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Synopsis

The orientation distribution of rigid macromolecules dissolved at low concen-
tration in a dielectric Newtonian fluid is solved for the case in which simulta-
neous hydrodynamic and electric fields are applied. Macromolecules are taken
to be Brownian rigid spheroids of arbitrary aspect ratio and both permanent and
induced dipole moments are included. To solve the problem with arbitrary
strength of fields, the Galerkin method based on spherical harmonics is adopted.
The converged solutions are used in the prediction of the steady state birefrin-
gence and extinction angle over very wide ranges of field strengths. Due to the
coupled effects of flow and external field, somewhat complicated responses are
predicted and saturation features are revealed at the strong flow limit. External
field dependence due to the induced dipole is similar to that of the permanent
case for most field conditions. Finally, it is shown, taking poly-y-benzyl-L-
glutamate solutions with various molecular weights as an example, how results
in this article are applicable to an analysis of a real system.

INTRODUCTION

Electrohydrodynamic research on polymeric liquids involving non-
spherical particles with electric dipoles have been steadily performed
together with the advance of relevant theories and experimental tech-
niques. The present work, as a continuation of the previous work re-
ported by Park (1988), will consider the solutions of Brownian rigid
macromolecules with arbitrary aspect ratio dissolved in a dielectric
Newtonian fluid over entire ranges of the combined electric and hydro-
dynamic fields. Both induced and permanent dipole moments are in-
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cluded. The key difference from the previous work is coverage of a full
range of the combined field strengths extended to the saturation
strengths.

Even without the complicating effect of the external couples and even
after restriction to dilute solutions, a complete quantitative description
of the system is a formidable task. The major difficulty arises when one
would like to solve the diffusion equation that governs the distribution
of orientations. Analytical solutions are not available and perturbation
solutions, obtained after considerable effort, yield results which are valid
only over a limited range.

Okagawa and co-workers (1974) have considered most questions
pertaining to large, non-Brownian particles at infinite dilution subjected
to electric and hydrodynamic fields. Ikeda (1963) and Mukohata and
co-workers (1962) have already studied the steady state response of
rodlike polymer chains with assumed permanent and induced dipole
moments subject to weak electrohydrodynamic field. Starting from the
results of Okagawa et al. in order to include the effects of Brownian
motions, Park developed the more systematic perturbation solution pro-
cedure by utilizing the standard Fokker—Planck formulation. Leal and
Hinch (1971, 1972) calculated singular perturbation solutions for
strong flows and weak diffusion and later gave perturbation solutions for
near spheres.

Stewart and Sérensen (1972) presented numerical solutions for the
steady state problem over the wide range of Peclet numbers for rigid
dumbbell suspensions in steady shear using Galerkin’s method. Thence-
forth their typical approach to the strong field problem has been applied
to variously extended problems. Strand ez al. (1987) studied the tran-
sient response of suspensions of rigid rods after inception of steady shear
flow. Using Galerkin’s method in the spatial coordinates and the spec-
tral method in time, they have obtained numerical solutions up to high
Peclet numbers (P; = 10, i.e., the dimensionless shear rate G/D,= 60).
Kamiyama and Satoh (1989) analyzed the rheological properties of
magnetic fluids in case of a steady shear flow in a strong magnetic field
perpendicular or parallel to a shearing plane. They used a needlelike
cluster model in which the particles in magnetic fluids form rigid linear
aggregates to make clusters.

We have analyzed the steady state governing equation for the orien-
tation distribution function, which belongs to the class of Fokker—
Planck equations, by Galerkin’s method. After using the specially de-
signed numerical scheme and applying the operators in prior work by
Park, the matrix reduced from the governing equation could be band-
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edly diagonalized and the system of equations can be solved very effi-
ciently. This article contains the strong field problems considering the
entire ranges of simultaneous electric and hydrodynamic fields. In ad-
dition, both the external couples, induced and permanent dipole, are
explored and distinct from each other. The solutions obtained are ap-
plied to the calculation of birefringence and extinction angle and dis-
cussions on the predictions of optical properties are presented.

GOVERNING EQUATIONS

This article is based on the previous paper by Park and practically
starts from their governing Egs. (8) and (9). However for a more
reasonable interpretation of the problem, the dimensionless parameters
f and ,‘,2 related to the electric field should be modified. For a connec-
tion with the previous work and clear circumstances, we first cite a
model system using the following assumptions.

