Developing Collaborative Commerce System Based on
Roles and Components

Hwagyoo Park®, Woojong Suh® and Heeseok Lee®

a. Graduate School of Management, Korea Advanced Institute of Science and Technology,
207-43, Chongryangri-dong, Dongdaemun-gu, Seoul 130-012 Korea
Tel: +82-33-639-0344, E-mail hkpark@kl.ac.kr
b. Division of Business Administration, College of Business Administration, Inha University,
¢. Division of Management Information System, College of Management, Kyungdong University,

Abstract

Due to the growing competitive and more global pressures,
firms are compelled to adopt collaborative commerce
philosophy to create and sustain a competitive edge. The
c-commerce demands extensive interactions —among
multiple-stakeholders with different core competences and
roles, aiming at a common goal. From this motivation, This
paper proposes a role-driven component-oricnted design
methodology (RCOM) for developing c-commerce systems.
The methodology consists of four phases: collaboration
analysis, component analysis, component design, and
implementation.

Keywords: Collaboration, Role, Component

1. Introduction

Many companies have sustained their success by
continually interacting with their business partners.
Collaborative commerce (c-commerce) is a paradigm in
which a variety of business stakeholders collaborate
interactively via the Internet and the related integration
technologies. When we look at our business through this
stakeholder lens, we can often see what we are blind to:
untapped opportunities to serve the business in ways that
fundamentally change our economics. This collaboration
results in an agile and highly integrated 'virtual' enterprise
[9]. The stakeholders may collaborate on product designs,
procurement plans, demand forecasts, manufacturing
schedules, distribution activities and transportation
movements, A pritmary objective is to harness product
information and application assets accessible to the
stakeholders in a commerce community including
manufacturers, distributors, dealers, service groups and end
consumers [3, 15].

The requirements for implementing c-commerce are
usually complex and ever-changing [15]. For more
successful c-commerce, the stakeholders need to share
valuable intellectual assets and develop

668

community-oriented strategies to collaborate with each
other more effectively. Accordingly, the concept of
c-commerce may be understood in terms of (i) interactive
activities, (ii) strategy focus and (iii) intellectual assets, as
depicted in Figure 1.

Strategy

Focus
A
Comrpunity

C-col rce

Stakeholder .+*"

. » Intellectual
Data/ Kno edge Asset
Information

Commgnicative

Collaboratiy

Interactive
Activity
Figure 1. A perspective on c-commerce

C-commerce emphasizes collaborative interactions
beyond the communications or transactions for e-commerce.
Rather than producing and then selling, c-commerce
focuses on collaboration among the participating
stakeholders for c-commerce own value proposition
enhancement [15], [32]. The collaboration mechanisms
should be based on well-defined roles for each stakeholder;
the roles should be determined by focusing the core
competencies of stakeholders on maximizing the
competitive advantage of the c-commerce community,
along with conforming to the strategy focus in the best way.
Another feature of c-commerce is that although
stakeholders have their own localized strategies that may be
employed in e-commerce they need a community-oriented
strategy—a consensus is essential, In c-commerce,
stakeholders should adhere to the rules of engagement on

the basis of community strategies.

To produce the synergy of collaboration, stakeholders
need to understand and share with each other more of their
intellectual capital such as knowledge and expertise.
Consequently, implementing a collaborative system to
exchange and share knowledge as well as information on
products and services is important, especially a system
based on a variety of mechanisms that support the specific
tasks of the stakeholders.

To construct such systems effectively, a systematic
approach is required to support the major features of our
c-commerce concept. Nevertheless, other methodologies
that focus on inter-organizational collaboration, such as the
allied concurrent engineering methodology (ACEM) {4],
the specifications of coordinated and cooperative activity
(SOCCA) [30], the inter-organizational workflow (IWOF)
[31] and the inter-enterprise electronic commerce (IEEC)
[27], lack analysis and design methods that fully cover the
major features of c-commerce. These methodologies do not
include the series of developmental phases that were
derived from systematically and seamlessly transforming
the stakeholders’ roles into technical specifications.

