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Abstract

We consider the estimation of two-dimensional (azimuth and elevation) direction-of-arrival (DOA) using a pair of uniform
circular arrays under a coherently distributed source model. Since the coherently distributed source is characterized by
four parameters, the nominal azimuth DOA, angular extension of the azimuth DOA, nominal elevation DOA, and angular
extension of the elevation DOA, the computational complexity of the parameter estimation is normally highly demanding. We
propose a low-complexity estimation algorithm, called the sequential one-dimensional searching algorithm by concentrating
only on the estimation of DOAs. The SOS algorithm has a basis on the eigenstructure between the steering matrix and signal
subspace, and utilizes preliminary estimates obtained at a pre-processing stage. The SOS algorithm estimates the DOAs, but
not the angular extensions: although the SOS algorithm does not provide estimates of angular extensions, it is useful when
the angular extensions are small. Speci8cally, it is shown from simulation results that the SOS algorithm exhibits as good
an estimation performance as the maximum likelihoood method for coherently distributed sources.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In wireless communications, antenna array process-
ing is considered to be an attractive technique to miti-
gate such problems as multipath fading and co-channel
interference. By employing antenna arrays, the cov-
erage may be improved, co-channel interference re-
duced, and the capacity increased. To fully achieve
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these goals, it is necessary to understand and exploit
the characteristics of the antenna arrays and the wire-
less channel [9].
Many signal source localization/estimation with an

array of antenna elements has focused on sources that
are modeled as points in space. However, in wire-
less communication environment where multipath
dispersion eAects exist, a distributed source model
may be more appropriate. A number of investigators
have proposed distributed source modeling, and sev-
eral parameter estimation techniques for distributed
sources have been proposed in the literature
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[1–5,7,8,13–18,20,22,24–27]. For example, the dis-
tributed sources have been classi8ed into coherently
and incoherently distributed sources [25,20], and at-
tempts for the coherently distributed source modeling
and parameter estimation have been accomplished in
[25,16], where the signal sources are de8ned as spa-
tial clusters. The parameters are estimated by some
algorithms based on the multiple signal classi8cation
(MUSIC) using a uniform linear array (ULA), as-
suming that the shape of the spatial cluster (that is,
the angular weighting function) is identical for all
sources.
For the parameter estimation of incoherently dis-

tributed sources, a two-step procedure has been pro-
posed in [5] in which decoupling of the estimation
of direction-of-arrival (DOA) from that of angu-
lar spread is considered by combining a covariance
matching algorithm with the extended invariance
principle (EXIP). Another approach is proposed
in [3], where a rank-two model is 8tted to a dis-
tributed source and a standard point source DOA
algorithm such as the root-MUSIC is used. A pa-
rameter estimation algorithm based on the estimation
of signal parameters via rotational invariance tech-
nique (ESPRIT) for the distributed source model is
proposed in [22], where the nominal DOA of the
sources is estimated by using the total least square
ESPRIT (TLS-ESPRIT) with two closely spaced
ULAs and the angular extension is estimated by a
one-dimensional distributed source parameter estima-
tor (DSPE) spectrum. The DSPE method provides a
low computational complexity for estimating the un-
known parameters of distributed sources. Yet, most
of the results on distributed source estimation have
mainly been developed for azimuth-only estimation
of the nominal DOA and angular extension.
Recently, researches based on practical experiment

measurements have dealt with parameter estimation
using a uniform circular array (UCA) [12,19]. Note
that a ULA provides only 180◦ coverage and is not
normally useful for two-dimensional (2D) (azimuth
and elevation) DOA estimation while the UCA has
360◦ azimuthal coverage and provides information on
source elevation angles also. In addition, due to the ro-
tational symmetry of the array con8guration, the res-
olution performance of a UCA is independent of the
azimuth angles of the incident waves. The problem of
estimating unknown parameters of distributed sources

using a UCA has been considered in [26], where a
low-complexity estimator for unknown parameters is
proposed based on a reparametrized version of the dis-
tributed source model proposed in [6]. In spite of the
major advantages of the UCA, nonetheless, the dis-
tributed source model with a UCA geometry has not
yet been studied in suKcient depth.
In this paper, we consider the coherently distributed

source model and propose a low-complexity DOA es-
timation method using a pair of UCAs. The coherently
distributed source model in this paper is characterized
by four parameters: the nominal azimuth DOA, angu-
lar extension of the azimuth DOA, nominal elevation
DOA, and angular extension of the elevation DOA. In
general, the computational complexity of the optimum
estimation methods increases dramatically because of
the need for a search over a high-dimensional param-
eter space. Based on the special array geometry and
the relation between the signal subspace and steering
vector, the low-complexity DOA estimation method
proposed in this paper requires only one-dimensional
searches for the nominal azimuth DOA and elevation
DOA. In essence, the contribution of this paper is the
application of the combination of distributed signal
modeling, ESPRIT, and alternate minimization in 2D
problem as a collective study.

