KMIS '97&A &tacis =23

Analyzing Business Domains:
A Methodology and Repository System

Heeseok Lee and Jae Lee

MIS, Graduate School of Management
Korea Advanced Institute of Science and Technology, Seoul
hlee@msd kaist.ac kr, jlee@cais kaist.ac kr

Abstract

Object-oriented approaches have been widely applied in enhancing reusability for software implementation.
However, identifying reusability potentials during analysis phases is not a trivial task. This paper proposes a
methodology for analyzing business domains. These domains are built in the form of reusable business objects. The
methodology consists of three phases: (i) domain context modeling, (ii) domain semantic modeling and (iii)
domain reuse modeling. A domain repository system is developed to help analysts use the methodology for rcuse
supports in a systematic way. To demonstrate the usefulness of the methodology, a real-life example is illustrated.

I. Introduction

Object-oriented technology promises a natural way of building quality software by conceptualizing developers'
cognition on objects and their behaviors. This conceptualization represents real human activities. These benefits
are achieved by two major features of the object-oriented technology: encapsulation and inheritance [Graham 1994].
For these features, the object-oriented technology has been applied in many system development fields successfully.
Reusability, in particular, plays a key role in guiding information systems into an object-oriented approach.
Reusability is an important aspect of information system development. Researches on reusable codes are already
abundant. However, researches on reusable analysis output are left something to be desired.

Software development is not a trivial task, that is, many development constraints, different characteristics. and
special development needs of application domain must be simultaneously considered [Henninger 1995]. These
complexities call for eliminating irrelevant requircments and reducing the specific problem into a manageable
chunk. Therefore, it is reasonable to define the scope of a domain, an area that shares common characteristics.

Berard [1993] defines a domain as a collection of current and future application that shares a set of common
characteristics. In contrast, MIS professionals are familiar with the following definition: 4 manageable business
area that shares the common properties.

In order to identify and understand a domain and its commonalties, a domain analysis is needed. Domain
analysis is a process of identifying, collecting, organizing, and representing the relevant information in a domain,
based on the study of existing systems and their development histories, knowledge captured from domain experts,
underlving theory, and emerging technology within the domain [Kang, et al. 1990]. Domain analysis differs from
other IS analysis in that it is not a life cvcle activity. Domain analysis goes on in parallel with the software life
cycles [Berard 1993]. Domain analysis is best separated from application analysis because development pressures
make it hard to abstract from immediate concerns to flexible, complete and application-independent components

-121-

11[Graham 1995]. Therefore, domain analysis is a long-term process for defining and refining business objects to
represent a business model.

As IS analysis is presented within the framework of software engineering, so is domain analysis within the
framework of domain engineering. Kang et al. [1990] defines domain engineering as “an encompassing process
which includes domain analysis and the subsequent construction of components, methods, and tools that address
the problems of system/subsystem development through the application of domain analysis products.”

Neighbors [1980] who originally introduced domain analysis, did not use an object-oriented analysis (OOA)
methodology. Shlaer and Mellor [1989] introduced a brief concept of object-oriented domain analysis (OODA).
The object-oriented technology offers many benefits to domain analysis. An object-oriented decomposition for a
domain naturally generates reusable domain models. They may be classes, scenarios or domain-specific rules.
OOA leads naturally to domain analysis and thus lends to more widely reusable components than general
application analysis [Mili et al. 1995]. The object-oriented methodologies use the concept of inheritance.
encapsulation, and abstraction, which supports the reusability in a more secure way. [Tablel] compares the
common OOA with the OODA.

[Table 1] Comparison between OOA and OODA

Defining object Defining reusable components "
Short / Middle term Long term (on-going)
Optional Mandatory
Current Business System Potential Domain System
Individual Projects Independent of Individual Projects
(Prerequisite of OOA)

Object-oriented domain analysis deals with reusable items, such as objects, object relationships. object
constraints, object responsibilities, objects in scenario, and task descriptions in specific domain. Major domain
analysis methodologies to date, introduce detailed steps and input-output specifications (e.g., Kang et al. [1990].
Tracz et al.[1995]). Domain analysis is a long-term process and thus requires systematic approaches. A repository
system may be a good candidate for managing the domain knowledge and artifacts in a systematic manner.
Systematic supports, such as database systems, and graphical models, are mandatory in reusing a domain model
[Prieto-Diaz 1990].