For these reasons, we propose a role-driven
component-oriented methodology (RCOM) for developing
a c-commerce system that can successfully acclimate to the
evolving e-business environment. In the role-driven
approach, which is a useful way of identifying and
analyzing the ever-changing c-commerce requirements [19],
[34], we need to understand and specify the complex
behavior of c-commerce with multiple stakeholders while
addressing the dynamic interactions [1], [2], [S], [6], [8],
[11]. As a result, the role-driven approach helps identify
and control the roles of multiple stakeholders so that the
stakeholders cooperate with each other effectively [2], [5].

The component-oriented approach also includes a
variety of benefits: reusability, rapid development, cost
effectiveness, and better and more dynamic service [20].
Accordingly, these advantages can provide a flexible
environment that caters to dynamic change [i2]. For
consistent and seamless transition mechanisms in our
methodology, we used a component approach in which the
conceptual artifacts of analysis were adapted to the
technical artifacts. The analysis results can be transformed
effectively and consistently into reusable units in
implementation via design works. Though the
object-oriented approach brought about a major revolution
from traditional software development, the promise of
being able to reuse large-scale codes has not become a
reality [14].

2. Architecture

In this section, we define the terminology employed
in our methodology, and then we introduce the architecture
of the methodology.

2.1 Terminology Definitions
The terminology used in our methodology has three

669

levels, as depicted in Figure 2: conceptual, logical and
physical. In the conceptual level, a role domain is identified
by the core competencies of the stakeholders in the
c-commerce community toward their strategy. Core
competency has already been addressed as a critical factor
in defining the roles of stakeholders [13], [24]. Role
domains, which are valuable capabilities that are unique

among stakeholders” characteristics, are strategically
flexible in developing the potential and scope of
c-commerce.
: A
-)\
-’.
Conceptual

Complete

Logical

..

Physical

Figure 2. Concepts employed in RCOM

To specify a role domain, understanding the concept
of a role is required. The concept of a role is useful in
identifying, analyzing and constructing the ever-changing
c-commerce behavior and responsibilities [19], [34]. Roles
are more specified units for performing a role domain based
on the strategy focus of ¢-commerce. A role domain may
have more than one role. Determining the roles is a basic
part of the analysis for effectively maintaining and helping
the complex systems to evolve [18], [34].

Interactions of the roles can be induced as events,
representing collaboration mechanisms for implementing
c-commerce. In other research, the event concept has been
addressed in terms of the role concept [1], [2], [5]. [6], [8].
To specifically analyze events in our methodology, we
adopted a scenario method in which a scenario corresponds
to an event and is described by the use of natural language.
Although a scenario is similar to a use case or scripts [17],
[33], it is different from them in a usable context. Our
scenario approach conceptually focused on business for the
purpose of determining the collaborative relationships
among stakeholders while the use case or script was mainly
used technical purposes. Our scenarios can be used

effectively in determining specific tasks for achieving the
collaborative mechanisms of c-commerce in a natural
fashion. In our methodology, a unit of such a specific task is
referred to as a “component view”.

The concept of a component view is employed at a
conceptual level. The component view, which is a
navigational primitive of a c¢-commerce system that
depends on the events between the roles of participating
stakeholders, is represented as a piece of information and
the logic (or function) for handling the tasks of the events.
Component views comprise three categories: cockpit
domain, task domain and supplement domain. The
component view of the cockpit domain plays a controlling
work in the component views of the task and supplement
domains; it serves as a starting point of the system or as a
menu for accessing the other component views. Task
component views are identified as a unit representing a
business task. Supplementary component views provide
additional information that supports task component views,
which are determined by behavioral descriptions in the
scenarios. Once the task view components are determined,
other component views are then derived by brainstorming
on the additional information required for performing task
component views and on ways to organize and access the
task component views.

At the logical level, the encapsulated data attribute
information of the view component corresponds to the data
component (DCO) and the encapsulated responsibility
information corresponds to the logical component (LCO).
Furthermore, at the logical level, the visual component
(VCO) is also considered for user interface. The application
of the component concept begins at the logical level.
Consequently, at the logical level, the component view is
specified as a set of components that includes the DCO, the
LCO and the VCO.