2. Distributed source model

We 8rst review the point source model brieLy. As-
sume that a source results in one plane wave arriv-
ing at the receiving antenna from speci8c elevation �
and azimuth �, where a spherical coordinate system is
used to represent the arrival directions of the incom-
ing plane waves. Then, the point source model with
an array of L sensors can be expressed as

x(t) = a(�; �)s(t) + n(t); (1)

where x(t) is the L × 1 received array output vector,
a(�; �) is the L×1 array response vector for the point
source signal s(t) at (�; �), and n(t) is an L×1 additive
noise vector. The noise is assumed to be zero-mean
and spatially and temporally white and Gaussian:

E{n(t)nH(t′)}= �2IL	tt′ (2)

and

E{n(t)nT(t′)}= 0; ∀t; t′; (3)
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where �2 is the noise variance, Ik denotes the k × k
identity matrix, k = 1; 2; : : : ; and 	tt′ is the Kronecker
delta function with 	tt′ = 1 for t = t′ and 	tt′ = 0 for
t �= t′. We also assume that the signal is uncorrelated
with the noise.
Assuming that we have a UCA, the steering vector

a(�; �) is

a(�; �) = [ej� sin � cos(�−1); ej� sin � cos(�−2); : : : ;

ej� sin � cos(�−L)]T; (4)

where j =
√−1, �= 2�r=�, and k = 2�(k − 1)=L for

k =1; 2; : : : ; L with r the radius of the UCA and � the
wavelength of the arriving wave. One of the require-
ments on a UCA is that the distance between adjacent
array elements should be less than or equal to 0:5�:
in this paper, the radius is taken as r = �=(4 sin(�=L))
for convenience so that the distance between adjacent
array elements is 0:5�.
Assume a single narrowband point source that

contributes with a large number of wavefronts origi-
nating from (possibly unresolvable) multi-path reLec-
tions near the source and during transmission. If we
observe the baseband signals received at the antenna
array, it is possible to regard the source just as a spa-
tially distributed cluster: the cluster can be modeled
as a distributed source. When the shape (that is, the
angular weighting function) of a distributed source
does not change temporally and the received signal
components from that source at diAerent angles are
fully correlated, we call the source a coherently dis-
tributed source. For a coherently distributed source
we can rewrite (1) as

x(t) =
∫ ∫

a(#; ’)&(#; ’; t) d# d’+ n(t); (5)

where &(#; ’; t) is a complex, random, angular-
temporal signal intensity, and can be expressed as

&(#; ’; t) = s(t)%(#; ’; �) (6)

under the coherently distributed source assumptions.
In (6), %(#; ’; �) is a deterministic angular weighting
function of # and ’ but not of t, and is parametrized
by the vector � = (�; ��; �; ��) denoting the nom-
inal elevation DOA �, angular extension �� of the
elevation DOA, the nominal azimuth DOA �, and

angular extension �� of the azimuth DOA. The param-
eter vector � characterizes the distributed source to-
gether with the angular weighting function %(#; ’; �)
which shows the angular spreading of the source.
It is reasonable to assume that %(#; ’; �) is

non-vanishing only around (#; ’)= (�; �): that is, we
practically have

%(#; ’; �) = 0; for |#− �|¿��

or |’− �|¿��; (7)

where �� and �� are small numbers possibly depending
on �� and ��, respectively. Without loss of generality,
we also assume that #= � and ’= � are the axes of
symmetry of the function %(#; ’; �).
The relation (6) for a coherently distributed source

provides the time invariance of the channel and some
correlation for diAerent angles at any time: speci8-
cally, the angular auto-correlation of the signal inten-
sity (6) is

E{&(#; ’; t)&∗(#′; ’′; t)}
= �%(#; ’; �)%∗(#′; ’′; �); (8)

where ∗ denotes the complex conjugate and � =
E{|s(t)|2}. Eq. (8) implies that the signal compo-
nents at diAerent angles within a source are correlated
mutually.
In terms of the steering vector, the coherently dis-

tributed source model (5) can be expressed as

x(t) = s(t)b(�) + n(t); (9)

where b(�) is the L× 1 steering vector de8ned as

b(�) =
∫ ∫

a(#; ’)%(#; ’; �) d# d’: (10)

As a common example of the coherently distributed
source, assume that the deterministic angular weight-
ing function %(#; ’; �) has the Gaussian shape

%(#; ’; �) =
1

2�����
e−1=2((#−�)2=�2

�+(’−�)2=�2
�): (11)
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Then, the closed form of the steering vector b(�) can
be written as (see Appendix A)

[b(�)]k =
∫ ∫

[a(#; ’)]k%(#; ’; �) d# d’

≈ ej� sin � cos(�−k )

×
∫ ∫

ej�(#̃ cos � cos(�−k )−’̃ sin � sin(�−k ))

× %(#̃+ �; ’̃+ �; �) d#̃ d’̃

= ej� sin � cos(�−k )gk(�); (12)

where [ · ]k indicates the kth element of a vector
and gk(�) = e−0:5�2(�2

� cos
2 � cos2(�−k )+�2

� sin2 � sin2(�−k ))

for small angular extensions �� and ��. We would
like to mention in passing that, when �� and �� are
small, we can use (11) for # − �∈ [ − �=2; �=2] and
’ − �∈ [ − �; �] although the Gaussian function is
de8ned over (−∞;∞).
Extending (9), the model when q plane waves from

q sources with parameters �i = (�i; ��i; �i; ��i) i =
1; 2; : : : ; q, are incident on the UCA can be written as

x(t) =
q∑

i=1

si(t)bi + n(t)

=Bs(t) + n(t); (13)

where bi=b(�i)=b(�i; ��i ; �i; ��i), B=[b1; b2; : : : ; bq]
is of size L× q, and s(t) = [s1(t); s2(t); : : : ; sq(t)]T is
of size q× 1.

