Developing A Document-based Workflow Modeling Support System:
A Case-based Reasoning Approach

Jaeho Kim*, Woojong Suh**, Heeseok Lee*

*Graduate School of Management, KAIST, jhkim@kgsm.kaist.ac.kr, arizona@unitel.co.kr

**POSCO Research Institute, wisuh@mail.posri.re.kr

ABSTRACT

A workflow model is useful for business process
analysis and has often been implemented for office
autornation through information technology.
Accordingly, the results of workflow modeling need to
be systematically managed as information assets. In
order to manage the modeling process effectively, it is
necessary to enhance the effictency of their reuse.
Therefore, this paper creates a Document-based
Workflow Modeling Support System (DWMSS) using a
case-based reasoning (CBR) approach. It proposes a
system architecture, and the corresponding modeling
process is developed. Furthermore, a repository, which
consists of a case base and vocabulary base, is built. A
case study is illustrated to demonstrate the usefulness of

this system.

1. INTRODUCTION

Workflow technology has gained its popularity due
to the increased interest in business process
reengineering and improvement of related technologies
such as inter-networking and object-oriented technology
[Jablonski and Bussler, 1996]. Many works agree that
workflow models are useful for business process
analysis and the origin of workflow technology is in
office automation [Bracchi and Pernici, 1984; Ellis and
Nutt, 1980]. Workflow technologies have been expected
to facilitate enterprises’ requests for competition by
reducing the cost of doing business and by rapidly
developing new services and products [Hales et al,
1997]. The technologies have been used as a practical
means for achieving such requests primarily in the
industrial sector rather than in the research domain.

Workflow modeling is a design activity, which
belongs to an experience-rich domain. This means that
it is learned by experience, like data modeling and

object modeling. While experts in workflow modeling

have been trying to develop a conceptual framework for
workflow modeling for many years, the practice of
workflow modeling is still somewhat ad hoc.

Case-Based Reasoning(CBR) systems [Kolodner,
1993; Korczak, 1989; Riesbeck and Schank, 1989] is an
artificial intelligence technology that solves problems
by using knowledge gained from solving similar
problems in the past. Major activities of such systems
include retrieving and selecting similar previous cases,
adapting them to solve new problems. Therefore, it is a
very useful tool for domains where expertise and
experience are valuable and hard to acquire[Brown and
Gupta, 1994]. In this respect, CBR is preferred over any
other artificial intelligence approach, such as rule-based
reasoning, for design problems.

The case-based approach for information system
modeling automation has been found for data modeling
[Paek, 1996; Han, 1997] and for object modeling [Han,
1998]. However, no research has been done for
workflow modeling so far, even though it is regarded as
very useful tool. Therefore, in this paper, we suggest a
Document-based Workflow Modeling Support System
(DWMSS) using the CBR approach.

The corporate documents are produced according to
certain organizational processes [Uijlenbroek and Sol,
1997]. Furthermore, most formal business tasks are
based on, or driven by, document flows [Sprague, 1995].
Thus, documents and business processes should be
considered simultaneously for the analysis of a
corporate information system [Sprague, 1995; Frank,
1997, Morschheuser et al., 1996]. For these reasons, a
document-based workflow model can be effective in
analyzing business requirements for developing
information system. Therefore, in the next section, we
introduce a document-based workflow model {Lee and
Suh, 2001]. Section 3 describes the system architecture
and modeling process of DWMSS. In Section 4, the

- 445 -

repository for this system is described: the structure of
the case base and the case representation are in Section
4.1 and the vocabulary base is in Section 4.2,. In Section
5, we go into the details of the modeling process of
DWMSS. Section 6 concludes the paper and points out
some important issues for future research.

2. A DOCUMENT-BASED WORKFLOW

MODEL

A document-based workflow model includes key
elements of process models (based on [Armitage and
Kellner, 1994; Curtis and Over, 1992}, as shown in
Table 1. But this model does not include the more
detailed notations for task flow, such as intertask
dependencies and simultaneity constraints. First, the
intertask dependency is an important concept in
showing how work is routed among tasks. It shows how
one task performed diverges into several other tasks that
follow. It also shows how several tasks converge into
one task that follows. Second, when divergence or
convergence takes place, the simultaneity constraints in
intertask dependency show whether or not those flows
are occur simultaneously. To do this, we extended Suh’s
model by adding the notations for intertask

dependencies and simultaneity constraints.

<Table 1> Elements of Workflow Model

Model
Elements

Description

A unit consisting of a workflow
Task (operations or descriptions for human
actions with documents.)

An individual identified by hierarchi-
cal status in an organization.

