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Abstract We address the problem of load shedding for continuous multi-way join
queries over multiple data streams. When the arrival rates of tuples from data
streams exceed the system capacity, a load shedding algorithm drops some subset
of input tuples to avoid system overloads. To decide which tuples to drop among the
input tuples, most existing load shedding algorithms determine the priority of each
input tuple based on the frequency or some historical statistics of its join attribute
value, and then drop tuples with the lowest priority. However, those value-based
algorithms cannot determine the priorities of tuples properly in environments where
join attribute values are unique and each join attribute value occurs at most once in
each data stream. In this paper, we propose a load shedding algorithm specifically
designed for such environments. The proposed load shedding algorithm determines
the priority of each tuple based on the order of streams in which its join attribute value
appears, rather than its join attribute value itself. Consequently, the priorities of
tuples can be determined effectively in environments where join attribute values are
unique and do not repeat. The experimental results show that the proposed algorithm
outperforms the existing algorithms in such environments in terms of effectiveness
and efficiency.
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1 Introduction

Recently, there has been a growing interest in the processing of continuous queries
over multiple data streams. In multiple data stream applications, tuples from each
data stream continuously arrive at the system and queries posed to the system are
continuously evaluated against the incoming tuples. Example of such applications
include network traffic monitoring (Das et al. 2003; Cranor et al. 2003), sensor-based
environmental monitoring (Yu et al. 2006; Gehrke and Madden 2004; Golab and
Ozsu 2003), and moving object tracking (Hammad et al. 2003).

In reality, data streams are often bursty and the arrival rates of tuples from data
streams are quite unpredictable (Das et al. 2003; Dobra et al. 2002; Gedik et al. 2007;
Bai et al. 2007; Law and Zaniolo 2007). Since most data stream applications require
real-time or near real-time response, it is important for the system to properly handle
even very high tuple arrival rates. If the arrival rates of tuples from data streams
exceed the system capacity, the system becomes overloaded and will not be able to
process all the queries posed to it. To address this problem, various load shedding
techniques have been proposed in the literature (Gedik et al. 2007; Bai et al. 2007;
Law and Zaniolo 2007). The main idea of load shedding is to keep up with high tuple
arrival rates by dropping some subset of input tuples, while maximizing the output
rate of the queries (Bai et al. 2007; Law and Zaniolo 2007).

In this paper, we address the problem of load shedding for multi-way stream join
queries. Multi-way join queries are widely used in multiple data stream applications
to identify objects or entities that appear in all the data streams. The following are
typical examples of multi-way stream join queries.

Example 1 (Finding news articles posted on multiple news sites) Consider five news
sites (e.g., CNN.com), each of which feeds a data stream in which each tuple contains
information about a news article posted on the site. Assume that a single news article
can be posted on multiple news sites. Each article is identified by three attributes:
Author, Title, and Date. To find news articles that are posted on all the five sites, we
can run a 5-way join query over the five data streams on Author, Title, and Date.

Example 2 (Monitoring network traf f ic passing through multiple routers) Consider
four network routers, R1, R2, R3, and R4, located sequentially along a network
path. Assume that each router feeds a data stream in which each tuple contains
information about a packet passing through the router. Each packet is identified by
its packet identifier (pid). To monitor packets passing through all the four routers,
we can run a 4-way join query over the four data streams on pid.

Example 3 (Analyzing user access patterns on a Web site) Consider n Web pages in a
Web site, which are linked together by hyperlinks. A user can travel from one Web
page to another via hyperlinks to find the desired information. To analyze user access
patterns, a data stream is generated for each Web page, in which each tuple contains
information about an access to the Web page (e.g., session ID, IP address, timestamp,

http://CNN.com


J Intell Inf Syst (2011) 37:245–265 247

etc.) Each user is identified by a unique session ID (sessionI D). To count the number
of users visiting all the n Web pages, we can run an n-way join query over the n data
streams on sessionI D.

Example 4 (Assessing traf f ic f lows on a road network) Consider n points on a road
network, at each of which an automatic number plate recognition (ANPR) system is
deployed. Assume that each ANPR system feeds a data stream in which each tuple
contains information about a vehicle passing the point. Each vehicle is identified by
its plate number (plateNo). To determine the number of vehicles passing all the n
points in a day, we can run an n-way join query over the n data streams on plateNo.

Because data streams are unbounded and potentially infinite, a windowed join
query joins a tuple from one data stream with only the tuples in the windows of the
other data streams. A window can be time-based (e.g., the tuples that have arrived
within the last 10 minutes) or count-based (e.g., the 100 most recently arrived tuples)
(Golab and Ozsu 2003; Viglas et al. 2003).

In this paper, we propose an effective load shedding algorithm for multi-way
windowed stream join queries. If the memory allocated to the window of a data
stream is full and a new tuple arrives at the window of the data stream, a load
shedding algorithm decides which tuple(s) to drop among those in the window. To
make such a decision, a load shedding algorithm determines the priority of each
tuple in the window based on some measure, and then drops tuple(s) with the lowest
priority. For a join query, a load shedding algorithm determines the priority of each
tuple based on its productivity (i.e., the number of output tuples that will be produced
by the tuple) to maximize the output rate of the query.

1.1 Motivation

To determine the priority of a tuple for a join query, most existing load shedding
algorithms are based on some statistics of its join attribute value. More specifically,
most existing load shedding algorithms can be classified into two categories: (1)
Frequency-based algorithms (Law and Zaniolo 2007): The priority of a tuple t is
determined in proportion to the number of tuples in windows with the same join
attribute value as that of t, and (2) Output-based algorithms (Srivastava and Widom
2004): The priority of a tuple t is determined in proportion to the number of output
tuples that have been produced by tuples with the same join attribute value as that
of t.