3. Parameter estimation

In general, an optimum estimation method for
point or distributed sources can provide an excellent
performance at the cost of intensive computation.
Since the computational complexity increases dra-
matically with high dimensional parameters, we have
to sometimes 8nd suboptimum methods to reduce the
computational cost while sustaining the estimation
performance within a tolerable level. It is notewor-
thy that a considerable simpli8cation is possible by
exploiting and utilizing the special array structure of
the array geometry in the parameter estimation under

Fig. 1. Uniform circular array geometry.

distributed source models also, as it has been accom-
plished in the root-MUSIC and ESPRIT [9] for point
sources.
In this section, we make use of a pair of UCAs,

which will enable us to have a simpli8ed DOA estima-
tion method: we propose a sequential one-dimensional
searching (SOS) method for estimating the nominal
azimuth and elevation DOAs, based on the special ar-
ray geometry of the UCA pair.

3.1. Array geometry, eigenstructure, and
pre-processing

We assume that the antenna array is composed of
two closely spaced identical uniform circular arraysC1

and C2. The two arrays are physically displaced from
each other by a known distance d vertically and the
origin of the coordinate system is located at the center
of C1. Elements of C1 and C2 are displaced by an angle
k = 2�(k − 1)=L, for k = 1; 2; : : : ; L, from the x-axis.
The position vectors are p1 =(r cos k ; r sin k ; 0) and
p2=(r cos k ; r sin k ;−d) forC1 andC2, respectively.
For reference, the array geometry is depicted in Fig. 1.
Consider a narrowband plane wave with wavenum-

ber k0 = 2�=� propagating in the direction −r, where
r=(sin � cos�; sin � sin�; �). The phase diAerence be-
tween the received signal at the origin and the received
signal at element k is  k1 = ejk0r·p1 = ej� sin � cos(�−k )

and  k2 = ejk0r·p2 = ej� sin � cos(�−k )e−jk0d cos � in C1 and
C2, respectively.
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The received signal vector in C1 can be expressed
as in (9), and that in C2 is

y(t) = s(t)
∫ ∫

a(#; ’)e−j(2�d=�) cos #%(#; ’; �) d# d’

+ v(t)

= s(t)c(�) + v(t); (14)

where the L× 1 steering vector c(�) is de8ned as

c(�)=
∫ ∫

a(#; ’)e−j(2�d=�) cos #%(#; ’; �) d# d’ (15)

and v(t) is the L × 1 noise vector with the same as-
sumptions as those for the noise n(t) and is uncorre-
lated with both the signal and the noise n(t). It can
be shown as in Appendix B that we have c(�) ≈
b(�) e−j(2�d=�) cos � for small angular extensions, which
in the matrix form can be extended to

C ≈ B! (16)

for q sources. In (16), C = [c1; c2; : : : ; cq] is of size
L× q, ci = c(�i), and

!= diag(e−j(2�d=�) cos �1 ; : : : ; e−j(2�d=�) cos �q) (17)

is of size q× q. Note that both b(�) and c(�) depend
on the angular weighting function but ! does not. The

total array output vector z(t)=

[
x(t)

y(t)

]
of size 2L×1

can be written as

z(t) ="s(t) + u(t); (18)

where u(t) =

[
n(t)

v(t)

]
and

" =

[
B

B!

]
(19)

is of size 2L× q.
Let Es be the 2L × q matrix whose columns

are the eigenvectors corresponding to the q largest
eigenvalues of the 2L × 2L covariance matrix
Rz = E{z(t)zH(t)}. Then, the subspace spanned
by the columns of Es is equal to the subspace
spanned by the columns of the steering matrix " ,
when the q × q signal (source) covariance matrix
P = E{s(t)sH(t)} is of full rank. (Assuming that
the distributed sources are uncorrelated mutually, we

have P = diag(�1; �2; : : : ; �q), �i = E{|si(t)|2}.) Con-
sequently, there exists a non-singular q× q matrixW
such that Es ="W. In addition, the invariance struc-
ture (19) of the array allows the partition of Es into
two L× q matrices Es1 and Es2 composed of the 8rst
and last L rows of Es, respectively, such that

Es1 = BW (20)

and Es2 = B"W. Note that the range spaces of Es1
and Es2 are the same and equal to the range space of
B: R{Es1}= R{Es2}= R{B}, where R{·} denotes the
range space of a matrix.
By employing ESPRIT methods, for example, in

the DOA estimation, we can exploit the special array
characteristic (the invariance structure) represented by
(19). In this paper, we use the TLS-ESPRIT method
[21] to obtain the initial inputs (estimates of the el-
evation DOAs �i’s) to the SOS algorithm. Although
the TLS-ESPRIT is applicable only to an array with
a special geometry and experiences higher estimation
errors than such other methods as the maximum like-
lihood (ML) and subspace 8tting because it exploits
only the translation between two identical arrays, it of-
fers a high accuracy at a small computational cost and
avoids some problems associated with the calibration
for estimating the nominal elevation DOA.
From now on, we denote the ith nominal elevation

DOA �i estimated by the TLS-ESPRIT as �̃i, where

�̃i = cos−1
[
−�

arg(li)
2�d

]
(21)

with li the ith eigenvalue of a matrix used in the
TLS-ESPRIT.