The logical level provides the specific design results
of these components for their implementation. From the
structural perspective, the VCO may be separated into a
screen type and a dialogue type. The screen type is part of
the VCO of a system’s complete display. The complete
display of a component view may consist of more than one
screen component by the use of frame tags. The dialogue
type typically implements a dialogue window for
confirmation of a user’s action on a system’s screen. Since
the dialogue component is likely to be standardized as in
the case of confirming a user’s action, it is often shared by
more than one screen.

The LCO is subdivided into program type and
method type. A program type is an encapsulated component
that will be implemented according to the component view
responsibilities, while the method type will be implemented
for simple program logic such as creating, retrieving,
updating, deleting and calling other component views. The
DCO is a component that refers to a data attribute set or
relational table. In summary, the LCO controls the DCOs
by working the functions of the VCOs. Finally, a complete
component set means a set of components that are mapped
to a component view. The definitions of key terminology
used in RCOM are summarized in Table 1.

670

Table 1. Key definitions employed in RCOM

Terminology Definitions

A core competence unit of
stakeholder that will be participated
in c-commerce.

Role Domain

Role A specified unit for a role domain.

A natural language form of an event

Scenario L
description.

A navigational primitive of
c-commerce requirements. This is
determined at a conceptual level.

Component view

Guide users to other units in the task

Cockpit and supplement domain.

Compo-

nent
View

Perform business tasks with data,

Task information and knowledge.

Domains Provide additional information for

Supplement .
pp task component view.

A navigational primitive that will be
implemented as a screen interface.
The unit may become a whole or
partial interface.

Screen
Visual

A primitive of multimedia data that

Dialogue | may be accessed from a screen unit.

An encapsulated component that will
be implemented according to the
component view responsibilities. The
component is invoked from a screen
or dialogue unit. The component
may become a whole or partial view
responsibility.

Program
Compo- &
nent
Types

Logical
g An encapsulated component that will

be implemented for simple logistics
such as creating, retrieving,
updating, deleting and caller
functions from a component view.
The component is also invoked from
a screen or dialogue unit.

Method

A component referring to relational
table components or data attribute
set.

Data

A set of components mapped to a
component view; it consists of three
types of components.

Complete Component Set

As already described, the component-oriented
approach is a major part of our methodology. Recently, the
reuse of components has been growing explosively in many
organizations because of the large number of attempts to
develop systems by integrating existing components [12],
[14], [22]. This approach can potentially be used to reduce
the cost of software development, to enable rapid
reassembly of the systems and to reduce the spiraling
maintenance burden associated with the evolving
c-commerce system. Accordingly, it can enhance the
flexibility of development and the maintainability of
results.

The benefits of the component-oriented approach
have often been discussed from a technical perspective with
a focus on software, rather than from a more abstract
perspective. Handling the software component is known as
component-based systems engineering, a field which is
heavily dependent on integration technologies such as

Common Object Request Broker Architecture (CORBA)
[21], the Component Object Model (COM) [26] and
Enterprise Java Beans (EJB) [23].

However, to benefit more effectively from the
advantages of the component-oriented approach, we need to
use it in a generic way independently of any specific
technical platforms or component integration technologies;
at the same time, the implementation of this approach
depends on incorporating a preferred technology
architecture [14], [25], [29]. This perspective is our
approach. Our component concept aims to respond to the
dynamically and opportunistically evolving c-commerce
system through quick modifications, as well as
plug-and-play compositions and reusability.

2.2 Methodology Architecture

Our methodology, RCOM, was devised for
developing c-commerce systems: it transforms conceptual
roles and events for collaborative interactions in a
community of stakeholders into logical-level specifications
of adaptable components. The role-driven approach used in
the methodology emphasizes the need to establish a
collaborative structure in a c-commerce community.
Furthermore, this approach emphasizes the need to
determine logical-level components; this will enhance its
methodological capabilities for effective development and
economical maintenance of the c-commerce requirements
or dynamism of the environment. Thus, as shown in Figure
3, RCOM consists of four phases: collaboration analysis,
component analysis, component design and the
implementation phase. Although collaboration analysis,
component analysis and component design are independent
of any specific technical platforms and details, the
implementation phase depends on such platforms and
details. Each phase was conducted iteratively, though
feedback is not presented for the simplicity of the
presentation.