However, there are many applications where those value-based algorithms cannot
determine the priorities of tuples properly. Very often, data streams are joined on
key attributes that serve as a unique identifier for an object or entity (e.g., Author,
Title, and Date in Example 1, pid in Example 2, sessionI D in Example 3, and
plateNo in Example 4). In many such cases, the values of key attributes are unique
and each value occurs at most once in each data stream. For example, the combined
values of the attributes Author, Title, and Date are unique and can occur at most
once in each data stream in Example 1, and the values of the attribute pid do
not repeat in Example 2. Also, in Example 3 and 4, the values of the attributes
sessionI D and plateNo do not (or rarely) repeat. If join attribute values are unique
and each join attribute value occurs at most once in each data stream, the value-
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based algorithms (i.e., the frequency-based algorithms and output-based algorithms)
cannot determine the priorities of tuples properly because they are based on the
statistics of each join attribute value. However, as far as we know, there is no
load shedding algorithms specially designed for environments where join attribute
values are unique and each join attribute value occurs at most once in each data
stream.

In this paper, we propose a load shedding algorithm for multi-way stream joins
in environments where join attribute values are unique and each join attribute value
occurs at most once in each data stream. Unlike the existing value-based algorithms,
the proposed algorithm determines the priority of a tuple based on the order of
streams in which its join attribute value appears, rather than its join attribute value
itself. In many applications, join attribute values that appear in all the data streams,
i.e., join attribute values that produce output tuples, show some common patterns in
the order of streams in which they appear. For instance, in Example 1, news articles
that first appear on a more prominent site (e.g., CNN.com) are more likely to appear
on all the sites than those that first appear on a less prominent one (e.g., a regional
news site). In other words, news articles that appear in all the sites have a tendency
to appear in from more prominent sites. Also, in Example 2, packets that first appear
in R1 or R4 have a higher probability of appearing in all the routers than those that
first appear in R2 or R3. This is because R1, R2, R3, and R4 are located sequentially
along a network path so that most packets appearing in all the routers appear in
those routers in the order of R1 → R2 → R3 → R4 or R4 → R3 → R2 → R1.
As for Example 3, there are usually frequent sequential patterns in traversing Web
pages, as studied in previous research (Chen et al. 1998; Nanopoulos et al. 2003). As a
result, users visiting all the n Web pages usually show some common patterns in their
visiting order. Similarly, in Example 4, vehicles passing all the n points usually exhibit
some common patterns in the order of points they pass, mainly due to the structure
of the underlying road network. In all of these cases, the priority of a tuple can be
measured more effectively by using the order of streams in which its join attribute
value appears, rather than its join attribute value itself.

Based on the above observations, we propose a load shedding algorithm that
determines the priority of a tuple based on the order of streams in which its join
attribute value appears. Consequently, the proposed load shedding algorithm has the
following advantages: (1) In many real world applications where join attribute values
are unique and never (or rarely) repeat, the proposed algorithm can determine the
priorities of tuples more effectively than the value-based algorithms. (2) Because
the proposed algorithm is based on the order of streams rather than actual join
attribute values, it can make load shedding decisions very fast compared with the
value-based algorithms, whose complexity depends on the size of the domain of join
attribute values. A fast decision is very important for load shedding because a load
shedding algorithm should handle very high data arrival rates. As will be described
in Section 3, the computation for making load shedding decisions in the proposed
algorithm involves only a few operations on a small-sized bit vector table.

To demonstrate the effectiveness and efficiency of the proposed algorithm, we
have conducted extensive experiments with various parameters. The experimental
results show that the proposed algorithm is very efficient in terms of the number of
output tuples and processing time.

http://CNN.com
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1.2 Paper outline

The paper is organized as follows: Section 2 describes the multi-way join processing
model used in the paper and presents related work. Section 3 describes the proposed
load shedding algorithm that is based on the order of streams in which join attribute
values appear, and illustrates it with examples. Section 4 analyzes the space and time
overhead of the proposed algorithm. Section 5 presents experimental evaluation of
the proposed algorithm and Section 6 concludes the paper.

2 Preliminaries

2.1 System model

Figure 1 shows the multi-way join processing model used in the paper. Let S1, S2, . . .,
Sn be n input streams. Let Q be an n-way join query over S1, S2, . . ., Sn, i.e., Q = S1 ��

S2 �� . . . �� Sn. For simplicity and without loss of generality, we assume that S1, S2, . . .,
Sn are joined only on a single join attribute J. To process Q, a window Wi is defined
for each input stream Si (1 ≤ i ≤ n). Each Wi contains tuples from Si that satisfy the
window condition (e.g., the tuples that have arrived within the last 10 minutes), and
is allocated a fixed amount of memory. When a new tuple ti from Si arrives at Wi, all
expired tuples are removed from W1, W2, . . ., Wn and ti is inserted into Wi. Then, a
join operation W1 �� . . . �� Wi−1 �� ti �� Wi+1 �� . . . �� Wn is performed to produce
output tuples and the result is fed to the output stream.

When a new tuple ti from Si arrives at Wi, if the memory allocated to Wi is full
and Wi has no expired tuples, we cannot keep the entire tuples of Wi for providing
the exact join result. In this case, a load shedding algorithm makes a decision which
tuple(s) to drop and which to retain among tuples in Wi. To make such a decision,
the algorithm determines the priority of each tuple in Wi based on some measure,
and then drops the tuple(s) with the lowest priority. For a join query, the goal of a
load shedding algorithm is to maximize the output rate of the query. Thus, a load

Fig. 1 n-way windowed join processing model



250 J Intell Inf Syst (2011) 37:245–265

shedding algorithm determines the priority of each tuple based on its productivity,
i.e., the number of output tuples that will be produced by the tuple.