(1) The solvent is a Newtonian homogeneous isotropic fluid of di-
electric constant K.

(2) Brownian solute particles of dielectric constant gK; are dissolved
dilutely and approximated as rigid, neutrally buoyant, prolate spheroids
of revolution in which 2a and 2b are lengths of major and minor axes.

(3) An isolated nonelectrolytic particle without any interaction be-
tween particles is considered.

(4) The external field is composed of both simple shear flow field
(¥, = Gy) and uniform electrostatic field Ey perpendicular to the shear
direction.

(5) Solute particles have either permanent dipole moments in the
direction of their symmetry axes or induced dipole moments under the
external electric field.

For the above model system, the normalized diffusion equation ex-
pressed in terms of operators related to respective fields describe the
evolution of the orientation distribution function N,

ON
6+l (N) + B3 (N) + 720, (N) = A(N), (1)

with the normalization condition for N,

T 27
f desinef dbN=1. (2)
0 0
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The operator {1 is due to the shear flow. The operators (1, and (13 are
due to the induced and permanent dipole moments of the spheroids
responding to the electric field. The differential operator A is simply the
angular part of the Laplacian operator in the spherical coordinates,
defined as in Bird et al. (1987). These operators and their properties
have already been expressed by spherical functions in the previous pa-
per. The geometric symmetry condition for N disappears when spheroi-
dal particles have any finite permanent dipoles.

Rotational diffusivity D, and dimensionless shear rate a, and dimen-
sionless field parameters 8 and yl related to the permanent and induced
moments are given by

3kT
a=G/D, D,= 20(r), (3)
da v
VB uoFy
Wle 4
B T (4)
VeoKk,P(q,r)E
’}/2 _ O'KZ 0. (5)

kT

Here r is the aspect ratio of spheroids and Q(r) is the geometric factor
given by Okagawa et al. which can be approximated as

20(r) = [In(2r) —05]/2, r>2.

1o is the viscosity of the Newtonian fluid, V( = {rab?) is the volume of
a prolate spheroid, g is the permanent dipole moment per unit volume
of a spheroid, € ( is the permittivity of a vacuum, and B, is the internal
field function (O’Konski, 1976).

Most of the other formulas and nomenclature used earlier are also
valid and thus available in the present work, but a few were altered.
Though the above 8 and ,},2 can be expressed into the forms given in the
previous paper, present definitions are more reasonable in the physical
and practical sense. In addition, P(q,r) of Eq. (5) differs from that of
Park and Okagawa et al. by a multiplying factor { — [1/2Q(r)]}.

SOLUTION PROCEDURE BY GALERKIN'S METHOD

Since it is difficult to obtain an analytic solution of the governing Egs.
(1) and (2), Galerkin’s method is used to get the approximate solution.
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We use spherical harmonics of the first M + 1 kinds to construct an
Mth-order approximation to N, denoted by N (M)

M n
NM = 5 ¥ (AyPJc, + ByP)s,), (6)

n=0 m=0

in which P are the associated Legendre functions and c,, and s,,
denote cos m¢ and sin mé, respectively. The coefficients 43 and By’ are
functions of @, B, y%, and R defined by (¥ — 1)/(r* + 1). These coef-
ficients are to be determined for each approximation NM) 56 as to
make it close to the actual N in some sense. To find the coefficients at
the Mth level of approximation, we insert Eq. (6) into Eq. (1) and use
the general relationships of the operators given in Appendixes A, B, C,
and Eq. (17) of the previous paper. Here only the steady state solution
is considered:

I ™M=

M
2
n=>0

m

(n(n + l)(AnmP;"cm -+ Bnsz'sm)
0
3

mm+2p—4, m +2p—4
o lan.n+2q—4 (AI!PT+2Q—-4Sm+2p——4

Q

I w

p=14q
2 2

mpm + 2p — 4 mm+2p—3

_'ani:"+2q—4cm+2p—4)+ﬁ Zl z]bn,n+2qﬁ3
=1 4=

mpm+2p—3 mpm+ 2p—3
X(AnP;n+2q—33m+2p—3_BnP::n-{—2q—3cm+2p—3)

3 3 .
m,m+2p — 4 um+2pm4
+Y2 21 zlcrl,n+2q—4 (Arz n+2q—4cm+2p—4

+2p—4 M),
+Bnman+2;—4Sm+2P—-4)):F( ) (7)

where FM) is the residual function in the Mth-order approximation.

