is obtained 
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To show 0),( <θxV& , we first seek 1+K  symmetric matrices KPPPP ,,,, 210 L  which satisfy that 
the first term in the right-hand term of (18) is less than 0, and then substitute the found matrices into 
the second term in the right-hand term of (18). Robust stability of the saturation controller (12) is 
guaranteed if the second term in the right-hand term of (18) is less than 0 with 0>δ . Unfortunately, 
it is not guaranteed that the second term in the right-hand term of (18) is less than 0 with 0>δ . 
However, we can obtain 0>δ  by introducing positive-definite symmetric matrix aM  and 
modifying two terms in (18) with aM . (19) is obtained from adding and subtracting aM  each term 
in the right-hand term of (18). 
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We assume that there exist symmetric matrices KPPPP ,,,, 210 L , and aM  satisfying that the first 
term in the right-hand term of (19) is less than 0. Robust stability of the saturation controller of (12) is 
guaranteed if the second term in the right-hand term of (19) is less than 0 with 0>δ  when we 
substitute these matrices into the second term in the right-hand term of (19). The first term in the right-
hand term of (19) is always less than 0 if there exist symmetric matrices KPPPP ,,,, 210 L , and 
positive-definite symmetric matrix aM  satisfying (13), (14), and (15). Let ),,2,1( Kiii L== δθρ , 
then iii θδρθδ ≤≤  and the second term in the right-hand term of (19) is rewritten as (20). 
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Here we first consider the case of 1=β . For given 0>δ  the following LMI of (20) is a convex 
constraint on the variables iρ  because aM , 00 PBBP T , and 00 PBBPPBBP T

ii
T +  are the 

symmetric matrices respectively. 
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When we define Φ  as the set of the K2 vertices of iρ , (21) is satisfied for all iρ  if and only if 
(21) is satisfied in Φ  by convexity of (22). 
 

}},{:),,,{(: 21 iiiK θδθδψψψψ ∈=Φ L                      (22) 
 
(22) is equivalent to (16). Next we consider the case of 10 << β . For given 0>δ  we can easily 
show that (20) is less than 0 if (21) is satisfied. Therefore (20) is always less than 0 if (16) is satisfied 
for given 0>δ . 

■ 
 
 
Remark 1.  In (14), we must solve LMIs with 2+K  variables including matrix aM . To reduce 
numerical computational burden we can reduce them to LMIs with 1+K  variables by setting aM  



in an arbitrary matrix. And we can seek maxδ  by setting δ  in a fixed value and sweeping through 
δ  in (16), because the maximum value of δ  satisfying (16) is finite ( maxδδ ≤ ). δ  is used to 
maximize the utilization of the available control force. The system performance can be improved by 
using large δ . 
 
Remark 2.  There is a difficulty in the numerical implementation of Theorem 1. It comes from the 
multi-convexity constraint of (15). As suggested in Gahinet et al. (1996), we can relax the multi-
convexity of the function 0),( <dtxdV θ  by only requiring that it be bounded by a multi-convex 
function. In this case, for nonnegative definite symmetric matrix ),,2,1( KiNi L=  LMI conditions 
of (14) and (15) are replaced by (23), (24), and (25). 
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A simple remedy is to choose IN ii λ=  with 0>iλ . 
 
 
NUMERICAL EXAMPLE 

 
In this section, a practical numerical example for a linear building is illustrated to verify the 

feasibility of the proposed robust saturation controller (12) and simulation results are presented. LMIs 
in Theorem 1 are solved using Matlab® and LMI control toolbox (Gahinet et al. 1995). Controller 
design parameter aM  is chosen at an arbitrary value by trial and error as suggested in Remark 1. 