2.2 Related work

As described in Section 1, most existing load shedding algorithms can be classified
into frequency-based algorithms and output-based algorithms. In Das et al. (2003), a
load shedding decision is made in such a way as to keep the tuples with most frequent
join attribute values or to keep the tuples the frequency of whose join attribute values
multiplied by their remaining lifetime is highest. In Srivastava and Widom (2004), a
solution was given to optimize the memory allocation between the windows of input
streams based on the cumulative number of output tuples produced by tuples in each
window. Both of them, however, focused on load shedding problem in binary stream
joins.

For multi-way joins over multiple data streams, there has been relatively little
work on finding load shedding policies. Recently, Gedik et al. (2007) have proposed
a time correlation-aware CPU load shedding for multi-way stream joins. They divide
each window into a number of segments and exploits time correlations among
tuples in interrelated streams to prioritize the segments of the windows. Then, only
segments with high priority are joined under CPU overloaded condition. Law and
Zaniolo (2007) have proposed a frequency-based load shedding algorithm for multi-
way joins under memory limited condition. They estimate the productivity of a tuple
based on the frequency distribution of join attribute values. Because their algorithm
is based on the actual distribution of join attribute values in windows, they also use a
sketch technique (Law and Zaniolo 2007; Dobra et al. 2002) to minimize processing
costs. Although the goal of Law and Zaniolo (2007) is similar to that of our work
in that both consider memory limited condition in multi-way stream join processing,
it differs from our approach in that the proposed load shedding algorithm exploits
the order of streams in which join attribute values appear, rather than the frequency
distribution of join attribute values, to determine the priorities of tuples.

Another closely related issue is the algorithm for processing multi-way stream
joins. Recently, there have been many studies on algorithms for processing multi-
way stream joins. When a multi-way stream join is evaluated by a tree of binary
pipelined join operators, Golab and Ozsu (2003) have proposed join order heuristics
to minimize the processing cost per unit time. Viglas et al. (2003) have proposed a
single multi-way join operator called MJoin to maximize the output rate of multi-way
stream joins, which generalizes the binary symmetric hash join operator to work for
more than two inputs. In our previous work (Kwon et al. 2009), we have proposed
a new multi-way join operator called AMJoin to improve the performance of MJoin
by detecting join failtures efficiently. As described in Section 2.1, whenever a new
tuple ti from Si arrives at Wi, a join operation W1 �� . . . �� Wi−1 �� ti �� Wi+1 �� . . . ��

Wn is performed to produce output tuples. If there is any W j ( j �= i) that does not
contain a tuple with the same join attribute value as that of ti, the join operation
will produce no output tuples, i.e., join failure. To avoid unnecessary probes into W j

( j �= i) in cases of join failures, AMJoin maintains an in-memory table called BiHT
(Bit-vector Hash Table), in which each entry has the form (v, w), where v is a hash
value and w is an n-bit vector. If a tuple whose join attribute value is hashed to v is
currently in Wi (1 ≤ i ≤ n), the ith bit of w is set to 1, otherwise 0. Then, by simply
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checking the corresponding entry in BiHT when a new tuple arrives at a window, we
can detect a join failure immediately without probing the other windows. As a result,
the performance of a multi-way stream join can be significantly improved.

In this paper, we adopt the framework of AMJoin. Let h be a given hash function.
When a new tuple ti from Si arrives at Wi (1 ≤ i ≤ n), the join attribute value of
ti, denoted by ti.J, is hashed to a hash value v using the hash function h, i.e., v =
h(ti.J). Let (v,w) be the entry in BiHT that corresponds to the hash value v. After ti
is inserted into Wi, the ith bit of w is set to 1. Then, only when all bits of w is 1, W1 ��

. . . �� Wi−1 �� ti �� Wi+1 �� . . . �� Wn is performed. Otherwise, the join operation is
not performed.

3 Load shedding algorithm based on arrival order patterns

In this section, we describe the proposed load shedding algorithm based on a new
measure of the priorities of tuples.

3.1 Priorities of tuples

Unlike the existing value-based algorithms, which determine the priority of a tuple
based on the frequency or some historical statistics of its join attribute value, the
proposed load shedding algorithm determines the priority of a tuple based on the
order of streams in which its join attribute value appears in a given time window.

When a new tuple ti arrives at a window Wi (1 ≤ i ≤ n), we associate ti with an
n-bit vector, called an existence pattern, which is defined as follows:

Definition 1 (Existence pattern) Let ti be a tuple that arrives at Wi at time T. Let
h be a given hash function. The existence pattern of ti, denoted by ep(ti), is an n-bit
vector, where the j-th bit (1 ≤ j ≤ n) is 1 if there exists a tuple t j in W j at time T such
that h(ti.J) = h(t j.J) and 0 otherwise.

In other words, ep(ti) indicates windows in which a tuple with the same hashed
join attribute value as that of ti appears when ti arrives at Wi. Note that, for tuples ti
arriving at Wi, the ith bit of ep(ti) is always 1. Figure 2 shows examples of existence
patterns for a 3-way stream join, where a tuple in a window is represented by its
hashed join attribute value. In Fig. 2a, when a new tuple t1 with hashed join attribute
value 5 (i.e., h(t1.J) = 5) arrives at W1, a tuple with the same hashed join attribute
value as that of t1 does not appear in either W2 or W3. Thus, ep(t1) = ‘100’. In Fig. 2b,
when a new tuple t3 with hashed join attribute value 4 (i.e., h(t3.J) = 4) arrives at W3,
a tuple with the same hashed join attribute value as that of t3 appears in W1. Thus,
ep(t3) = ‘101’.