Equations to determine A and B] are obtained from the requirement
that they must be orthogonal to all spherical harmonics of order less
than or equal to M:
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M n
q(q + I)AP+ 2 2 (ad 'pB Bb::’qB:? +‘)’ZC:;,Am
n=0 m=0
M
qlqg+ I)Bp Z Z ngAn +anq n _1_,},26::;]8"'
n=0 m=0
(p=0,1,2,..,9; ¢g=0,1,2,.,M, except p=gqg=0). (8)

Now we have the algebraic equations suitable for the numerical com-
putation. This equation can be simplified more. First, A) is obtained
from the normalization condition Eq. (2):

A=1. 9)

None of the coefficients BY are required, since the terms with those are
identically zero. The symmetry in the flow field requires that A and B}
are zero for either odd m or odd n. This symmetry requirement is kept
even though spheroidal particles are to have the induced dipoles. But
the permanent dipole restricts the simplification of the problem. Be-
cause of the properties of the operator {13 due to the permanent dipole,
Ay and B} are zero only when m + n is odd. A special care must be
taken in cases of m = 1 when calculating the coefficients of {}; and Q,
in relation to {23. The problem is thus to determine the remaining
M(M + 3)/2 coefficients.

BIREFRINGENCE AND EXTINCTION ANGLE

Birefringence An is defined as the difference in the principal values of
the real part of the refractive index tensor in the plane orthogonal to the
propagation axis of the light and the extinction angle y as the orienta-
tion of the principal axis of the refractive index tensor with respect to a
laboratory frame (Johnson et al, 1985). If the light is propagating
along the z axis, the birefringence and the extinction angle are

An = C( (chz)z + (Pg_sz)z) 1/2, (10)
tan(2y) = (P%sz)/(P%cz). (11)

Here C is a constant which is related to the molecular properties such as
concentration of the molecules, optical polarizabilities of molecules, etc.
It is instructive to express C for a dilute solution of the modeled rigid
macromolecules. C may be written as follows:

C=2m4,(g, — 8)/n, (12)
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where ¢, is the volume fraction of the particles, s, is the refractive index
of the solvent, and (g, — gp) is the optical anisotropy factor.

Since these bulk solution properties are averaged over the distribu-
tion function (as indicated by the angular brackets ( )), birefringence
and extinction angle can be evaluated once the distribution function is
known. The expressions for the above averages may be written explicitly
in terms of 4} and B by using the orthogonality property of the
spherical harmonics. The results are simply written as

(Pyey) = 242, (13a)

(Pjs;) = 2B, (136

NUMERICAL STRATEGY

Our numerical strategy is basically an extension of the approach used
by Stewart and Sérensen. Numerical solutions could be obtained over a
wide range of all dimensionless parameters. For any given values of a,
B, }/2, and R, the coefficients in N™) are determined for successively
larger values of M until both 45 and Bj converge to the relative error
limit of 110~ %, In most cases the convergence condition was satisfied
by taking 54 as the maximum value of M. Large values of M are needed
for the strong field problems. Then the attempt to solve such problems
becomes a formidable task, requiring the inversion step of a matrix of
large size in which substantial computing time is consumed. To deal
with such problems, a specially designed numerical algorithm is used.

The coefficient terms A}’ and B;;' with the smallest value of m + n are
first filled into a matrix and successively in order of magnitude of m
+ n. Among members with equal values of m + n, 4} and B} with
smaller values of n go first. Such ordering of terms 4;;' and B}, results in
a diagonally banded matrix of which the maximum length is 2M + 2
except in a case of M = 2. Inversion of this banded matrix is performed
by back substitution following the lower decomposition scheme. This
numerical algorithm drastically reduces the computation time and, in
proportion to the reduced calculation steps, the truncation error de-
creases, too. ‘

RESULTS AND DISCUSSION

It is well known that the birefringence An and the extinction angle y
are basic functions which determine the optical state of transparent
materials. Through the above two functions, the model solution speci-
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fied in the previous section is investigated. Shear and electric fields are
applied simultaneously and both permanent and induced dipole mo-
ments are considered. A number of rigid macromolecules can be mod-
eled as the prolate spheroid. Analyses in this work are also tentatively
restricted to the cases of the prolate spheroid (that is, R > 0). They are,
however, without any difficulties, equally applicable to the symmetric
spheroid of revolution with any aspect ratio ranging from disklike (R
= — 1) to needlelike shape (R = 1). For such problems, in particular
at strong fields extended to the saturated field, steady state solutions
were obtained. In real calculations, all coefficients of A" and ﬁ;’ that
determine the approximate probability density function N are
sought by colving the final algebraic Eq. (8) and the normalization
condition Eq. (9). Only A% and B% among the above coefficients are
used in calculating An and y. In subsequent results, birefringence is
given as a scale (An/C) divided by the constant C in Eq. (12).