3.2. Sequential one-dimensional searching (SOS)
method

Assume that we have a criterion function, which
has the nominal azimuth and elevation DOAs as un-
known parameters. When we estimate the two DOAs
based on the criterion function, we have to generally
solve a 2D optimization problem. Furthermore, the
computational complexity grows rapidly as the num-
ber of sources increases. On the other hand, if we have
some preliminary information on either the nominal
azimuth or elevation DOA, it is anticipated that we can
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estimate the other DOA by one-dimensional searching
of the criterion function with much reduced complex-
ity and computation.
We would thus like to propose a criterion function

with which we can estimate the two nominal DOAs
one by one with the help of preliminary estimates.
Eventually, using the criterion function to be proposed,
we 8rst estimate the nominal azimuth DOA by the
SOSmethod with the nominal elevation DOA estimate
(21) obtained by the TLS-ESPRIT method. Then, we
estimate the nominal elevation DOA with the nominal
azimuth DOA estimated by the SOS procedure.
From (20), we have B= Es1W

−1, or equivalently

bi = Es1mi ; (22)

where the ith column vectormi ofW−1 is of size q×1.
As shown in Appendix A, we also have

b(�) ≈ &(�; �)b∗(�) (23)

and consequently

bi ≈ &ib∗i ; (24)

where

&(�; �) = diag(ej2� sin � cos(�−1); ej2� sin � cos(�−2); : : : ;

ej2� sin � cos(�−L)) (25)

is an L× L diagonal matrix and &i =&(�i; �i).
Consider the q× q Hermitian matrix

T(�; �) = EH
s1&(�; �)E∗

s1E
T
s1&

∗(�; �)Es1 ; (26)

which can easily be shown to be Gramian (in other
words, positive de8nite or positive semi-de8nite) [6]
since T(�; �) = DH(�; �)D(�; �) with the q × q ma-
trix D(�; �) = ET

s1&
∗(�; �)Es1 . (In passing, note that

D∗(�; �) = DH(�; �) and DT(�; �) = D(�; �).) The
eigenvalues of T(�; �) are positive numbers not larger
than 1 as shown in Appendix C. In addition, denoting
Ti = T(�i; �i), we have

mi =EH
s1&iE∗

s1m
∗
i

=EH
s1&iE∗

s1E
T
s1&

∗
i Es1mi

=Timi (27)

from (22), (24), and EH
s1Es1 = Iq. Eq. (27) tells us

that mi (which is the ith column vector ofW−1) is an

eigenvector of Ti and the corresponding eigenvalue
is one, or equivalently, that the maximum value 1
of the eigenvalues of T(�; �) is attained at (�; �) =
(�i; �i). Therefore, when we are given N measure-
ments {z(t); t=1; 2; : : : ; N}, one intuitively appealing
and reasonable cost function based on these observa-
tions is

V (�; �) =
1

1− �̂max(�; �)
(28)

and the estimates can be obtained from

(�̂; �̂) = argmax
�;�

V (�; �); (29)

where �̂max(�; �) denotes the maximum eigen-
value of an estimate T̂(�; �) of T(�; �). (In
other words, �̂max(�; �) is the qth order statistic
[23] �̂[q](�; �) among the q eigenvalues {�̂1(�; �),
�̂2(�; �); : : : ; �̂q(�; �)} of T̂(�; �) at any given (�; �).)
Here, T̂(�; �) = ÊH

s1&(�; �)Ê∗
s1Ê

T
s1&

∗(�; �)Ês1 is de-
termined by &(�; �) and the 8rst L rows Ês1 of the
sample signal eigenvector matrix Ês obtained from the
sample covariance matrix R̂z = 1=N

∑N
t=1 z(t)z

H(t).
Let b̂ = Ês1m̂ with m̂ the q × 1 eigenvector corre-

sponding to �̂max(�; �) and Ên1 the 8rst L rows of the
sample noise eigenvector matrix Ên obtained from R̂z.
Then, using Ês1Ê