For tuples arriving at a window Wi (1 ≤ i ≤ n), there are 2n−1 possible existence
patterns. For example, in Fig. 2, for tuples arriving at W1, there are 23−1 = 4 possible
existence patterns, i.e., ‘100’, ‘101’, ‘110’, and ‘111’. Similarly, for tuples arriving at
W2, possible existence patters are ‘010’, ‘011’, ‘110’, and ‘111’, and for tuples arriving
at W3, possible existence patters are ‘001’, ‘011’, ‘101’, and ‘111’.

Whenever a new tuple ti arrives at a window Wi, we associate ti with its existence
pattern ep(ti). Then, for each window Wi (1 ≤ i ≤ n), we maintain an existence pattern
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(a) When a new tuple t1 arrives at W1 (b) When a new tuple t3 arrives at W3

Fig. 2 Examples of existence patterns

table to keep track of tuples with the same existence pattern. An existence pattern
table is defined as follows:

Definition 2 (Existence pattern table) An existence pattern table for a window Wi (1 ≤
i ≤ n), denoted by EPTi, is a table consisting of 2n−1 entries, one for each possible
existence pattern for tuples arriving at Wi. Each entry in EPTi has the form (e, li(e),
ri(e), ni(e)), where e is an existence pattern, li(e) is a list of pointers to tuples in Wi

whose existence pattern is e, ri(e) is the cumulative number of output tuples produced
by tuples in Wi whose existence pattern is e, and ni(e) is the cumulative number of
tuples in Wi whose existence pattern is e.

Figure 3 shows examples of existence pattern tables for W1, W2, and W3 in Fig. 2.
Note that an existence pattern table EPTi is maintained for each window Wi. Now
we define the priority of a tuple as follows:

Definition 3 (The priority of a tuple) Let t be a tuple in a window Wi (1 ≤ i ≤ n).
The priority of t, denoted as π(t), is defined as

π(t) =
{

0 if all bits of ep(t) are 1
ri(ep(t))/ni(ep(t)) otherwise.

e l1(e) r1(e) n1(e)

100 t11, … 8 10

EPT1

e l2(e) r2(e) n2(e)

010 t21, … 12 30

EPT2

e l3(e) r3(e) n3(e)

001 t31, … 8 10

EPT3

101 t12, … 6 10

110 t13, … 8 20

111 t14, … 10 10

011 t22, … 8 10

110 t23, … 2 20

111 t24, … 7 7

011 t32, … 4 10

101 t33, … 1 10

111 t34, … 5 5

Fig. 3 Example of existence pattern tables
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In other words, for a window Wi, we define the priority of a tuple t as the average
number of output tuples produced by a tuple with the same existence pattern as that
of t. For example, in Fig. 3, the priority of t22 in W2 whose existence pattern is ‘011’ is
computed as π(t22) = r2(‘011′)/n2(‘011′) = 0.8. Note that we assign the lowest priority
(0) to tuples with the existence pattern of which all bits are 1. This is because they
have already participated in join operations to produce output tuples and, when join
attribute values are unique and do not repeat, those tuples that have produced output
tuples will not produce any more output tuples.

Because we determine the priority of a tuple based on its existence pattern, rather
than its actual join attribute value, we can make better load shedding decisions in
environments where join attribute values are unique and do not repeat. In the next
section, we describe our load shedding algorithm based on the proposed measure of
the priorities of tuples.

3.2 Load shedding algorithm

Our load shedding algorithm is built upon the framework of AMJoin, as mentioned
in Section 2.1. We assume that BiHT and EPTi (1 ≤ i ≤ n) are maintained in
memory and a hash function h is given. Whenever a new tuple ti from Si arrives at
Wi, the following three procedures are consecutively triggered to perform the n-way
stream join:

1. Hash: The join attribute value of ti is hashed to a hash value v using the hash
function h, i.e., v = h(ti.J).

2. Insertion:

(a) If the memory allocated to Wi is full and Wi has no expired tuples, li(ε)

is checked whether it is empty, where ε is the existence pattern of which
all bits are 1. If li(ε) is not empty, the oldest tuple among those in li(ε) is
dropped from Wi. Otherwise, if li(ε) is empty, the oldest tuple among those
in li(e) is dropped from Wi, where e is the existence pattern with the lowest
ri(e)/ni(e) and li(e) not empty. Then, ti is inserted into Wi.

(b) Otherwise, if the memory allocated to Wi is not full, ti is simply inserted
into Wi.

(c) Let (v, w) be the entry in BiHT that corresponds to the hash value v. The
ith bit of w is set to 1 and w becomes the existence pattern of ti, i.e., ep(ti) =
w. Then, a pointer to ti is inserted into li(ep(ti)) and ni(ep(ti)) is increased
by one.

3. Join: If all bits of w are 1, a join operation W1 �� . . . �� Wi−1 �� ti �� Wi+1 �� . . . ��

Wn is performed and the result is fed to the output stream. Otherwise, the join
operation is not performed. If the above join operation produces any output
tuple, for each input tuple t j in W j (1 ≤ j ≤ n) that contributes to the output
tuple, r j(ep(t j)) in EPT j is increased by one.

Note that, in the procedure Insertion (a), we drop the oldest tuple among those in
li(e) (or li(ε)) from Wi. Because all tuples in li(e) (or li(ε)) have the same priority, we
drop the oldest tuple among them for load shedding.
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3.3 Example

In this section, we present examples of the proposed load shedding algorithm.
Consider a network with six routers R1, R2, . . ., R6 as shown in Fig. 4a. Each router
Ri (1 ≤ i ≤ 6) feeds a data stream Si in which each tuple contains information about
a packet passing through the router. Each tuple has the identifier of the packet (pid).
Suppose that, in order to count packets passing through all of R1, R2, and R3, we are
running a 3-way join query over S1, S2, and S3 on pid.