In this paper, we (i) propose a domain analysis methodology for developing business applications and (ii)
develop a domain repository system (DRS). The proposed business domain analysis (BUDA) consists of three
phases, such as Domain Context Modeling, Domain Semantic Modeling, and Domain Reuse Modeling.

I1. Business Domain Analysis Methodology

Object-oriented technologies have gained widespread acceptance in many system application areas as their chief
way of building quality software in a cost-effective manner {Graham 1995]. However, objects have not been widely
used to represent a business world, even though, a business may be modeled in terms of objects effectively. It has
been noted that business model is represented by the use of business objects [Casanave 1995]. Business objects
differ from system objects such as window user interfaces. Business objects are application independent and
atomic components for representation of real world. According to Object Management Group (OMG) [BOMSIG
1995], business objects encapsulate the storage, metadata, concurrency, and business rules associated with a thing,
process, or event in a business.

-122 -

Business areas are more dynamic, complex to make reusable components and difficult to analyze the
requirements of users than system application areas. It means that data driven approaches, like ERM, are not
suitable for designing the integrated business model. ERM is originally devised for design of static data model.
Many information systems are still adopted data driven approaches, dynamic aspects of business model are
considered separately or simplified. Previous domain analysis methodologies that use ERM also make up for these
problems by adopting Data Flow Diagrams (DFD), or State Transition Diagrams (STD). To solve these problems,
mapping between business model and objects can be a good solution. From these ideas, we will develop natural
system development phases, from analysis to implementation, through the medium of the business objects. So it is
required that domain analysts adopt the object-oriented technology when business areas are designed.

Domain analysis on business area is the first step for building the object based enterprise infrastructure. Domain
analysis is conducted before the IS analysis, and supports IS analysis by the object model. The continuous reuse of
the object model can refine the object model and increase the productivity of IS. Object-oriented model may be
naturally reused by using the abstraction, inheritance. However additional analysis activities increase the
reusability of object model. These analysis activities are the processes of defining the reusable model components
such as “contracts” [Wirfs-Brock etc. 1990] or the process of expending the object model with "roll" [Gottlob et.al.
1996].

Our methodology, BUDA consists of the three phases: Domain Context Modeling, Domain Semantic Modeling,
and Domain Reuse Modeling. These phases are shown graphically in [Figure 1].

Refer &
Rene ™ | Domain Semantic Modeling

[Figure 1] Phases of BUDA

2.1 Domain Context Modeling

Domain context modeling consists of two subphases. The first subphase analyzes the enterprise domain contexts
to cut off the domain of interest to manageable size. In business environment, a domain is a distinctive and
manageable business area that shares common properties. In general, corporations have the two domain types.
Vertical domain, such as marketing, administrations, and finance, studies a number of systems intended for the
same class of applications. Horizontal domain, industrial division, such as hospital case, stocks company case. An
analysis of enterprise business context is needed for the entire corporation. In determining the scope of a domain,
both top-down and bottom-up approaches are used in combination. In general, each domain consists of business
scenarios or subsystems. The domain boundary is determined by the use of the concept: “Sharing a set of common
characteristics”.

The next sub phase collects the related domain knowledge. The sources come from legacy systems, existing

-123 -

internal documents, future trends in the industry, interviews with end users, or knowledge of domain experts.
These domain artifacts are categorized into (i) industry and technology, (ii) constraints and rules, and iii) legacy
application information (static and dynamic). Industry and technology category includes industrial trends.
technological information, and business forecasting data, which are in unspecified format. Information on
constraints and rules is used for class/scenario analysis in domain semantic modeling phase. This information can
be founded in a specific job/task manual. Legacy application information can be found from ERD. DFD.
application screens, relational database tables, and fields. This information is used to define objects. attributes,
methods, and events. (i.e., like a domain dictionary). Domain analysis team may need to append a new type of
artifact. In this case, classification of the previous domain artifacts is modified. The outputs of domain context
modeling are Domain Definition, and Domain References (artifact lists).