H
s1 + Ên1Ê

H
n1 = IL, &(�; �)&∗(�; �)=

IL, ÊH
s1Ês1 = Iq, m̂

Hm̂=1, and b̂ ≈ &(�; �)b̂∗ inferred
from (23) analogically, we have

1− �̂max(�; �) = 1− m̂HT̂(�; �)m̂

≈ b̂TÊ∗
n1Ê

T
n1 b̂

∗ (30)

after some steps similar to those in Appendix C.
It is noteworthy that the right-hand side of (30)
is basically the same in functional form as the
pseudo-spectrum of the DSPE algorithm [25] and the
MUSIC null-spectrum [16]. We can show that this
term should theoretically vanish at (�; �) = (�i; �i),
i = 1; 2; : : : ; q due to the orthogonality property be-
tween the steering vector and noise eigenvector ma-
trix. Speci8cally, we have b̂TÊ∗

n1Ê
T
n1 b̂

∗ → bTE∗
n1E

T
n1b

∗

assuming that b̂ → Es1m and Ên1 → En1 as N → ∞,
where m is the eigenvector corresponding to the
largest eigenvalue of T(�; �) and En1 is the 8rst L
rows of the noise eigenvector matrix En obtained
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from the covariance matrix Rz. Consequently,

1− �̂max(�i; �i)→ bTi E
∗
n1E

T
n1b

∗
i

= ‖bHi En1‖2

= 0 (31)

as N → ∞ since Es1m|(�;�)=(�i ;�i)=bi and the steering
vector b and noise eigenvector matrix En1 are orthog-
onal when (�; �) = (�i; �i), or since (Es1mi)HEn1 =
bHi En1 = 0.
Employing preliminary estimates either of the nom-

inal elevation DOAs or of nominal azimuth DOAs,
the estimation method based on the cost function (28)
and estimation procedure (29) can be simpli8ed to a
one-dimensional searching method. Speci8cally, we
8rst use in (29) the preliminary estimates (21) ob-
tained from the TLS-ESPRIT to estimate the nom-
inal azimuth DOA �i. With the estimated nominal
azimuth DOA in turn, we use (29) again to more ac-
curately estimate the nominal elevation DOA �i. This
proposed method based on the cost function (28) and
the preliminary estimates (21) will be called the SOS
method.
We summarize the proposed SOS algorithm:

1. Compute the sample covariance matrix R̂z =
1=N

∑N
t=1 z(t)z

H(t) using the measurements
{z(t); t=1; 2; : : : ; N} obtained from C1 and C2.

2. Through the eigen-decomposition of R̂z, obtain
the sample signal eigenvector matrix Ês, and
subsequently, Ês1 and T̂(�; �).

3. Obtain the nominal elevation estimates �̃i,
i = 1; 2; : : : ; q by the TLS-ESPRIT algorithm
from (21).

4. Estimate the nominal azimuth DOA �i using
�i = �̃i obtained at Step 3:

�̂i = argmax
�

V (�̃i; �): (32)

5. Estimate the nominal elevation DOA �i using
�i = �̂i obtained at Step 4:

�̂i = argmax
�

V (�; �̂i): (33)

6. Repeat Steps 4 and 5 for i = 1; 2; : : : ; q.

Although we have not speci8cally investigated here,
we can anticipate almost the same estimation results

from the SOS method when we estimate the nominal
azimuth DOA 8rst as the preliminary estimates and
when we use other methods than the TLS-ESPRIT in
the preliminary stage (except that the computational
complexity in the preliminary stage might depend on
the speci8c method.) In addition, from (16) to (21)
and (25) to (28), it is clear that the proposed SOS al-
gorithm does not depend practically on the speci8c an-
gular weighting functions of distributed sources when
the angular extensions �� and �� are small. This means
that the proposed SOS algorithm can be applied to
also a scenario in which distributed sources may have
diAerent angular weighting functions.
The SOS method is a suboptimum spectral-based

method (as is the DSPE) and is applicable when there
exists a special array geometry, while the ML and
weighted subspace 8tting (WSF) can be used with ar-
bitrary array geometry and generally provide (almost)
optimum performance at the expense of higher com-
putational complexity: there is always a tradeoA be-
tween the performance and computational complexity.

4. Simulation results

In this section, we investigate the performance of
the proposed SOS algorithm through some simulation
experiments. Assume that each of C1 and C2 has L=
10 sensors, the distance between the two arrays is
d = 0:1�, and the spacing between adjacent sensors
is 0:5�. The signal-to-noise ratio (SNR) is de8ned as
−10 log �2.
In the 8rst example, we numerically illustrate the

proposed SOS algorithm for two equipower uncor-
related narrowband coherently distributed sources
with SNR = 15 dB. The two distributed sources
have Gaussian shaped angular weighting functions
both in azimuth and elevation with parameters
�1 = (60◦; 2◦; 10◦; 3◦) and �2 = (75◦; 1:5◦; 65◦; 4◦).
The preliminary estimates of the nominal elevation
DOAs by the TLS-ESPRIT are �̃1 = 59:43◦ and
�̃2 =74:65◦. Fig. 2 shows the one-dimensional spectra
for the estimation of the nominal azimuth DOA �1

with the cost function (28) and conventional MU-
SIC with �1 = �̃1. Fig. 3 shows the one-dimensional
spectra for the estimation of the nominal elevation
DOA �1 with the cost function (28) and conventional
MUSIC with �1 = �̂1: clearly, both methods have