Suppose that Fig. 4b shows the current windows of S1, S2 and S3, denoted by W1,
W2, and W3, respectively. In Fig. 4b, ti(v) represents a tuple ti whose join attribute
value is v. In our example, because R1, R2, and R3 are located sequentially in the
network, most join attribute values (i.e., pid values) that appear in all of W1, W2, and
W3 appear in them in the order of W1 → W2 → W3 or W3 → W2 → W1. Assume
that the maximum number of tuples in the memory allocated to each window is 4.
Assume also that the join attribute values appearing in W1, W2, and W3 in Fig. 4b
have never occurred before. For simplicity of presentation, we assume that h(x) = x.

Case 1 If a new tuple from S1 arrives at W1 and W1 has no expired tuples, the
proposed load shedding algorithm drops t4 from W1. Note that ep(t1) = ‘100’ (which
means that the join attribute value of t1 (i.e., 1) first appeared in W1 before appearing
in other windows), ep(t2) = ‘100’ (which means that the join attribute value of t2
(i.e., 2) first appeared in W1 before appearing in other windows), ep(t3) = ‘110’
(which means that the join attribute value of t3 (i.e., 4) appeared in W1 after first
appearing in W2), and ep(t4) = ‘111’ (which means that the join attribute value of t4
(i.e., 5) appeared in all windows when t4 arrived at W1). Because ep(t4) = ‘111’, t4
has already participated in a join operation to produce an output tuple and will not
produce any more output tuples. Thus, the proposed algorithm assigns t4 the lowest
priority and drops t4 from W1. On the other hand, the frequency-based and output-
based algorithms assign t4 the highest priority among those in W1, because 5 is the
most frequent join attribute value in windows and 5 is the only join attribute value

W W WW
1

W
2

W
3

R
1

R
4

R
2

Arrival

time

t
1
(1)

t
2
(2)

t
3
(4)

t
5
(4)

t
6
(1)

t
7
(5)

t
9
(3)

t
10

(5)

t
11

(6)

R
5

R
3

R
6

S
1 S

2
S
3

t
4
(5) t

8
(2) t

12
(7)

(a) Example network (b) Current windows of S
1
, S
2

and S
3

Fig. 4 Example of the proposed load shedding algorithm



J Intell Inf Syst (2011) 37:245–265 255

that has produced any output tuple among those in W1, which is obviously wrong.
The frequency-based and output-based algorithms treat t1, t2, and t3 in W1 with the
same priority because their join attribute values (i.e., 1, 2, and 4, respectively) have
the same frequency in windows and none of them have produced output tuples, and
drop one of t1, t2, and t3 from W1. However, the proposed algorithm distinguishes
them by assigning t3 a lower priority than t1 and t2. Because the join attribute value
of t3 (i.e., 4) appeared in windows in the order of W2 → W1 (i.e., ep(t3) = ‘110’), it is
more unlikely to appear in all of W1, W2, and W3 than those of t1 and t2 (i.e., 1 and
2, respectively), which first appeared in W1 before appearing in other windows (i.e.,
ep(t1) = ep(t2) = ‘100’). Thus, the proposed algorithm assigns t3 a lower priority than
t1 and t2.

Case 2 If a new tuple from S2 arrives at W2 and W2 has no expired tuples, the
proposed load shedding algorithm drops t5 from W2. Note that ep(t5) = ‘010’ (which
means that the join attribute value of t5 (i.e., 4) first appeared in W2 before appearing
in other windows), ep(t6) = ‘110’ (which means that the join attribute value of t6 (i.e.,
1) appeared in W2 after first appearing in W1), ep(t7) = ‘011’ (which means that the
join attribute value of t7 (i.e., 5) appeared in W2 after first appearing in W3), and
ep(t8) = ‘110’ (which means that the join attribute value of t8 (i.e., 2) appeared in
W2 after first appearing in W1). Because the join attribute value of t5 (i.e., 4) first
appeared in W2 before appearing in other windows (i.e., ep(t5) = ‘010’), it is more
unlikely to appear in all of W1, W2, and W3 than those of t6, t7, and t8 (i.e., 1, 5, and
2, respectively), which appeared in windows in the order of W1 → W2 or W3 → W2

(i.e., ep(t6) = ep(t8) = ‘110’ and ep(t7) = ‘011’). Thus, the proposed algorithm assigns
t5 the lowest priority and drops t5 from W2. On the other hand, the frequency-based
and output-based algorithms, similarly to the above case, assign t7 the highest priority
among those in W2 and drop one of t5, t6, or t8 from W2, treating them with the same
priority.

From the above two cases, we can observe that the behavior of the frequency-
based and output-based algorithms becomes similar to random selection when join
attribute values are unique and do not repeat. On the contrary, the proposed
algorithm can determine the priorities of tuples more effectively by using their arrival
order patterns.

4 Analysis of the proposed algorithm

In this section, we analyze the space and time overhead of the proposed load
shedding algorithm. First, we analyze the space overhead of the proposed algorithm.
The proposed algorithm maintains BiHT and EPTi (1 ≤ i ≤ n) in memory. Let H be
the number of possible hash values of the hash function h. For each entry (v, w) in
BiHT, we use 4 bytes for a hash value v and 2 bytes for a bit vector w. Thus, the total
size of BiHT is H · (4 + 2) = 6 · H bytes. Recall that the number of entries in each
EPTi is 2n−1. For each entry (e, li(e), ri(e), ni(e)) in EPTi, we use 2 bytes for a bit
vector e, 4 bytes for a value ri(e), and 4 bytes for a value ni(e). li(e) contains pointers
to tuples in Wi whose existence pattern is e. Let M be the maximum number of tuples
in the memory allocated to Wi. If we use 2 bytes for a pointer to a tuple in Wi, the
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total size of all pointers in EPTi is 2 · M bytes at most. Thus, the total size of EPTi

is (2n−1 · (2 + 4 + 4) + 2 · M) bytes at most. Since there are n such existence pattern
tables, the total space overhead of the proposed algorithm is