2.2 Domain Semantic Modeling

The domain semantic modeling phase is similar to traditional object-oriented analysis phases. In the domain
semantic modeling phase, joint works with domain experts are essential. Three steps of domain semantic modeling
are (i) to decompose domains by analyzing scenarios, (ii) to identify objects, attributes, and methods by the use of
class cards, and (iii) to analyze collaboration between objects.

BUDA adopts a scenario-based model for analyzing domain semantics. A scenario describes each interaction
that may involve several objects. Actors and scenarios are the primary components in the scenario-based model.
An actor represents a role that someone or something in the domain can play in relation to the business [Jacobson
et al. 1995]. Actors create events. All scenarios are triggered by the events. For example, the following is the
scenario “Cash Deposit”. The actor is a customer.

Customer keeps the personal information (account number, pin number, and social security number), and
deposits amount on banking sheet. Wait until his/her turn. Employee calls his/her name, the customer gives a
sheet to the employee. After some verification (number check, amount check), the employee gives the receipt of
deposit to the customer.

Task or job analysis on the related domain is required for finding scenarios. Typically, the total set of scenarios
explains the complete semantics of domain. Constraints or rules related to scenarios must be collected. In this
analysis subphase, constraints or rules are analyzed and managed in an abstract way. If sets of scenarios are
formulated, the next subphase is to extract verbs and nouns from each domain. Noun and verb lists in each
scenario help in building the basic structure of object modeling. Naming conflict (for example, synonyms or
homonyms) are resolves for keeping the unity of domain semantics. When classes are identified, actors in
scenarios become the primary candidates for domain objects. Noun and verb lists are used for identifving domain
objects. Nouns in noun lists are the candidates for domain objects. Verb lists can provide the responsibilities for
domain objects. Therefore verb lists are the candidates for methods. Class cards are developed by the use of noun
lists. They are useful in connecting developer or IT person with domain expert or domain user. A class card
includes class name. attributes, methods, collaborators, generalization information, and descriptions.

The output of domain semantic modeling is the preliminary domain object model. This model represents the
overall domain semantics using the object-oriented methodology.

2.3 Domain Reuse Modeling

In the domain reuse modeling phase, the domain object model is refined. Aggregation and generalization
relationships are primarily considered. To find more aggregation or generalization hierarchies, it may be possible
to evolve the new class from an existing one [McGregor & Sykes 1992)]. Framework approaches also increase the
reusability of analysis model. Frameworks are skeletal structures of programs that must be fleshed out to build a
complete application [Wirfs-Brock, et al. 1990). Many researches on the reusability are conducted using
component or framework approach to increase the reuse opportunity. In fact, to extract the components, a unit of
reuse, is not an easy approach, as explained. Therefore it is meaningful to apply the characteristics of framework

=124 -

(such as reusable type, pattern,..) to the domain model. In this paper, the unit of reuse will be explained using the
relationship between scenarios and objects. In general, the relationship between scenarios and objects is described
as “Many-to-Many”. That is, one scenario has many objects, and one object acts in many scenarios. To explain
this “Many-to-Many” relationship, this paper uses the CRUD (Create, Read, Update, and Delete), as the kind of
tvpe unit. In business application areas, the CRUD is the most frequent collaboration between business objects.
These can increase the opportunity of reuse by referring scenarios and objects that is related to domain specific
business environments. In object communication, the responsibility of object is classified into the two types, i)
client : Object that invokes the method of other objects and ii) server : Object that executes the method of itself by
requests of other objects. When application developers or other users reuse the domain information, some
guidelines can be given. Outcome of a search can be one of the following types: Case of Object-related / Scenario-
related / Both (object/scenario)-related / None-related. In case of “Object-related”, basic object information such as
class descriptions, attributes, methods, and relationships are given. Information about “class rolls in related
scenarios” is also given. If the outputs of domain artifact search exist, it will be presented. When the search word
is related with scenarios, the basic scenario informations (descriptions, related domains) are given. Informations
about “class collaborations in the scenario” are also given. Class collaborations consist of class names (client.
server), method, method arguments, and CRUD type. “Both-related” implies that analysts get information related
with both object and scenario.