A view of information set which is
determined in order to support a task.

Agent

Document

2.1 Intertask Dependency

Documents can go off on different routes and then
merge back into a single route at a “rendezvous” point.
In addition, a document can be split into multiple parts
and merged back into a single part as it moves down the
workflow river. This is done using splits and joints. In

Figure 1, six types of intertask dependencies are shown.

Activily-Resource [ntertask Dependency
Relationshi
1. Flow (a) Sequence rh) Iteration
Q) Q)
O<'.g 0 (P}o
(R] (R)
!l Shanng {c) OR-Split (d) AND-Split
- (P] ()
0 | 930 e (@)
Py) (o)
0 . _ »
Resource . Fit (e} OR-Join 1) AND-Join

<Figure 1> Intertask dependency types and grouping of
them in terms of activity- resource relationship

Furthermore, we can group six intertask
dependencies into three activity-resource (that is, task-
document) relationships [Malone et al, 1997}, as shown
Figure 1. First, Sequence and Iteration intertask
dependencies can be grouped together as a Flow
activity-resource relationship. Second, OR-Split and
AND-Split can be grouped together as a Sharing
activity-resource relationship. Finally, OR-Join and
AND-Join can be grouped together as a Fit activity-

resource relationship.

2.2 Simultaneity Constraints of Task Flow

Simultaneity constraint means that two tasks, Q and
R, originating from task P, should be performed at the
same time or that two tasks, P and Q, moving toward a
task, R, should be performed at the same time in order
for task R to be performed properly.

As we see in Figure 1, AND-Split shows that the
completion of task P enables the execution of two task,
Q and R, and OR-Join shows that the completion of two
task, P or Q, enables the execution of task R. On the
basis of simultaneity constraints, we can classify both of
these dependencies into two categories again: Con-
current flow and Non-concurrent flow.

2.3 Extended Notations

Lets examine the extended notations of a document-
based workflow model in Figure 2, where we can see
that the notations for the six types of the intertask
dependency and two types of simultaneity constraints
are added. In Figure 3. we demonstrate how a real-
world case, ‘Order Processing” workflow in the Internet
Business of K Bookstore Co. Ltd., can be modeled with
these extended notations.

- 446 -

E Start Point — —

—
End Point

p—. =<
(Concurrent flow)

te) OR-Split (d) AND-Split

o ;;y;,;';"'-' () lterasion

(None-concurrent flow)

Task Flow } >Cr-
(e} OR-Join) AND~Join
Task
[Agent|

Task

Intertask Dependency

<Figure 2> Extended notations for Model Element

Other Entities

order specticandpy

sales account

~hipment reques

“mpment
pectficanon

Shipmen Depl.
—

hiprent requesd

Accounting Dept.

<Figure 3> Workflow Model for ‘Order Processing’in
the Internet Business of K Bookstore Co. Ltd.

3. A DOCUMENT-BASED WORKFLOW
MODELING AND SUPPORT SYSTEM

3.1 System Architecture

DWMSS consists of five major modules and two
kinds of repositories, as shown in Figure 4.

The Graphical User Interface module allows the
designer to access each module by providing interactive
question-answering functions. It receives the users’
requirements for workflow modeling, asks the user for
specific information, accepts the answer, presents the

workflow model description, and shows the designed

workflow model.

r Graphical User Interface J
i i !
v v
Case Base Manager Case-Based Designer [Voesbulary Base Manager]
Case Case Case CTane Voreh. Veesh.
Browses || | Kanor Ravrtaver || | Seiecwr Srowmer § | Rikter
M . X
AN — /
Repository
oS-

<Figure 4> System Architecture of DWMSS

The Case Base Manager is made up of two
modules: the Case Browser and the Case Editor. The
Case Browser module provides facilities for browsing
the cases in the case base. The Case Editor module
provides facilities for deleting, editing workflows stored
in the case base, and adding new cases into the case
base.

The Case-Based Designer is made up of two
modules: the Case Retriever and the Case Selector. The
Case Retriever module is to retrieve similar cases given
a set of requirements of the current problem by
calculating the similarity score and to maintain a list of
similar cases. The Case Selector module ranks the
retrieved cases and presents the ranking to the user.

The Vocabulary base manager is made up of two
modules: the Vocabulary Browser and the Vocabulary
Editor. The Vocabulary Browser module provides
facilities for browsing the vocabulary in the Vocabulary
base, such as task names (e.g., ‘receive order’, ‘check
credit’, etc.) and the nouns/verbs which constitute the
task names. The Vocabulary Editor module provides
facilities for deleting, and editing vocabulary stored in
the vocabulary base and adding new vocabulary into the
vocabulary base.