1796 J. Lee et al. / Signal Processing 83 (2003) 1789–1802

0 10 20 30 40 50 60 70 80 90
10

-1

10
0

10
1

10
2

10
3

φ

V
(�

1,
�

1)

1
 (deg)

The nominal azimuth DOA of distributed source 1

SOS
MUSIC

Fig. 2. One-dimensional searching spectrum for the nominal az-
imuth �1 of the 8rst distributed source with the preliminary
estimate �̃1 = 59:43◦ from the TLS-ESPRIT: �̂1 = 9:98◦ (SOS)
and �̂1 = 9:96◦ (MUSIC).
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Fig. 3. One-dimensional searching spectrum for the nominal ele-
vation �1 of the 8rst distributed source with �̂1 = 9:98◦ (SOS)
and �̂1 = 9:96◦ (MUSIC) estimated in Fig. 2: �̂1 = 59:93◦ (SOS)
and �̂1 = 59:89◦ (MUSIC).

peaks close to �1 = 10◦ and �1 = 60◦ for the 8rst
source. Similarly, the results for the second distributed
source are illustrated in Figs. 4 and 5. The values of
the spectrum of the MUSIC is generally lower than
those of the SOS in the 8gures: note that what is
important is the ‘relative height’, not the ‘absolute
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Fig. 4. One-dimensional searching spectrum for the nominal az-
imuth �2 of the second distributed source with the preliminary
estimate �̃2 = 74:65◦ from the TLS-ESPRIT: �̂2 = 65:07◦ (SOS)
and �̂2 = 65:15◦ (MUSIC).
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Fig. 5. One-dimensional searching spectrum for the nominal ele-
vation �2 of the second distributed source with �̂2=65:07◦ (SOS)
and �̂2 = 65:15◦ (MUSIC) estimated from Fig. 4: �̂2 = 75:11◦
(SOS) and �̂2 = 75:15◦ (MUSIC).

value’ of the peak. The MUSIC method as well as
the SOS exhibits the peaks at the true DOA. We have
also obtained the variances of the estimation errors for
both methods as shown in Table 1. The table shows
that the SOS method provides a gain of roughly 5%
for the estimation of 2D DOAs in comparison with
the MUSIC for small angular extensions.
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Table 1
Variances of the 2D DOA estimation errors for the SOS algorithm and conventional MUSIC obtained from
simulations with 100 trials (N = 100)

Method Distributed source 1 Distributed source 2

var(�1 − �̂1) var(�1 − �̂1) var(�2 − �̂2) var(�2 − �̂2)

SOS 0.0715 0.1276 0.0789 0.2378
Conventional MUSIC 0.0743 0.1342 0.0823 0.2649

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SNR (dB)

R
M

S
 e

rr
or

 o
f n

om
in

al
 D

O
A

’s
 (

de
g)

CRB of θ
CRB of φ
SOS (θ)
SOS (φ)
DSPE (θ)
DSPE (φ)

Fig. 6. Estimation performance of the SOS and DSPE algorithms:
the RMS error of the nominal DOAs versus SNR for a distributed
source with (�; ��; �; ��) = (30◦; 2◦; 10◦; 5◦).

In the second example, we compare the SOS
method when (29) is used directly without prelimi-
nary estimates (2D search) with the DSPE algorithm
(four-dimensional search) for a Gaussian-shaped dis-
tributed source at � = (30◦; 2◦; 10◦; 5◦) with a single
UCA of L= 10 sensors: the comparison is performed
based only on the cost functions of the two methods.
Fig. 6 shows that the SOS method provides almost
the same performance as the DSPE and is statistically
eKcient.
In the third example, we examine the estimation

performance of the proposed SOS algorithm in com-
parison with the ML method for a Gaussian-shaped
distributed source with �=(30◦; 2◦; 10◦; 5◦). We have
used a quasi-Newton algorithm to estimate the param-
eters in the ML method. A Monte Carlo simulation
of 200 independent runs with N = 100 snapshots for
each trial has been performed. The root-mean-square
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Fig. 7. The RMS error of �̂ versus SNR for a distributed source
with (�; ��; �; ��) = (30◦; 2◦; 10◦; 5◦).

(RMS) error values of the nominal azimuth �̂ and
nominal elevation �̂ estimated by the SOS and ML
methods as well as the Cramer-Rao lower bound
(CRB) are illustrated at diAerent SNR in Figs. 7 and
8. We can clearly observe that the DOA estimates not
only of the ML method but also of the SOS method
attain the CRB as the SNR increases.
Figs. 9 and 10 show the RMS errors of the nominal

azimuth �̂ and elevation �̂ when � = 30◦, �� = 2◦,
�=10◦, the angular extension �� varies, and SNR =
15 dB: it is observed that the variation of the RMS
errors in the SOS and ML methods are rather small
even when the angular extension �� increases. This
is partly because of the characteristics of the UCA
steering vector for a coherently distributed source.
Figs. 11 and 12 show the weighting values (de8ned

as (A.5)) of the kth elements for the UCA and ULA
steering vectors for a Gaussian and a Laplacian-shaped
distributed sources, respectively, when the angular
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Fig. 9. The RMS error of �̂ versus the angular extension ��
for a distributed source with (�; ��; �) = (30◦; 2◦; 10◦) when
SNR = 15 dB.