The purpose of the first phase of the RCOM,
collaboration analysis, is to establish the structure of
collaborative relationships among the stakeholders in a
c-commerce community by identifying the generic roles to
be allocated to the stakeholders. This phase comprises two
sub-phases: collaboration = domain analysis and
collaboration specification analysis. The aim of
collaboration domain analysis is to grasp the abstracted
generic roles, called role domains, and to define their
relationships according to the core competence required for
maximizing the collaborations in a c-commerce community.
This sub-phase results in a collaboration context diagram
(CCD), which shows the collaborative structure among the
required role domains, and a collaboration context table
(CCT), which provides detailed descriptions for the role
domains in the CCD. On the basis of the CCD and the CCT,
we then modeled further specifications such as roles and
their relationships, which are called events. From this work
we produced a collaboration specification diagram (CSD)
and a collaboration specifications table (CST). The CST
provides descriptions of the roles.

= 671

—— S
Ay Colbrrtion Sprciication Ay

'

Conpors Nigpion Arye — Sl

AVRC

ND i ‘

[Vst e g |- uuummmmmjnuf] n-cuqnmmw |

: I
- I‘Eﬂh‘ -

AVRC Additiorel View Roquirement Card DI Deta Corrponert Diagram
CCT: Gollaboration Cores Table LOCL ogcal Cormponert Card
CST: Qullaboration Specification Table M Visal Conponent Gard
CVT: Corrporent View Table:

Figure 3. Methodology architecture

The next phase, component analysis, comprises three
sub-phases: event scenario analysis, component view
analysis and component navigation analysis. The first
sub-phase, event scenario analysis, generates scenarios for
events determined from the CSD. As a result, event
scenario tables (ESTs) are produced, which describe the
event scenarios in the form of natural language. Component
view analysis then determines the task-oriented component
views and models them into a component view table (CVT)
by referring to the descriptions in the event scenario table
(EST). The CVT shows the data attributes and
responsibilities for each component view, and presents the
views’ component indexes. The component views are
handled at the conceptual level.

In component navigation analysis, we analyze
component views in terms of their navigations in a target
system. Firstly, the views included in the supplement and
cockpit domains are defined, whereas the views in the task
domain were already determined in component view
analysis. The result of defining the views produces an
additional view requirement card. Secondly, the
navigational structure of all the views, including the views
in the task domains, and the navigational paths of the views
are defined in a navigational structure diagram. The
navigational structure diagram is based on the EST and the
CVT that shows the view structures.

The component design phase deals with
implementation issues in terms of database, interface and
program by using component artifacts at the logical level

[10], [28]. Firstly, the data component design sub-phase
designs DCOs by considering technical attributes required
for a target system’s operations. This sub-phase is
performed on the basis of the CVT, which includes
conceptual data attributes of the views. As a result, the data
component diagram (DCD) is produced.

Secondly, the visual component design sub-phase
designs VCOs for implementing the interfaces of the
system. This sub-phase is carried out on the basis of the
CVT, which shows the data attribute set of the views and
the responsibilities for each component view. As a result of
this work, visual component cards (VCCs) are generated.

Finally, the logical design sub-phase designs LCOs to
provide program logic for implementation. This sub-phase
is performed by considering the responsibilities of the
views in the CVT, as well as specification of the DCD and
VCOs. This work produces logical component cards
(LCCs), which include program logic in the form of pseudo
codes. The implementation phase transforms the DCD into
a database, the VCCs into user interfaces and LCCs into
programs to construct a running c-commerce system.

3. Construction

Each phase of the RCOM is described in more
specifically by the use of the real-life case for an escalator
industry company in South Korea. For the purpose of
confidentiality, the company is referred as “H Company™.
Currently, H Company produces elevator and escalator
systems for commercial sector. The case of H Company can
help understand the proposed methodology effectively,
although three phases such as collaboration analysis,
component analysis, and component design are not
represented here due to the limitation of paper length. The
implementation phase transforms the DCD, VCDs, and
LCCs into a database, user interfaces, and programs,
respectively. In H company project, the c-commerce system
is implemented in the Web-based environment. As
implementation results in H company, 150 VCDs, 195
LCCs, | DCD were implemented. To support
interoperability in a heterogeneous environment, the system
was based on the concept of DCOM [7]. Each component
in the system was defined as a distributed component and
packaged as an independent piece of code that could be
accessed by remote clients via method invocations. The
broker is the component that establishes the client-server
relationships between the components. Using the broker, a .
component can transparently invoke a method on a server
that may be on the same machine or on the Internet.