[Table 2] compares other domain analysis methodologies with BUDA. This table shows that generic, common
steps for domain analysis exist and the object-oriented technology is applied to domain analysis. Reuse methods
are not only the reusable domain model, but also reuse guidance, or reuse opportunities. In this table, it is clear
that the emphasis of BUDA is on the reusability using a systematic repository and reusable class role information
on business applications.

[Table 2] Comparison of Domain Analysis Methodologies

FODA DSSA JODA DA InDE by ARC BUDA
Author(s) KXang e ai. (1990} Tracz Hollibaugh [1893) Stropky et al. [1985) Lee etal. [1997]
Target IS Sofware IS Software IS Sofware Business Business
Domain
Base
Model ER ER+OO o0 oo o0
1. Context 1. Define Scope 1. Prepare Domain 1. Identify 1. Domain Context
Analysis of the domain 2. Define Domain Information Modeling
2. Domain 2. DefineRefne 3. Model Domain Source 2. Domain Semantic
Modeiing Domain Spedific 2. Gather Domain lodeking
3. Architectse concept Information 3. Domain Reuse
Modaling 3. Define/Refne 2, Define Domain Modeling
Analysis Domain Specific 4. Describe Domain
Steps Design 5. Establsh Domain
Implement. Knowledge
4. Develop Domain &, Determine
Archite cture Composition
5. Produce reusable 7. Define Structure
Workproduct B. Identify
Commonality
Main 1. Domain Model 1. Domain Modet 1. Domain Definition 1. Domain 1.Domain Object
Products 2. Feature Mode! 2. Domain Specific 2. Domain Model Architecture Model
Software Archi Model
3. Domain Reusable
Component
1. Feature Model 1. Reusable 1. Domain Mode! 1. Reuse 1 Reuabie
2. Reuse Library Components 2. Active Repository Opportunity Class
Reuse Role
Mathods 2. Systematic
Reuse
Guidance
lslepos:ory A g:nf;ag;::ﬂmm Actve Regository DKDB(Don:m ORS 1Domas'n)
uppo Env‘mnmong l y System

II1. Domain Repository System

A Domain Repository System (DRS) consists of the following two sub systems: (i) Domain Analysis Support
system (DASS) and (ii) Domain Reuse Guide System (DREGS). DASS helps domain analysis team in following

-125-

the BUDA methodologies. The primary purpose of DASS is to manage and utilize domain information. DASS
provides the subsystems for an each phase of BUDA. We can use the Common Search Module (CSM) to find
useful domain information for BUDA. CSM helps DASS, DREGS in finding target domain information for reuse
the domain information. Current version of CSM utilizes the search technique from SQL (structured querv
language) statements. DREGS is a guiding-system for system developers and other related users. DREGS also
enables the domain analysis team to reuse of domain information for high quality and secure future systems. The
overall system architecture of DRS is shown in [Figure 3].

Domain Repository System
omain Analysis ¥ Domain Reuse |
Domain© Support Systam | Guide System |
Domain Arfact
Aufined formation i :
Reuse InformalonGuide i
Addtional Com ain Expert I i !
Knowledge g ! Gomein |
Conted i
0 7B il
8 | '
L) i‘ Domain Canvlm User
Swari || Seagh | 0,
Reusaibe Iformation Modefing || Module | woase
|
Domain Aney sty i '
(Domain Expet, L
T Export) E| Rse i
Modeding
[i
f