A three-story scaled building model studied by Kobori et al. 1992 and Yang et al. 1995a, in which 
every story unit is identically constructed and an active brace system (ABS) is installed in the first-
story unit, as shown in Fig. 1, is considered. The mass, stiffness and damping coefficient of each story 
unit for nominal system are kgmi 1000= , mkNki /980= , and mkNsci /407.1= , respectively, 
for 3,2,1=i . The El Centro earthquake (north-south component, 1940) scaled to a maximum 
acceleration of g112.0  is used as the input excitation. The maximum control force maxu  is N700  
and uncertainties of the system are stiffnesses and damping coefficients of each floor. Let uncertainties 
of stiffnesses be )3,2,1( =iiθ  and the uncertainties of damping coefficients )6,5,4( =iiθ , then the 
admissible trajectories are given by )1( iik θ+  for 3,2,1=i  and )1(3 iic θ+−  for 6,5,4=i  
specified in multiplicative form. This uncertain system can be described by state space equation as 
follows. 

 
gxEtButxAtx &&& ++= )()()()( θ                         (26) 

 
 where )3,2,1( =ixi  are the relative displacement of each floor to ground, state vector 

Txxxxxxx ][ 321321 &&&= , control input vector TmB ]001000[ 1= ,  the disturbance input 
vector TmmmE ]111000[ 321 −−−= , and uncertain system matrix )(θA  is 
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Before we confirm the robust stability of the proposed controller, we ascertain general trend of the 
proposed controller according to the value of the controller design parameter aM . For convenience 
we replace aM  by Iaµ  with 0>aµ . We investigated the maximum value of δ  according to 

aµ . The control performance can be improved by using large δ  because δ  is used to maximize the 
utilization of the available control force. Let ei θθ ≤ )6,,2,1( L=i  for all parameter uncertainties. 
Here we set eθ  arbitrarily. Table 1 shows values of maxδ  according to aµ  in the case of 4.0=eθ . 
The larger aµ  is, the larger maxδ  is. So the larger aµ  makes the control performance better 
because maxδ  is closely related to the control performance of the proposed controller. 

Next, we confirm the robust stability and the effectiveness of the proposed controller. For given 
bounds of uncertain parameters 4.0=eθ , the controller design parameter 

)25,25,25,55,55,55( eeeeeediagM a =  is chosen for good performance of the controller. The 
computed value of maxδ  is about 519 . We designed the robust saturation controller (12) with 

519=δ . Control performance of the proposed controller is compared with other controllers from the 
viewpoint of maximum responses (maximum interstory drifts id  and maximum absolute 
accelerations aix&& ). 

For nominal system, Table 2 shows control performance of the proposed controller on maximum 
response values of the system in comparison with those of the classical LQR controller, the modified 
bang-bang controller (MBBC), and the saturated sliding mode controller (SSMC). The LQR controller 
is adjusted so that maximum control force is about 700N. It is observed from Table 2 that control 
performances of saturation controllers such as the MBBC, the SSMC, and the proposed controller are 
quite remarkable in comparison with that of the LQR controller. Time histories for absolute 
acceleration of the third-story unit, drift of the first-story unit, and control force using the LQR 
controller and the proposed controller are presented in Fig. 2 in comparison with the responses without 
control. Saturation controllers considering the limit of control force are known to be more effective 
than the LQR controller in maximum response reduction under the same maximum control force (see 
Wu et al. 1996 for the MBBC and Yang et al. 1995a for the SSMC). The proposed controller also 
produces better performance than the LQR controller in terms of maximum response reduction under 
the same maximum control force as shown in Table 2 and Fig. 2. In the reduction of interstory drifts, 
the MBBC is the most effective and the proposed controller and the SSMC have almost the same 
effectiveness. 

For uncertain system, we ascertained that our proposed controller guarantees robust stability 
within all the range of parameter uncertainties considered in controller design. Robust stability of the 
proposed controller, which is guaranteed in Theorem 1 analytically, was verified through numerical 
simulations for the cases with various parameter uncertainties. Table 3 shows control performance of 
the proposed controller on maximum response values of the system in comparison with that of the 



SSMC in the case of parameter uncertainties with )6,,2,1(4.0 L== iiθ  and 
)6,,2,1(4.0 L=−= iiθ . The control performances of these two controllers are almost similar. 

Through extensive numerical simulations, it is checked within considered bounds of parameter 
uncertainties that the proposed controller has almost the same effectiveness in maximum responses 
reduction in comparison with the SSMC. But from the viewpoint of robust stability, the proposed 
controller can only address bounds of parameter uncertainties analytically within which robust 
stability is guaranteed over the complete response of system. 