Figure 4, which shows the processes for the selection
of optimal parts, depicts the screen for the component
named “Customer’s Part Design Choice” where design
candidates are generated by typing in the escalator type and
the design part selection. First, a design engineer for the
customer logs on to the H Company c-commerce system;
then the c-commerce system requires information on the
type of escalator and the part to be designed before being
connected to a design stakeholder at O Company. Then,

- 672

using the case base management system for O Company,
the engineer automatically generates a possible design
along with complete technical specifications in a real-time.
Even more help can be given with on-line visual
communication, if required. The engineer then refines the
designs until one appears to satisfy the requirements.

The refining designs process can be improved by a
concurrent collaboration between the customer’s engineer
and the designer from the O Company by on-line
communication and a shared white board in a screen called
“Searching Part by Customer”, as shown in Figure 5.In the
next step, the engineer can run real-time simulations of the
design using a parametric programming software
application provided on the site by the c-commerce system.

WO 10 DY PNy 3D SN

H Elevator Co, Ltd.

Coalim) | Reds) J
= Qu-fos Compuncaton
CCommarcy Homesage L 1 Company Wfeemaon .
7 ¥y

Aumie

l{lﬂlﬂljﬁﬂﬂﬂujﬂﬁﬂ CTEULUEIST B T T RS PR LT
Figure 4. Screen of “Customer's Part Design Choice” VCD

DWD BRD 2R EAWAW S0 SFD
B2 A ade D A bt WS A A
lm;mm—‘wﬂ cos 28
8 s e i
al s
| |t |
| -'Ii‘ Py
’ jee=a]
tk -
- - e
i L e —T g -
| L et - 1
| [e T T
| |' : :
e
! i<M"‘H -
| ——— i
| et e oy
) Aiet vared ¥ - Bkl

Figure 5. Screen of “Searching Part by Customer” VCD

4. Conclusion

Our methodology, RCOM, adopts two modeling
perspectives: role and component. The role-driven
perspective focuses on capturing business requirements for
a c-commerce community by defining the roles of
stakeholders and their collaborative relationships. The roles
are determined in the light of core competences and then,
on the basis of the roles, the business requirements for the
collaborative interactions can be analyzed in a systematic

fashion. On the other hand, the component-oriented
perspective focuses on the consistent and systematic
development of the component artifacts required in
implementation; this consistency can reduce the
development cycle time and thus enhance marketability.

References

[1} Albano, A., Bergamini, R., Ghelli, G., & Orsini, R.
(1993). An object data model with roles. in: Agrawal,
R., Baker, S., Bell, D. (Eds.) (1993). Proceedings of the
19th International Conference on Very Large
Databases, Morgan Kaufmann, Dublin, 39-51.

[2] Bock, C. & Odell, J.J. (1998). A more complete model
of relations and their implementation: Roles. Journal of
Object-Oriented Programming, 11{2), 51-54.

[3] Burdick, D. (1999). What people are saying about
Windchill. Parametric Technology — Corporation.
[Online] Available:
http://www.pte.com/products/quotes.html.

[4] Chen, YM. & Liang, M.W. (2000). Design and
implementation of a collaborative engineering
information system for allied concurrent engineering.
International Journal of Comput. Integrated
Manufacturing, 16, 9-27.

[5] Chu, W.W. & Zhang, G. (1997). Associations and roles
in object-oriented modeling, in: Embley, D.W,,
Goldstein, R.C. (Eds.), Proceedings of the [6th
International Conference on Conceptual Modeling:
ER'97,257-270.

[6] D’Souza, D.F. & Wills, A.C. (1998). Objects,
Components and ~ Frameworks with UML,
Addison-Wesley, Reading, MA.

[7] Eddon, G. & Eddon, H. (1998). Inside Distributed COM,
Microsoft Press.

[8] Elmasri, R., Weeldreyer, J., & Hevner, A. (1985). The
category concept: an extension to the entity relationship
model, Data & Knowledge Engineering, 1(1), 75-116.