The preliminary results at weak fields are presented in Fig. 1. The
exact numerical solution by the Galerkin method was obtained within
the convergence limit of 10~ %, Two perturbation solutions, Ikeda’s
second order and Park’s fourth order, were compared with the exact
numerical solution to check the correctness of the numerical work at
weak fields. Figure 1 shows y and An that respond to a varies from 0 to
5 at the weak electric field of 8% = 9> = 0.5. We have already known
from the previous study that respective dimensionless field parameters
depend on q, Bz, and y”. As expected, the perturbation solutions nearly
coincide with the exact one under weak fields in which the dimension-
less governing parameters are smaller than unity. As a becomes larger
than unity, the perturbation solutions deviate from the exact one and
reveal a tendency to diverge according to respective perturbation orders.
Though Fig. 1 shows the field dependence on a only, similar results
were also obtained on 8 and Y. Synergic effects in coupling fields in a
range over weak field causes the perturbation solutions to diverge more
rapidly as the fields are stronger. Therefore, the numerical results of the
Galerkin method are required to cover the full ranges of field strengths.

Figures 2 and 3 show the steady optical state of the model solution
over the full ranges of simultaneous shear and electric field strengths.
Figure 2 are results in which permanent dipoles are considered. Results
for cases of induced dipoles are seen in Fig. 3. In either figure, two cases
Oof R =1 (r= o; very slender rod) and R =0.6 (r=2; a slightly pro-
late spheroid) were compared in order to consider the geometric effect
of solute particles. Results when the shear field only is applied are also
plotted for a reference. Optical properties of the model solution varied
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FIG. 1. Comparisons of (a) extinction angle y and (b) birefringence An/C for the
converged numerical solution (—) and the perturbation solutions (--, Park’s fourth
order; - -, Ikeda’s second order). R = 0.5; @ between 0 and 5; B = .},2 =0.5, in which R
is the aspect ratio parameter given by (# — 1)/(7Z + 1), and B and y* are dimensionless
field parameters related to permanent and induced dipole moments, respectively.
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FIG. 2, Serpi]ogarithmic representations of (a) extinction angle X and (b) birefringence

An/C vs dimensionless shear rate a, when considering the permanent dipole moment

only. In both figures, the solid curves are for aspect ratio parameter R = 1 and the dashed

gl.l)trtv;s R = 0.6, and dimensionless permanent dipole strength 8=0, 2, 5, 20 from the
m.
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according to not only the absolute strengths of respective fields but also
the relative strengths. Thus to interpret the results systematically the
full ranges of the field strengths are divided into three regions as follows.

Region 1: The shear field is so weak that the electric Jield is relatively
dominant. In both Figs. 2 and 3, the electric field acting perpendicularly
to the shear direction will reduce the decrease of x by offsetting the
influence of a. Such a basic pattern of y is continued in regions 2 and 3.
Smaller R reduces the shear effect and makes it relatively easy for solute
particles to align in the direction of the electric field. As a result, y
curves of R = 0.6 have slightly larger values than those of R = 1 in this
region. It is important in an experimental view to notice that, at weak
fields, y responds very sensitively to the variation of the field strengths.
In general, An increases as the applied field strength increases. A certain
strength of electric field prevailing in this region keeps An nearly con-
stant up to region 2 as seen in both figures. Unlike y, An has little or no
dependence on R only if the same field parameters are given. Some
features in this region have already been known by earlier perturbation
works valid at weak fields only. Region 1 includes, adaptively, those
features of weak fields.

Region 2: Both shear and electric Jields are considerably strong. The
larger R is, the more effectively the electric field is swamped by a fairly
strong shear flow. Thus, in both figures, y for R =1 decreases some-
what rapidly and two series of y curves of R = 0.6 and 1 intersect in the
middle of this region. For very slender particles with the permanent
dipole, An increases, even though very gradually, as a increases. (See
Fig. 2.) The slightly convex profile seen in the case of 8 = 10 is rather
exceptional. Compared with the permanent dipole moments, the in-
duced are swamped more easily. As seen in Fig. 3, all An curves with
various values of approach rapidly to the referred shear curve as «
increases. In particular, when R =1 and 72> 10, An even decreases
locally despite increasing a. For 8 or ¥ over a certain value, An curves
for small R deviate significantly from the results for R = 1 as a in-
creases. All of the intermediate features in this region directly corre-
spond to the appearance of rotary Brownian motion (RBM) caused by
the fairly strong shear flow.