(6 · H + n · (10 · 2n−1 + 2 · M)) bytes. (1)

We compare the space overhead of the proposed algorithm with that of the value-
based algorithms. In the value-based algorithms, we need to maintain a table Ti for
each window Wi (1 ≤ i ≤ n), in which each entry contains some statistics of a join
attribute value that has occurred in Wi. Assume that each entry in Ti (1 ≤ i ≤ n) has
the form (v, l, s), where v is a join attribute value, l is a list of pointers to tuples in
Wi whose join attribute value is v, and s is a certain statistics of v (e.g., the number
of output tuples produced by tuples with join attribute value v). Let D be the size
of the domain of join attribute values. If we use 4 bytes for v, 4 bytes for s, and 2
bytes for a pointer to a tuple in Wi, the total size of Ti is (D · (4 + 4) + 2 · M) bytes
at most. Since there are n such tables T1, T2, . . ., Tn, the total space overhead of the
value-based algorithms is approximately

n · (8 · D + 2 · M) bytes. (2)

When n = 5, H = 106, and D = 108, the space overhead of the proposed
algorithm is about (10 · M + 6 · 106) bytes, while that of the value-based algorithms
is about (10 · M + 4 · 109) bytes. Although each EPTi has 2n−1 entries, the proposed
algorithm does not require much space overhead compared to the value-based
algorithms, because n is not very large in practice (i.e., less than 10).

Now we analyze the time complexity of the proposed algorithm. Whenever a new
tuple arrives at a window, the proposed algorithm performs the three procedures
described in Section 3.2. First, the time required for performing the procedure Hash
is constant. In the procedure Insertion (a), we need to find the existence pattern e
with the lowest ri(e)/ni(e) in EPTi. To find such e efficiently, we maintain entries
in EPTi in a priority queue in increasing order of ri(e)/ni(e). With a priority queue
maintained in increasing order of ri(e)/ni(e), the time for finding e with the lowest
ri(e)/ni(e) in EPTi is constant. The time for finding the oldest tuple in li(e) is also
constant if li(e) is maintained in a FIFO queue. In the procedure Insertion (c), we
need to update BiHT and EPTi. The time for updating BiHT is constant and the
time for updating EPTi is O(log2 2n−1) = O(n) because 2n−1 entries in EPTi are
maintained in a priority queue in increasing order of ri(e)/ni(e). In the procedure
Join, a join operation is performed and then each EPTi (1 ≤ i ≤ n) is updated if there
is any output tuple produced by the join operation. We do not consider the time
for performing the join operation in this discussion. Because there are n existence
pattern tables, the time for updating n existence pattern tables is O(n · n) = O(n2).
Therefore, the overall time complexity of the proposed algorithm for processing a
tuple is O(n2). Note that the time complexity of the proposed algorithm is O(n) when
a newly arrived tuple produces no output tuple, which is mostly the case. Because n
is not very large in practice, the proposed load shedding algorithm can be very fast
compared to the value-based algorithms, whose complexity depends on D, as will be
demonstrated in Section 5.
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5 Experiments

In this section, we show various experimental results to clarify the performance of the
proposed load shedding algorithm. We measure the performance of a load shedding
algorithm in terms of the number of output tuples produced by the algorithm. We
compare the proposed algorithm, denoted by EP, with the following algorithms:

• Frequency-based: When the memory allocated to a window is full, a tuple with
the join attribute value whose frequency in windows is the lowest is dropped
from the window.

• Output-based: When the memory allocated to a window is full, a tuple with
the join attribute value that has produced the least number of output tuples is
dropped from the window.

• Random: When the memory allocated to a window is full, a randomly selected
tuple is dropped from the window.

Note that the frequency-based and output-based algorithms do not assume that
join attribute values are unique and do not repeat, while the proposed algorithm
is specially designed for environments where such assumptions hold. However, as
mentioned in Section 1, as far as we know, there is no load shedding algorithms
specially designed for such environments. For this reason, we have compared the
proposed algorithm with the two algorithms because they are the two most popular
load shedding algorithms known so far. Hence, the objective of our experiments is to
show that (1) the existing known algorithms are not very effective in environments
where join attribute values are unique and do not repeat and (2) the proposed
algorithm performs better than the existing algorithms in such environments.

In order to verify the performance of the proposed algorithm under various
conditions, we have developed a data generator that produces synthetic datasets with
varying parameters such as the number of tuples per stream, the number of input
streams, the distribution of join attribute values, the arrival rate of tuples, etc. Each
dataset consists of a set of tuples, each of which has the form (stream_id, key_value,
arrival_time, misc), where stream_id is the identifier of the input stream from which
the tuple arrives, key_value is a join attribute value, arrival_time is the arrival time of
the tuple at the window, and misc is miscellaneous information. In each experiment,
we read tuples from a dataset and send them to the system according to their
arrival_time. We then count the number of output tuples produced by the system
and measure the time taken for processing input tuples.

Table 1 shows the experimental parameters used in the experiments. Here,
Memory size represents the size of the memory allocated to each window in terms of
the number of tuples. Arrival rate per stream represents the arrival rate of tuples from
each input stream. When we generate a dataset, we generate join attribute values
first. Then, for each generated join attribute value, we randomly assign the order of
streams (i.e., windows) in which the join attribute value appears (e.g., W1 → W2 →
W3, W2 → W1, W4 → W2 → W1 → W3) using a Zipf distribution. Note that a join
attribute value does not necessarily appear in all streams. As the Zipf skew factor α

increases, more join attribute values are assigned the same order of streams in which
they appear. When α is 0.0, the Zipf distribution reduces to a uniform distribution.