The Repository is made up of two bases: the Case
Base and the Vocabulary Base. The Case Base stores a
set of cases and is organized in a hierarchical tree
format, layers of which are arranged in order of the
abstraction level of the business domain, such as the
business area, functional area, function, workflow, and
task. This structure resembles a conceptual is-a

hierarchy. The Vocabulary base maintains the task

- 447 -

names and nouns/verbs that constitute the task names.
Here each noun and verb is related to its similar terms,
e.g., the noun ‘inventory’ is related to ‘stock, stockpile,
etc.’, and the verb ‘check’ is related to ‘look_into,

confirm, etc.’.

3.2 Modeling Process

A workflow modeling process of DWMSS is
tllustrated in Figure 5. DWMSS employs two kinds of
modeling strategies; modeling using a domain-
dependant case search and modeling using a case-based
reasoning approach. Normally the user starts modeling
using the domain-dependant case search, because it is a
faster and easier way to model and it is more familiar
and understandable to the user, as long as similar cases
can be found. If users cannot find similar cases using
the domain-dependant case search, then the user should
rely on the second strategy; modeling using the case-
based reasoning approach. Next we will give an
overview of the modeling process of DWMSS and the
details will be described later.

First, we start modeling using the domain-dependent
case search, where the user scans the case base using the
case browser. Even if the user could find a similar case,
generally it does not exactly fit the user’s requirements.
But it is not easy for the users to guess what portions of
the retrieved case should be changed, supplemented and
deleted. Therefore, the user needs to use the case
adaptation process of modeling using the case-based
reasoning approach. Once the user adapts a retrieved
case, it should be stored in the case base for future reuse.

Second, if the user cannot find a similar case in the
case base, then the user should depend on modeling
using the case-based reasoning approach. First, the user
should initiate the input mode! that will be used as input
data for case retrieval. To initiate an input model, first
the user guesses what tasks should be included in the
solution model and then, search for the names of those
tasks in the vocabulary base using a vocabulary browser.
With these tasks completed, the user initiates the input
model by interconnecting them in logical order in the
view of intertask dependency. Next, the user inputs this
input model into the CBR system, and then the CBR
system retrieves similar cases from the case base
according to the case retrieval rules, and lists them in
the order of the similarity score and selects the best case.
If the retrieved cases are unsatisfactory for the user’s
requirement, they should be adapted to the user’s

requirements. But if the adapted case is still

unsatisfactory, the user goes back to the input model
initiation process to initiate an improved input model
referring to the retrieved cases. Finally, if the solution
model is obtained, it should be stored in the case base
for future reuse.

-

-y
Case Base Magay Ntodeling usmg xamum dommont \ ne Search
‘ ———
Case Searck Unriting ws g 1" ms-tward Ruvnnmg pyresch
(Cae Browuer -
i SN
o Vo(:b-laﬂlligr Repasitory
e S~
T L e R
Ve ® Input medel
¥ Case-based Depigner)
1
] Case Retrievel
(Cove Resriron ¢
M i .
[R ‘Elnmlhr s |
! Case Selection
! (e Setrseny
1
1 & | selected case
A4
T
1
]
o Vocabulary Base
1
1 o ’
v tl seluchen medet /s
’
Ste
[Cose Siorane i

<Figure 5> Modeling Process of DWMSS

4. A Repository

4.1 Case Base

In DWMSS, the case base is well organized in the
form of a hierarchical case tree from the top layer
(Business Area cases) to the bottom layer (Task cases),
and resembles a conceptual is-a hierarchy, called the
domain-dependent case hierarchy, as shown in Figure 6.

The upper three lavers (Business Area, Functional
Area and Function layer) represent the more abstract,
more general cases and are called the domain cases, the
lower two layers (Workflow case and Task case)
represent the less abstract, more specific cases. In the
view of the bottom-up case construction, a workflow
case in common several task cases, and a task case
could be used in several workflows, a function case
consists of several workflow and a functional area case
consists of several function cases and so on. If a new
workflow case is created, it is saved in the relevant
location in the case base by routing it along the
hierarchical path from the top layer, Business Area case,
to the workflow layer. Each domain case has its
identifier, domain features, and a brief description of the

domain it represents.

- 448 -

Below the domain case hierarchy, there is the
workflow and task case hierarchy. Workflow features,
which describe a workflow, include the function it
belongs to, name, description, head task, any other
workflows that are connected to this workflow, and the
utilization degree that represents the number of
references to this case.