[Figure 3] System Architecture of DRS

In accordance with each BUDA phase, domain information is produced and saved in the repository. To deliver a
fast. correct search result and to store the domain information effectively, the following meta-data schema is used.
As current version of DRS uses the relational database, an ER data model will be presented. This meta-data
schema (see [Figure 4]) has focused on the three components: Domain, Scenario. and Class. A domain can have
the many scenarios. Classes have relationships with scenarios, but do not have the direct relationships with
domains.

has retmonsre:

'
R | R Conaranes
; —e ey
CR_Name . i
Sceranc R New [we | ot
Rlesvmon |
sD TR_Type lo_Name
(Caber o Catlee) |~ Co New Cwte
S Nee CR_Courternat | Za_Cescrbor
o ' Ca_inouk_ P
+ S e we RN guemen 2 inout Persor,
S _Dweorgthon Closs r
o
C_Name
€ New (e Methco
¥l Vetlat Nown Lea Aaroue Chesonmn
N vy v —f C_Tyoe N
A Nare S € ATIC RegaaorNg 1—4 wiC ;
A Cwie i v € _Syranym 1
- Name N_Name
- - ™_Nan
P R T R v e T v MO
A Souce | fy-New Ome :—',‘;;-[“‘ AT Lescrobon Rebon M_Cescnpton
A_sepwordt - AT_Symomm | M Smonym
ATyae [fActor or Not} f et M
n ; | R
A Tye2 \I ; t
{ | R Neme i
L bR New Cwte
,_/ i
_—
| VT !
Comnaey Ungor Type 1 iiene_iyoe !
Caintenae | iswoermson Swersu |
i | Zautean rateman
| o o
{ I
“onmren AgaTgabon Venevatabor
Retawonig Hecrsy Primeaectny

[Figure 4] Metadata Schema of Domain Repository

3.1 DASS (Domain Analysis Support System)
DASS is a support system for the primary phases of BUDA. If the DSSA button is pushed. users can usc the

- 126~

DSSA with a pull-down menu. Pull-down menu consists of Domain Semantic Modeling, Domain Semantic
Modeling, and Domain Reuse Modeling. At first, domain context modeling is conducted. The following figure
shows the domain context modeling support module. In this module, we conduct the two main activities: (i)
Domain Management (Definitions and Descriptions) and (ii) Domain Artifact Management.

[Figure 5] Domain Context Modeling Support Module

To analyze domain semantic model, class card and scenario management modules are given. If the analyst chooses
a “domain reuse modeling” menu, the domain reuse modeling support module will be activated. [Figure 6] is a
supporting module for “class collaboration analysis”. In this screen, the analyst selects a scenario and classes
(client, server) to describe the collaboration name. Scenarios in this screen are in the domain that selected a
previous screen. If the analyst finds the more generalization and aggregation hierarchies, analysts can append
these information by using class card.

4.2 DREGS (Domain Reuse Guide System)

DREGS provides the useful information to domain users who develop information systems. When the domain
user requests a search, DREGS provides the output of search such as the related information in the lists of objects
and scenarios.

[Figure 6] A Screen of a Domain Reuse Modeling Module

IV. Case Study

This chapter introduces a small case of banking applications. Target bank is F. bank (FB) in Seoul, Korea. FB

-127-

has a plan to analyze a customer-focused domain. Customer domain is defined as “Areas that deal with customer
related information or has a contact with customer” Collected domain artifacts are (i) legacy information system
documents (ERD, System Screens...), (ii) interviews with domain experts, and (iii) other banks related materials.
To analyze this domain, get the following scenario lists:

Query the customer information / Request the credit status of customer

Adjust the degree of customer credit / Create an account / Issue a credit card

Cancel an account / Cancel a credit card / Notice the loss of a credit card

Change the customer information / Adjust the type of credit card

Reissue a credit card / Deposit /Withdrawal / Balance inquiry / Calculate the interest. ..

To analyze the scenario, the extraction of noun / verb lists are needed. In this example. scenarios of “Creatc an
account”. “"Change the customer information”, and ~Balance inquiry” will be analvzed. Instead of verb. verb

phrascs are used for keeping the semantics of verb. The following tables are the outputs of the scenario analysis.