extension �� has three diAerent values, the nominal
azimuth DOA is �= 10◦, and the number of sensors
is L=10. Note that the weighting values are all 1 for a
point source. For simplicity, we consider only azimuth
DOA. It is conceivable that the weighting values for
the UCA steering vector undergo less variation as the
angular extensions increase: this means that the UCA
is robust against the change of the angular extensions,
as shown to a certain degree in [10] also.
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Fig. 10. The RMS error of �̂ versus the angular extension ��
for a distributed source with (�; ��; �) = (30◦; 2◦; 10◦) when
SNR = 15 dB.
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vectors of the UCA and ULA for a Gaussian shaped distributed
source: �=10◦, L=10, ��=1◦ (no marker), 3◦ (x), and 5◦ (*).

Clearly, the proposed SOS algorithm provides a suf-
8ciently good estimation accuracy as well as computa-
tional simplicity (compared to direct 2D methods) for
estimating the nominal azimuth and elevation DOAs.
Note that the computational requirement of the SOS
method is in general 2q one-dimensional searches,
that of the DSPE is q four-dimensional searches, and
that of the ML method is a 4q-dimensional search
for q distributed sources, although the DSPE and ML
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would estimate the angular extensions also, where
p-dimensional search means a full p-dimensional
numerical optimization.

5. Concluding remark

In this paper, we have considered the modeling of
coherently distributed sources and the estimation of
the two-dimensional DOAs of distributed sources with
a pair of uniform circular arrays. We have proposed
a low-complexity algorithm estimating the nominal
azimuth and elevation DOAs one by one with only
one-dimensional searches based on the eigenstructure
between the steering matrix and the signal subspace
of distributed sources.
The proposed SOS algorithm requires a pre-

processing stage at which preliminary estimates of
the nominal elevation DOAs are obtained: in this pa-
per, we have employed the ESPRIT algorithm for the
pre-processing, making use of the special geometry
of a pair of uniform circular arrays. The proposed
SOS algorithm provides as good an estimation per-
formance as that of the maximum likelihood method
at high SNR while requiring only one-dimensional
searches. The proposed SOS method has been shown
to be useful also in situations where there exist
a number of distributed sources having diAerent

angular weighting functions. The proposed SOS
method would be useful, for example, as the
pre-processor of a beamforming method based
on the nominal DOAs of distributed sources and
also for the localization of distributed sources in
three-dimensional practical environment.
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Appendix A. Approximation to the steering vector
for small angular extensions

We have

[b(�)]k =
∫ ∫

[a(#; ’)]k%(#; ’; �) d# d’

=
∫ ∫

ej� sin(�+#̃) cos(�+’̃−k )

×%(#̃+ �; ’̃+ �; �) d#̃ d’̃ (A.1)

with the change of variables #−�= #̃ and ’−�= ’̃.
Due to (7), the computation result of (A.1) amounts
to that of (A.1) for only small #̃ and ’̃.
Now, for small values of #̃ and ’̃, the functions

sin #̃, cos #̃, sin ’̃, and cos ’̃ can be approximated by
the 8rst terms in the Taylor series expansions. Using
the trigonometric identity sin(+ + ,) = sin + cos , +
cos + sin , and cos(+ + ,) = cos + cos , − sin + sin ,,
we obtain

ej� sin(�+#̃) cos(�+’̃−k )

≈ ej�(sin �+#̃ cos �)(cos(�−k )−’̃ sin(�−k ))

� ej� sin � cos(�−k )

×ej�(#̃ cos � cos(�−k )−’̃ sin � sin(�−k )); (A.2)
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where we assume that #̃’̃ ≈ 0 and consequently
e−j�#̃’̃ cos � sin(�−k ) � 1. Using (A.2), we can rewrite
(A.1) as

[b(�)]k ≈ ej� sin � cos(�−k )gk(�) (A.3)

or

b(�) ≈ a(�; �)� g(�) (A.4)

in vector notation, where

gk(�) =
∫ ∫

ej�(#̃ cos � cos(�−k )−’̃ sin � sin(�−k ))

×%(#̃+ �; ’̃+ �; �) d#̃ d’̃; (A.5)

� is the element-by-element product, and g(�) =
[gk(�)] is an L×1 real-valued vector depending on the
angular weighting function %(#; ’; �). Clearly, gk(�)
is a real-valued function since %(#̃ + �; ’̃ + �; �) is
an even function of #̃ and ’̃ because of the symmetry
assumption given in Section 2. Note that we get

b(�) ≈ &(�; �)b∗(�) (A.6)

from (A.4) and b∗(�) ≈ a∗(�; �) � g(�) for small
angular extensions �� and ��.
Let us consider two examples of the approxi-

mate closed form (A.4) of b(�). Assume the Gaus-
sian shaped angular weighting function (11). Using
the integral formula [11]

∫∞
−∞ e−q2x2ejp(x+�) dx =√

�e−(p2=4q2)ejp�=q, the right-hand side of (A.5) can
be written as

1
2�����

∫
ej#̃� cos � cos(�−k )e−(#̃2=2�2

�) d#̃

×
∫

e−j’̃� sin � sin(�−k )e−(’̃2=2�2
�) d’̃; (A.7)

which in turn results in

gk(�)