[9] GartnerGroup. (1999). Gartner Group identifies
c-commerce supply chain movement: an emerging
trend in collaborative web communities. Gartner
McCarthy J. [Online] Available:
http://www.idg.net/idgns/1999/08/16/GartnerForetellsO
fCollaborativeCommerce.shtml, 1999,

[10] Ginige, A. & Murugesan, S. (2001). Web engineering:
an introduction. /EEE Multimedia, 8(1), 14-1&.

[11] Gottlob, G., Schre, M., & Ock, B.R. (1996). Extending
object-oriented systems with roles, ACM Transactions
on Information Systems, 14(3), 268-296.

[12] Haines, C.G., Camey, D., & Foreman, J. (1997),
Component-Based Software Development/COTS
Integration, Software Technology Review, [Online].
Available:
http://www.sei.cmu.edu/str/descriptions/CBD_body.ht
ml.

[13] Hamel, G. (1994). The concept of core compelence,
competence-based competition. New York, Wiley,

11-33.

[14] Henderson, P. & Walters, R. (2001). Behavioral
analysis of component-based systems, Information and
Software Technology, 43, 161-169.

[15] Holsapple CW & Singh M. (2000). Electronic
commerce: definitional taxonomy, integration, and
knowledge management. Journal of Organizational
Computing and Electronic Commerce 10 (3).

[16] InSight. (1999). Current Investmenis: e-commerce.
InSight [nc. [Online] Available:
http://www.insightpartners.com/ecommerce.html.

{17] Jacobson, L. (1995). Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley.

[18] Kendall, E.A. (1998). Agent roles and role models:
new abstractions for multiagent system analysis and
design, International Workshop on Intelligent Agents in
Information and Process Management- September,
Germany.

[19] Kendall, E.A. (1999). Role modelling for agent system
analysis, design, and implementation, International
Conference on Agent Systems and Applications/ Mobile
Agents- October (ASA/MA'99), Palm Springs.

[20] Kunda, D., Brooks, L. (2000). Assessing
organisational obstacles to component-based
development: a case study approach, Information and
Software Technology 42, 715-725.

[21] Object Management Group, (2002). OMG CORBA,
[Online] Available: http:/www.omg.org.

[22] O'Brien, A., (1998). An intelligent component model
for building design, Second European Conference on
Product and Process Modelling in the Building Industry,
19th-21st, Oct.

[23] O'Neil, J. & Schildt, H. (1998). Java Beans
Programming from the Ground Up, McGraw-Hill, New
York.

[24] Prahalad, C. K. & Hamel, G. (1990). The core
competence of the corporation, Harv. Bus. Rev-
May-June, 79-91.

[25] Rosenman, M.A. & Wang, FJ. (1999). CADOM: a
Component Agent Model based Design-Oriented
Model for Collaborative Design, Research in
Engineering Design I1, 193-205.

[26] Sessions, R. (1998). COM and DCOM: Microsoft's
Vision for Distributed Objects, Wiley, New York.

[27] Shin, K. & Lim, C.S. (2002). A reference system for
Internet based inter-enterprise electronic commerce,
The Journal of Systems and Software, 60(3), 195-204.

28] Smith, G., Gough, J., & Szyperski, C. (1998).
Conciliation: the adaptation of independently
developed components. Second International
Conference on Parallel and Distributed Computing and
Networks (PDCN '98), 31-38.

[29] Szyperski, C. (1998). Component Sofiware? Beyond
Object-Oriented Programming, Addison-Wesley,
Reading, MA.

[30] Toussaint, P.J. (1998). Integration of information
systems: « study in requirements engineering, Ph.D.
Dissertation, Leiden University, The Netherlands.

- 673 -

[31] van der Aalst, W.M.P. (1999). Process-oriented
architectures for electronic commerce and inter
organizational workflow, Information Systems, 24(9),
639-671.

[32] Afuah, A & Tucci, C.L. (2000). Internet Business
Models and Strategies. Text and Cases. McGraw-Hill.

{33] Rational Software. (2001). UML documentation.
behavioral elements package: collaboration overview.
[Online]Available:
http://www.rational.com/uml/resources/docmentation/s
emantics/semanta.html.

[34] Zhao, L. (1999). Modeling roles with cascade, IEEE

Software, September/October, 86-94.

- 674 —