[Table 3] “Create a new account” Scenario

Description / List

Customer send a request form, with ssn, name, password, tvpe of account.
and personal information (address. phone number, age. office name, and
office phone number). After some verification (ssn check. password rule
check, and credit of personnel). if problems exist, then return a request
form and request the modification of personal information to customer.
Else create the account number and request an approval to bank. After the
approval, rcturn the new-bank book to customer.

customer, request form, ssn, name. password, type of account. address.
phone number, age, office name, office phone number. verification. rule.
credit of personnel, problem. account number. approval, banking
manager. bank-book

send a request form, verify a request form. request the modification.
create the account number. request an approval 1o banking manager.
return the new-bank book

[Table 4} “Balance inquiry™ Scenario

intlon 7 List - i L o . i
Customer sends an inquiry form, with account number. password to bank
desk. After password verification, After the approval. return the balance
information to customer.

Customer, inquiry form, account number, password, bank desk. address.
verification, approval, balance information
send a inquiry form, verify a password, return the balance information

After the extraction of noun / verb lists is done, analysts conduct the naming conflict resolution for noun / verb
lists. Naming conflicts can occur in a scenario or between scenarios. For example, in the “Change the customer
information” scenario. “change the information™ and “update the customer information™ have the same semantics.
The following lists arc some resolutions of naming conflict: Customer ->Personal Customer / Name ->Personal
Customer Name / Approval -> Password Approval. Now we obtain the candidate objects such as Customer.
Account. and Bank. To test the responsibilities of objects. the simple class cards are made like these:

- 128 ~-

Class Name : Bank Class Name : Account | | Class Name . Customer
Method Method Method
.evaiuste o crodit withdraw cAhhud customer
verify & customer 1D .deposit
_verify an accoum # Delence
verily & password . chAsd account Callsberator
bank
Coltab: C
.account customer Altributes
.customer bank customer name
rogister date
Altributes Attributes .customer type
bank name .account password customer 1D
benk code .customaer ID .
‘bank enrck number ‘accountnubmer | L)
.sxtending credit pin number
. receiving credit product name
[Figure 7] Class Cards for Classes

To model the reuse characteristics, we must analyze the generalization and aggregation. Customer class
evolves into personal customer and corporation customer class. Account class also evolves into saving account and

loan account class. Finally, the analysis of the class collaborations is needed. The following tables are the outputs
of this analysis.

creation of Create a new account

1 Personal Customer
SavingAccount.Create()
| Customer Name, Password

{ Saving Account
| SSN Check
| Create

[Figure 10} “Request the creation of account” Type

Request the verification
1 of new customer
| Saving Account
Bank. VerifyNewCustomer()
{ Customer SSN

] Create a new account

1 Bank
1 Password Check
Read

[Figure 11] “Request the verification of new customer” Type

V. Conclusions

Domain analysis is preliminary for system analysis. Domains are best analyzed in an on-going fashion. For
long-term projects, the support of managers is important. Managers of domain analysis must be experts who have
professional knowledge in the domain of business and technology.

In this paper, a methodology is developed to enforce business analysis outputs with reusability and quality by the
use of object-oriented technologies. This methodology differs from previous ones in applying the domain analysis
to business application area. It proposes the type of reuse by the use of class-scenario relationship. Furthermore, it
supports the complete cycle of domain analysis and reuse activities by using a domain repository system.

The work in this paper needs further enhancements and research. First, the methodology must be extended to
cover the complete phases of domain engineering. Second, the repository system needs more versatile features like

graphical diagram supports or intelligent agents. Third, the methodology may be validated though the application
to a real-life projects in a larger scale.