Region 3: The shear field is so very strong that the electric field is
swamped significantly by RBM. This region is characterized by the sat-
urated states revealed near extreme strengths of the coupled field.
Though the electric field belonging to this region is so strong, it is
significantly swamped by RBM owing to much stronger shear flow.
Both Figs. 2 and 3 show that in all cases x converges to the shear
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direction of 0° as the shear flow becomes extremely strong. Smaller R
makes y converge more rapidly, and so y curves of R = 0.6 are to be
always a little below those of R =1. When R =1 and little or no
electric field is applied, the saturated extent of An is not so complete
even at the extremely strong shear field. The most significant feature in
this region may be that An, for small R, has a remarkably small limiting
value, as seen in the results of R = 0.6. This tells us that, at very strong
flow fields, An is much influenced by the solute particle’s shape and its
limit value is determined mainly by R. Then respective dipoles bring up
rather different dependencies on the electric field. When the permanent
dipole is included, the results for R = 1 depend fairly strongly on the
electric field at extreme a but all An curves of R = 0.6 converge to a
unique limiting value. For the results with induced dipole, An in both
cases of R =0.6 and 1 depends on the electric field, but its extent of
dependence is somewhat weak. Such dependencies of An on the electric
field at extreme a are also found in the results for y. Differences between
dependencies of the electric field that respective dipoles show at extreme
a can be explained as follows. The permanent dipole is electrically
asymmetric, which causes effect of the electric field to vary only mod-
estly, depending on R. Thus when R is small, the electric field effect due
to the permanent dipole can be removed completely. Particles with the
induced dipole alter their charge directions instantaneously during the
rotary motion by the shear flow. Therefore, the induced dipole moment,
irrespective of R, is difficult to be swamped completely, even for the
strong shear flow.

Knowledge of two functions y and Ar can contrarywise yield two
Euler angles 6 and ¢ averaged in the domain. To simplify matters, we
restrict our attention to the cases that y converges to 0° and An has a
unique convergence limit. Such a state may be given more feasibly by
extremely strong flow when the permanent dipole is included and R is
small, as seen in cases of R = 0.6 of Fig. 2. Then the optical state
depends solely on 8. When y = (¢) = 0°, Eq. (10) is reduced simply to
An/C= P% Hence, from the Legendre polynomial relation,

; An 172
8 =cos™ ] —— . (14)
iC

When the solute particle is a sphere (R = 0), An is always zero and (6)
becomes 0° from Eq. (14). As R increases, An comes to have any finite
value off zero and (0) increases accordingly. This means the solute
particle tends to lie down along the flow direction. Though the above
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TABLE I. Typical values of the field parameters and other variables in EHD experiment
using m-cresol solution of poly-y-benzyl-L-glutamate.

Operational conditions:
Temperature T = 25°C
Shear rate G=400s !
Electric field Ey = 35 kV/cm
PBLG as a solute:
M.W. =236 000
Radius of major axis, a = 8.126 10~ ¥ m
Radius of minor axis, b=9.1x10 " m
Permanent dipole moment per unit volume 1, = 0.04365 C m/m’
m-cresol as a solvent:
Viscosity 7= 0.126 Pa s
Dielectric constant of solvent K, = 11.8
Dielectric ratio g =0.2 roughly guessed
Dimensionless parameters and other variables:

R =0.999 75 . B=104
D,=3370s"" 72 =0.7368
a=1.187

explanation is restricted to a special limiting case, more general prob-
lems can also be managed in a similar way without further difficulties.
In addition, Eq. (14) shows that An/C = 3 is the theoretical maximum
value that can be obtained ultimately.