We have implemented all the load shedding algorithms in Java and conducted
experiments on an Intel Core 2 Duo 2.66 GHz machine running Windows XP with 4
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Table 1 Experimental
parameters

Parameters Values

The number of 3, 4, 5, 6, 7
input streams

The number of 10,000, 20,000, 40,000, 80,000, 160,000
tuples per stream

Memory size 100, 200, 300, 400, 500 (tuples)
Arrival rate per 10.0, 12.5, 16.7, 25.0 (tuples/s)

stream
Zipf skew factor (α) 0.0, 0.5, 1.0, 1.5, 2.0
Window condition The tuples that have arrived within the

last 100 s

GB memory. In all the experiments, except the last one, we consider an environment
where join attribute values are unique and do not repeat. However, in the last
experiment, we also investigate the performance of the proposed load shedding
algorithm when the distribution of join attribute values follows a normal distribution.

5.1 Effect of memory size

In this experiment, we compare the performance of the load shedding algorithms by
varying the memory size allocated to each window. Figure 5 shows the performance
of the four algorithms for different memory sizes. The number of input streams
is 5, the number of tuples per stream is 10,000, the arrival rate per stream is 10
tuples/s, and the Zipf skew parameter is 0.0. We vary the memory size allocated
to each window from 100 to 500 in terms of the number of tuples. In Fig. 5, the
performance of all algorithms increases as the memory size increases, because less
tuples are dropped from windows as the memory size increases. However, the
proposed algorithm base on arrival order patterns (EP) significantly outperforms
the other algorithms for all memory sizes, while the other algorithms show almost
the same performance. This is because, when each join attribute value occurs at most
once in each input stream, only the proposed algorithm can intelligently determine
which tuples to drop based on their existence patterns, while the frequency-based
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and output-based algorithms treat most tuples with the same priority. As a result, the
performance of the frequency-based and output-based algorithms becomes similar to
that of the random algorithm.

5.2 Effect of skewness

In this experiment, we investigate the performance of the load shedding algorithms
by varying the Zipf skew factor α. As α increases, the distribution of existence pat-
terns becomes more skewed. Figure 6 shows the result of the experiment with varying
α. The number of input streams is 5, the number of tuples per stream is 10,000, the
memory size allocated to each window is 500 tuples, and the arrival rate per stream
is 10 tuples/s. We vary α from 0.0 to 2.0. As shown in Fig. 6, the performance of
the proposed algorithm improves as α increases. This is because, as the distribution
of existence patterns becomes more skewed, the proposed algorithm can determine
more clearly which tuples are likely to produce output tuples and which are not by
using their existence patterns. However, the distribution of existence patterns does
not affect the performance of the other algorithms so that their performance remains
almost the same in Fig. 6.

5.3 Effect of arrival rate

In this experiment, we evaluate the performance of the load shedding algorithms
by varying the arrival rate per stream. We set the arrival rate per stream to 10.0,
12.5, 16.7, and 25.0 tuples/s. The number of input streams is 5, the number of tuples
per stream is fixed to 10,000, the memory size allocated to each window is 500
tuples, and the Zipf skew factor is 0.0. Figure 7 show the number of output tuples
produced by four algorithms with varying arrival rate per stream. Also in this case,
the proposed algorithm outperforms the other algorithms for all arrival rates. Note
that the performance of the proposed algorithm improves as the arrival rate increases
to 16.7 and degrades slightly when the arrival rate is greater than 16.7. Because
only the proposed algorithm can intelligently determine which tuples to drop in an
environment where join attribute values are unique and do not repeat, the number
of output tuples produced by the proposed algorithm increases as the arrival rate

Fig. 6 Performance of the
load shedding algorithms by
varying the Zipf skew factor
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Fig. 7 Performance of the
load shedding algorithms by
varying the arrival rate per
stream
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increases to 16.7. However, when the arrival rate becomes greater than 16.7, the
arrival rate exceeds the processing rate of the algorithm, resulting in performance
degradation. On the other hand, the number of output tuples produced by the other
algorithms remains almost the same regardless of the arrival rate, because all of them
behave like a random selection for a fixed number of tuples per stream (i.e., 10,000).

5.4 Effect of the number of input streams

In order to study the effect of the number of input streams on the performance of the
load shedding algorithms, we vary the number of input streams in this experiment.
Figure 8 shows the performance of the load shedding algorithms when we vary the
number of input streams from 3 to 7. The number of tuples per stream is 10,000, the
memory size allocated to each window is 500 tuples, the arrival rate per stream is 10
tuples/s, and the Zipf skew factor is 0.0. Note that because the number of tuples per
stream is fixed to 10,000, the number of output tuples does not necessarily increase
as the number of input streams increases. In Fig. 8, we can see that the performance
advantage of the proposed algorithm over the other algorithms is not much affected
by the number of input streams. Even when the number of input streams increases,

Fig. 8 Effect of the number of
input streams

40

45

50

55

,0
00

)

20

25

30

35

40

ut
 tu

pl
es

 (
un

it
 1

EP
Frequency
Output
Random

0

5

10

15

# 
of

 o
ut

pu

3-way 4-way 5-way 6-way 7-way

Number of Input Streams



J Intell Inf Syst (2011) 37:245–265 261

the proposed algorithm can effectively determine which tuples to drop by using their
existence patterns.

5.5 Processing speed

As mentioned in Section 1, the processing speed of load shedding algorithms is very
important because load shedding algorithms should handle very high tuple arrival
rates. In this experiment, we measure the processing time (for making load shedding
decisions and updating the data structures) spent by each load shedding algorithm.
We omit the random algorithm from this experiment as it does not perform any
significant operations for load shedding.