= e−�2
�=2(� cos � cos(�−k ))

2

×e−�2
�=2(� sin � sin(�−k ))

2
: (A.8)

Thus, the approximate closed form of the steering vec-
tor b(�) is

[b(�)]k ≈ [a(�; �)]k

×e−0:5�2(�2
� cos

2 � cos2(�−k )+�2
� sin2 � sin2(�−k )):

(A.9)

Similarly, when the angular weighting function is
Laplacian shaped

%(#̃; ’̃; �) =
1

2����
e−(

√
2|#̃−�|=��+

√
2|’̃−�|=��); (A.10)

we have

[b(�)]k

≈ [a(�; �)]k

×
(

1√
2��

∫
ej#̃� cos � cos(�−k )e−(

√
2|#̃|=��) d#̃

)

×
(

1√
2��

∫
e−j’̃� sin � sin(�−k )e−(

√
2|’̃|=��) d’̃

)

= [a(�; �)]k

(
1

1 + (��� cos � cos(�− k))2

)

×
(

1
1 + (��� sin � sin(�− k))2

)
(A.11)

using [11]
∫∞
0 e−px sin(-x + �) dx = (- cos � +

p sin �)=(p2 + -2); p¿ 0, and
∫∞
0 e−px cos(-x +

�) dx = (p cos �− - sin �)=(p2 + -2); p¿ 0.

Appendix B. Relationship between the steering vec-
tors of C1 and C2

The steering vector of C2 is obtained from

[c(�)]k =
∫∫

[a(#; ’)]ke
−j(2�d=�) cos #%(#; ’; �) d# d’

=
∫ ∫

ej� sin(�+#̃) cos(�+’̃−k )e−j(2�d=�) cos(�+#̃)

×%(#̃+ �; ’̃+ �; �) d#̃ d’̃ (B.1)

with the change of variables #−�= #̃ and ’−�= ’̃.
Following the steps similar to those we have done
in (A.2) for small angular extensions �� and ��, the
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right-hand side of (B.1) can be written as∫ ∫
ej�(sin �+#̃ cos �)(cos(�−k )−’̃ sin(�−k ))

×e−j(2�d=�)(cos �−#̃ sin �)

×%(#̃+ �; ’̃+ �; �) d#̃ d’̃: (B.2)

Assuming 2�d#̃=� � 0 when d=��1 and #̃ ≈ 0, we
have e−j(2�d=�)(cos �−#̃ sin �) ≈ e−j(2�d=�) cos �. Thus, the
approximate closed form of the steering vector c(�)
is obtained from

[c(�)]k ≈ e−j(2�d=�) cos �ej� sin � cos(�−k )gk(�): (B.3)

From (A.3) and (B.3), we have

c(�) ≈ e−j(2�d=�) cos �b(�) (B.4)

for small angular extensions �� and ��.

Appendix C. Characteristics of the eigenvalues of
T(�; �)

Using the de8nition (26) of T(�; �), the eigenvalue
�k(�; �) corresponding to a q×1 unit-norm eigenvec-
tor gk(�; �), k = 1; 2; : : : ; q, of T(�; �) can be written
in a singular Hermitian form of rank q as

�k(�; �) = gHk (�; �)T(�; �)gk(�; �)

= gHk (�; �)E
H
s1&(�; �)E∗

s1E
T
s1

×&∗(�; �)Es1gk(�; �)

= pHk (�; �)E
∗
s1E

T
s1pk(�; �) (C.1)

from T(�; �)gk(�; �) = �k(�; �)gk(�; �), where
pk(�; �) =&∗(�; �)Es1gk(�; �) is of size L× 1: note
that we have pHk (�; �)pk(�; �)=g

H
k (�; �)E

H
s1&(�; �)&∗

(�; �)Es1gk(�; �) = gHk (�; �)E
H
s1Es1gk(�; �) = 1

since &(�; �)&∗(�; �) = IL, EH
s1Es1 = Iq, and

gHk (�; �)gk(�; �) = 1. From the orthonormality
Es1E

H
s1 + En1E

H
n1 = IL of the signal and noise eigen-

vectors, we have E∗
s1E

T
s1 = IL − E∗

n1E
T
n1 . Then, (C.1)

can be rewritten as

�k(�; �) = pHk (�; �)(IL − E∗
n1E

T
n1 )pk(�; �)

= 1− pHk (�; �)E∗
n1E

T
n1pk(�; �): (C.2)

Because the second term pHk (�; �)E
∗
n1E

T
n1pk(�; �) =‖ET

n1pk(�; �)‖2=‖pHk (�; �)E∗
n1‖2 in the right-hand side

of (C.2) does not assume a negative value, the eigen-
values of T(�; �) are equal to or less than one. Clearly,
we have �k(�; �) = 1 if and only if ‖pHk (�; �)E∗

n1‖2 =‖gHk (�; �)EH
s1&(�; �)E∗

n1‖2 = 0.
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