-129-

References

[Berard 1993] Edward V. Berard. “Essays on Object-Oriented Software Enginecring: Volume I”. Prentice-Hall.
1993

[BOMSIG 1995] Business Object Management Special Interest Group, "OMG Business Application Architecturc
(White Paper)”. WWW URL :http://www.omg.org, 1995

[Booch 1990] Grady Booch. “Object Oriented Design with Applications”, Benjamin/Cummings Publishing. 1990
[Casanave 1995] Corv Casanave, "Business Object Architecture and Standards". OOPSLA 95, Workshop report:
Business object design and implementation, 1995

[France et al. 1995] France, Robert B. and Horton, Thomas B., “Applying Domain Analysis and Modeling: An
Inderstrial Experience”, Proceedings of the ACM SIGSOFT, SSR'95, April 1995, pp206- 214

[Gottlob et.al. 1996] Georg Gottlob, Michael Schrefl and Bgrigitte Rock, "Extending Object-Oriented Systems
with Roles", ACM Transactions on Information Systems, Vol 14,No.3, July 1996, pp268 - 296

[Graham 1994] Ian Graham, “Object Oriented Methods”, Addison-Wesley, 1994

[Graham 1995] Ian Graham, “Migrating to Object Technology”. Addison-Wesley, 1995

[Henninger 1995] Scott R. Henninger. “Developing Knowledge Through the Reuse of Project Expericnces’™.
Proceedings of the ACM SIGSOFT, Symposium on Software Reusability(SSR’95) , 1995

[Hollibaugh 1993] Robert Holibaugh, “Joint Integrated Avionics Working Group (JIAWG) Object-Oriented
Domain Analvsis Method (JODA)”, Special Report CMU/SEI -92-SR-3, November, 1993

[Jacobson 1992] Ivar Jacobson, “Object Oriented Software Engincering: AUse Case Driven Approach”™, Addison-
wesley. 1992

[Jacobson ct al. 1995] Ivar Jacobson, M.Ericsson, and A. Jacobson. “The Object Advantage: Business Process
Reengineering with Object Technology™, Addison Wesley, 1995

[Kang et al. 1990] Kyo C. Kang, Sholom G. Cohen, James A. Novak, William E. Hess, and A Spencer Peterson.
“Feature Oriented Domain Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-21, Software Enginecring
Institute, Pittsburgh, PA, Novemeber, 1990

[Lorenz 19931 M. Lorenz, “Object-oriented Software Development: A Practical Guide”. Prentice Hall, 1993.
[McGregor & Sykes 1992] John D. McGregor, and David A.Svkes, “Object-Oriented Software Development :
Engineering Softearc for Reuse”, Van Nostrand Reinhold, 1992

[Mili et al. 1995] Hafedh Mili. Fatma Mili, and Ali Mili, “Reusing Softwarc: Issues and Rescarch Directions’.
IEEE Transaction on Software Engineering, Vol.21, No.6, 1995

[Neighbor 1980] J.M. Neighbors, “Software Construction Using Components™, Technical Report 160, Department
of Information and Computer Sciences, University of California, Irvine. 1980

[Pricto-Diaz 1990] Ruben Pricto-Diaz, "Domain Analysis: An Introduction” ., ACM SIGSOFT. Softwarc
Engineering Notes voll5, no2, April 1990, page 47-54

[Shlaer and Mellor 1989] Sally Shlaer, and Stephen J Mellor, “An Object-Oriented Approach to Domain
Analysis”, ACM SIGSOFT, Software Engineering Notes Vol. 14, No.5, 1989

[Stropky and Laforme 1995] Maria E. Stropky, and Deborah Laforme, “An Automated Mechanism for effectively
applving Domain Engineering in Reuse Activities”, The Army Reuse Center News, Dec. 1995 Vol .4, No.4

[Tracz 1995] Will Tracz, “DSSA Pedagogical Example”, ADAGE-LOR-94-13, April 1993

[Tracz and Werkman 1995} Will Tracz, and Keith Werkman, “What is DSSA?", WWW DSSA Home Page
(http://www sei.cmu.cdw/arpa/dssa/dssa-adage/what-is-dssa. html), Oct 1995

[Wirfs-Brock et al. 1990] R. Wirfs-Brock, B.Wilerson, and L. Wiener, “Designing Object-Oriented Software™.
Prentice Hall. 1990

-130-