Thus far, we have dealt with the optical phenomena using dimen-
sionless field parameters. Estimation of these parameters is needed to
give the physical sense and intuition to the previous analyses. This is
also required as a preliminary step to interpret experimental results
already existing, or to prepare new experiments. Table I shows typical
values that the dimensionless field parameters and other variables may
have in EHD experiments using a well known m-cresol solution of
PBLG. Each value of Table I was inferred from literatures or calculated
based on the equations developed in this study. In EHD experiments,
ranges of field strengths to be examined are largely restricted mainly due
to the availability of the object macromolecules and the performance of
the relevant apparatus. Modest values of the field parameters in Table I
suggest EHD experiment at strong fields is not easy. Larger values of
parameters, particularly for a, will be obtainable if higher molecular
weight polymers are used. Even a larger value of the apparent sheer rate
a may be obtained by using more concentrated solutions, but a different
analysis is needed to consider the molecular interactions. Difficulties



B e e i

MACROMOLECULAH ELEG I HUM Y UAUL D iINAIVIILD Py

related to the strong field problem are also incurred in EHD experi-
ments using other synthetic polypeptides or biopolymers, too.

We have a particular interest in the rheo-optical behavior as a func-
tion of molecular weight of a polymer. Increase of MW of a polymer can
be often interpreted as an increase of the aspect ratio r. In such a case,
it can be assumed that the minor axis length of a rigid polymer is nearly
constant and the increase of the major axis length corresponds to the
increase of MW. Then, at specified experimental conditions, three field
parameters can be represented as functions of aspect ratio. As r becomes
large enough (roughly r> 5), each field parameter comes to have simple
proportional relation to r, as follows:

r3
e e e 15
““Inen —05 o)
B~r, (15b)
er. (15¢c)

Figure 4 shows the optical behaviors predicted for PBLG solutions
with various molecular weights (M.W.) when the above assumption is

_satisfied that increases in r correspond roughly to increases in M.W,

Here, based on the typical values of Table I, shear and electric fields of
several strengths were chosen appropriately. As implied in Egs. (15a)
and (15b), use of polymers with large M.W. makes y decrease and An
increase according to their own dependencies on respective field param-
eters. Therefore, to successfully perform the EHD experiment at strong
fields, molecular size and shape must be considered together with the
field conditions. Close observation of Fig. 4 tells us rigid polymers of
large M.W. in strong electric fields can be studied discriminently by the
measurement of the birefringence An.

It can be said, from the preceding results and discussions, that prob-
lems with strong combined fields have their own characteristics in elec-
trohydrodynamics. It is also conceived that a spheroid of revolution
adopted in this article is a good model, moderately approximating a
number of rigid macromolecules. Of course, analyses of the experimen-
tal data and the way to apply the theory can be altered to some extent
according to the purpose of research and the choice of the sample
solution.
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fields are as Follows:

1 2 3 4 5 6
Shear rate G(s ) 100 400 400 50 400 400
Electric field E,(kV/cm) 2 0 2 8 8 35

and other data except G and E, were taken from Table 1.
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CONCLUSION

When simultaneous shear and electric fields are applied to a dilute
solution in which rigid macromolecules are soluble in a Newtonian
solvent, its steady state optical behavior may be described uniquely.
Macromolecules were modeled as rigid spheroids of arbitrary aspect
ratio and both permanent and induced dipole moments were included.
To solve the problem with arbitrary strength of fields, we have utilized
the Galerkin method with spherical harmonics as basis functions and a
specially designed numerical scheme to reduce the computation time
significantly.

For more systematic interpretation, full ranges of the applied field
strengths were divided into three regions according to their relative field
strengths. Effect of the dimensionless shear rate a on the optical state
was always related directly to the shape of molecules, that is, R. Over a
wide range of the applied field strength, the extinction angle y is influ-
enced by the molecular shape. In particular, with increasing a, R had an
opposite contribution to y about the intersection in region 2 (the inter-
mediate region). Birefringence An was little influenced by R until the
shear flow became quite strong. As a goes to infinity, however, An
depended significantly on R. When R was small, An even decreased and
converged to a remarkably small limiting value. Respective effects of the
permanent and induced dipoles on the optical state were not greatly
distinguished for most field conditions which were explored. Merely
beyond the considerable strength of shear flow, each dipole revealed its
own characteristic combined with the geometric effect by R. Represen-
tative results for various coupled fields were also presented, including
the saturation behaviors seen near extreme conditions. Most of the fea-
tures seen at extremely strong shear fields were governed and charac-
terized by severe RBM effect. Additionally it was shown, taking PBLG
solutions with various M.W. as a concrete example, how theoretical
results in this article are applicable to an analysis of a real system.
(Present results would also be applicable to the needlelike cluster
model, ferromagnetic fluids, transient problems, etc., without many dif-
ficulties. )
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