Our proposed controller uses saturation function instead of sign function. And for given bounds of 
parameter uncertainties, maximum value of δ  guaranteeing robust stability of this controller is finite. 
The larger bounds of parameter uncertainties are, the smaller maximum value of δ  is. So the slope 
of saturation function is gentler as bounds of parameter uncertainties are larger as shown in Fig. 3. 
This trend can be checked through the following Fig. 4 in our example. Fig. 4 shows control forces of 
three cases ( 0=eθ , 2.0=eθ , and 4.0=eθ ) for nominal system. The case of 0=eθ  shows bang-
bang type control force of the MBBC because it corresponds to nominal system. The slope of 

4.0=eθ  is gentler than that of 2.0=eθ  because of smaller maximum values of δ . Therefore, our 
proposed controller moves away further from bang-bang type controller and its control performance 
may be worse in comparison with the MBBC for nominal system as bounds of parameter uncertainties 
are larger. However, we can guarantee robust stability at the cost of performance degradation. 
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Fig. 1. Three-story building model with ABS 

 
 

Table 1 Values of maxδ  according to aµ  ( 4.0≤iθ ) 

aµ  maxδ  

5e1 0.9 
5e2 1.1 
1e3 2.1 
5e3 4.2 
1e4 21.6 
5e4 88.3 
6e4 104.5 

 



 
 

Table 2 Maximum response values for nominal system 
No Control LQR MBBC SSMC Proposed  

Story )(cmdi
 )/( 2smxai&& )(cmdi

 )/( 2smxai&& )(cmdi )/( 2smxai&& )(cmdi )/( 2smxai&&
 )(cmdi

 )/( 2smxai&&

1 1.34 3.13 0.88 2.25 0.51 1.64 0.52 1.62 0.53 1.60 
2 1.02 4.75 0.66 3.24 0.47 2.27 0.49 2.27 0.48 2.20 
3 0.60 5.84 0.35 3.41 0.32 3.20 0.33 3.27 0.32 3.17 

 
 
 

 
Fig. 2.  Comparison of responses and control forces for nominal system applying the LQR controller 

and the proposed controller 
 
 
 

Table 3 Maximum response values for uncertain system 
)6,,2,1(4.0 L== iiθ  )6,,2,1(4.0 L=−= iiθ  

No Control SSMC Proposed No Control SSMC Proposed 
 
 

Story )(cm
di

 )/( 2sm

xai&&

 )(cm
di

 )/( 2sm

xai&&

 )(cm
di

)/( 2sm

xai&&

)(cm
di

)/( 2sm

xai&&

)(cm
di

)/( 2sm

xai&&

 )(cm
di

 )/( 2sm

xai&&

1 0.70 2.11 0.31 1.86 0.31 1.82 1.64 2.82 1.05 1.91 1.06 2.01
2 0.57 3.39 0.28 1.91 0.28 1.94 1.34 3.45 0.97 2.37 0.97 2.47
3 0.34 4.64 0.20 2.69 0.19 2.64 0.79 4.63 0.61 3.60 0.61 3.59
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Fig. 3. The slopes of saturation function of the proposed controller 

                    according to given bounds of parameter uncertainties 
 
 

 
Fig. 4. Comparison of control forces of the proposed controller for nominal system according to given 

bounds of parameter uncertainties 
 
 
 
CONCLUSIONS 
 

The objective of this paper is to develop robust saturation controller guaranteeing robust stability 
of uncertain LTI system over the prescribed upper and lower bounds of structured real parameter 
uncertainties analytically. Based on affine quadratic stability and multi-convexity concept, a robust 
saturation controller was newly proposed. Theorem 1 suggested in this paper gives LMI-based 
sufficient conditions for the existence of this controller by introducing controller design parameter 

aM . 
A general trend of the proposed controller was examined through numerical simulations. The 

larger bounds of parameter uncertainties are, the smaller maximum value of δ  in controller (12) is. 
Therefore, while the proposed controller guarantees robust stability within bounds of parameter 
uncertainties, its control performance may be worse in comparison with the any other saturation 
controllers for nominal system. Note that to guarantee the robust stability for the system uncertainties, 
which is inevitable in real world, sacrificing the performance a little can be sensible and practical. 

The availability and the effectiveness of the proposed controller were also verified through 
numerical simulations. Simulation results show that the proposed controller is robustly stable with 
respect to parameter uncertainties over the prescribed upper and lower bounds and the proposed 
controller can be easily applicable for civil engineering structures. 
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