Figure 9a shows the average processing time per input tuple for the algorithms as
the memory size increases. The number of input streams is 5, the number of tuples
per stream is 80,000, the arrival rate per stream is 10 tuples/s, and the Zipf skew
parameter is 0.0. We vary the memory size allocated to each window from 100 to
500 tuples. As shown in Fig. 9a, the proposed algorithm takes much less time to
process each input tuple, while the frequency-based and output-based algorithms
show similar processing time. Because the number of entries in EPTi is very small
(only 16 when the number of input streams is 5), the proposed algorithm can be
very fast to make load shedding decisions and update EPTi. On the other hand,
the processing time of the frequency-based and output-based algorithms depends
on the size of the domain of join attribute values. More specifically, as described
in Section 4, the number of entries in Ti used in the frequency-based and output-
based algorithms is proportional to the size of the domain of join attribute values D,
which affects the table lookup and update cost. Thus, the proposed algorithm does
not require much time overhead compared with the value-based algorithms.

Figure 9b shows the average processing time per input tuple for the algorithms as
the number of input streams increases. The number of tuples per stream is 80,000,
the memory size allocated to each window is 500 tuples, the arrival rate per stream
is 10 tuples/s, and the Zipf skew factor is 0.0. We vary the number of input streams
from 3 to 7. As analyzed in Section 4, the processing time of the proposed algorithm
increases as the number of input streams increases, mainly because the number of
entries in EPTi increases. On the other hand, the processing time of the other
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algorithms is not much affected by the number of input streams. However, even when
the number of input streams is 7, the proposed algorithm takes much less processing
time than the other algorithms. Note that the number of input streams is not very
large in practice (i.e., less than 10).

5.6 Normal distribution

Until now we consider an environment where join attribute values are unique and
each join attribute value occurs at most once in each input stream. In this experiment,
we examine the performance of the load shedding algorithms when the distribution
of join attribute values follows a normal distribution. Figure 10 show the number
of output tuples produced by the algorithms when the distribution of join attribute
values follows a normal distribution with mean 100. In Fig. 10, we vary the variance
of the normal distribution from 15 to 35. The number of input streams is 5, the
number of tuples per stream is 10,000, the memory size allocated to each window
is 500 tuples, the arrival rate per stream is 10.0 tuples/s, and the Zipf skew factor
is 0.0. As expected, the performance of the proposed algorithm is worse than that
of the frequency-based and output-based algorithms when the distribution of join
attribute values follows a normal distribution. As the variance becomes smaller,
the performance of the frequency-based and output-based algorithms gets better
than that of the proposed algorithm. This is because, as the variance becomes
smaller, more join attribute values are concentrated around the mean so that the
frequency-based and output-based algorithms keep in windows tuples with join
attribute values that are near the mean, which produce more output tuples. However,
as the variance becomes larger, the performance of the frequency-based and output-
based algorithms degrades because join attribute values are more spread out from
the mean. Note that the performance of the value-based algorithms and the proposed
algorithm becomes similar as the variance increases.

Finally, note also that the proposed algorithm assumes an environment where
each join attribute value is unique, while the value-based algorithms do not. As
expected, the proposed algorithm does not perform better than the value-based
algorithms in this experiment because join attribute values are not unique. Because

Fig. 10 Performance of the
load shedding algorithms when
the distribution of join
attribute values follows a
normal distribution
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Fig. 11 Performance of the
load shedding algorithms on
real data
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the proposed algorithm and the value-based algorithms are targeting on different
environments, we should choose an appropriate load shedding algorithm depending
on the environment.

5.7 Real data

Finally, we evaluate the performance of the load shedding algorithms on real data.
For real data, we use a real Web server trace, called the ClarkNet-HTTP, available
from the site http://ita.ee.lbl.gov/html/traces.html. Each line in the trace contains
information about an HTTP request to a Web page, which has the form (host,
timestamp, request, HTT P reply code, bytes in the reply), where host is the host
(i.e., hostname or IP address) making the request. We select four Web pages, namely,
f actinf o, main, search, and signup, and generate a data stream for each Web page,
in which each tuple contains information a request to the Web page. We then run
a 4-way join query over the four data streams on host to count the number of hosts
visiting all the four Web pages. In this real data, hosts visiting all the four Web pages
are found to have a tendency to visit signup first.

Figure 11 shows the performance of the algorithms on the real data by varying
the memory size allocated to each window. We vary the memory size allocated to
each window from 150 to 350 in terms of the number of tuples. As in the case of
the synthetic data, the proposed algorithm outperforms the other algorithms for all
memory sizes. Because the proposed algorithm performs load shedding intelligently
based on the order of Web pages hosts visit, the proposed algorithm can achieve
better performance than all the other algorithms. On the other hand, the other
algorithms show similar performance.

6 Conclusions

We have presented a load shedding algorithm for multi-way stream joins based on
arrival order patterns, when join attribute values are unique and each join attribute
value occurs at most once in each data stream. In order to determine which tuples

http://ita.ee.lbl.gov/html/traces.html


264 J Intell Inf Syst (2011) 37:245–265

to drop, the proposed algorithm exploits the order of streams in which their join
attribute values appear. To do this, we associate each tuple with its existence pattern,
which indicates windows in which its join attribute value appears when it arrives
at a window, The proposed algorithm then keeps track of the productivity of each
existence pattern, i.e., the average number of output tuples produced by tuples with
that existence pattern. When the memory allocated to a window is full, the proposed
algorithm drops from the window a tuple with the least productive existence pattern.
As a result, the proposed load shedding algorithm has the following advantages:
(1) The proposed algorithm can determine the priorities of tuples more effectively
than the value-based algorithms in environments where join attribute values are
unique and do not repeat. (2) The proposed algorithm can make load shedding
decisions very fast and incurs a small overhead compared with the value-based
algorithms. Through experiments with various parameters, we have demonstrated
the performance and efficiency of the proposed algorithm.
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