M aeannmy

<Figure 6> The Structure of the Case Base

In this paper, the information of each case is
represented using a frame. For this, we present the
Workflow Meta-model. In this paper, we represent the
workflow meta-model using notations for Calss
Diagram of UML (Unified Modeling Language) [Booch
et al., 1997], as shown in Figure 7. The shadowed
classes, such as task, dependency, document and agent,
are those that are employed as indices for case retrieval.

As we see in figure 7, a workflow consists of tasks,
intertask dependencies, agents and documents. Each
task has its similar term set, each member of which has
the term similarity weight (a range of 0-1) according to
how analogous it is to that task name in terms of
semantics. And these weights are determined by

administrator’s experience.

1M Class Dragram Notations

Task Sirilar term

Cd Cam has

O Aumpem Agent Similar Term
-—
o—

+ Mendaiary and Many

Opsanal and Mamy

<Figure 7> Workflow Meta-Model

- 449 -

Each task has the documents that are the input and
output artifacts to be processed or produced by task
itself. Each task is performed by an agent or agents who
may be a person or a group. And each document and
agent also has its similar term set of names, as in tasks.
These similar term sets are the principal indexes for
retrieving similar cases from the case base using the
CBR approach.

4.2 Vocabulary Base

To understand what the vocabulary base is and how
it can be used, we need to understand its structure as
shown in Figure 8 which shows the conceptual data
model given in ER (entity-relationship) notation. The
ER schema has been extended to represent fuzzy
relationships (denoted with a plus).

The Case entity represents the workflows stored in
the case base. Each Case is located by its primary key
Cld (case ID; that is, the workflow ID). This internal
code reference is completely transparent to the user,
who refers to workflows by their names. The is_4
Boolean relationship maps specialization and
inheritance among workflows, as a recursive and many-
to-many relationship, to capture multiple derivation.

The Behavior entity represents an action describing
the service that the task provides. Its name is composed
of a term pair (term 1 and term 2), which is constructed
as verb/noun pairs and correspond to task names. For
example, it describes actions like ‘take order’ and
‘make shipment_ request’ and so on. Also each
Behavior has its synonymous terms, which means they
do the same kind of job processing. For example, the
Behavior ‘receive order’ has its synonymous terms ‘get
order’, *obtain order’ ‘take purchase_order’ and so on.

The Dicvoc entity represents terms of verbs and
nouns in the vocabulary base. Each verb and noun can
have its synonyms. For example, while the verb
‘receive’ has its synonyms ‘get, have, obtain’, the noun
‘order’ has its synonyms ‘purchase_order’.
Furthermore, each verb (or noun) is related several
nouns(verbs) and each combination of a verb(noun) and
one of those nouns(verbs) may form a behavior. For
example, while the verb ‘receive’ is related to several
nouns ‘order, receipt, cash,’ in the form of task
names, the noun ‘order’ is related to several verbs
‘receive, reject, transfer," as well. Therefore, when
the user thinks up a verb (or a noun) which constitutes a
behavior name (that is, a task name), the user can easily

find the counterpart noun (or verb) and form a Behavior

name by combining both of them.

The extended relationship Relevance+ partitions the
Behaviors, or tasks, in the context of each workflow’s
goal. This extended relationship captures the concept of
weight, which is interpreted as the relevance assigned to
Behavior in a Case (that is, workflow), or the
membership degree of a Behavior to Case. In other
words, in a workflow, the roles of some tasks are more
decisive than the other tasks in order to achieve the goal
of that workflow. For example, as we see in the
‘order_processing’ workflow of Figure 3, the task
‘make order_ specification’ is a more important factor
than the task ‘check production plan’ in that, without
the formers, the whole processing cannot be done
completely. Therefore, the stronger the relevance of a
task (task weight) in a particular workflow, the greater
the membership value for that workflow. The weight
belongs to the unit interval.

The extended relationship synonymia+ represents
the synonyms among task names or among verbs and
nouns, respectively. This is a binary, recursive
relationship. The synonymia between two terms is
measured by a weight belonging to the unit interval.
Again, we interpret the imprecision expressed by this
weight in terms of fuzziness. In other words, the
synonymia degree, the weight of the relationship itself,
is thought of as the membership value of a synonym for
a term to the term itself. Synonymia is analogous to a
crisp equivalence relationship. Thus, for each term, it is
possible to determine a similar term set; that is, a fuzzy

set representing all synonyms for that term.

Name, ~
cld
M

Weight

M

Ineh e

N T Tem Type

Term | Term 2

<Figure 8> ER extended conceptual model for

Vocabulary base

. WORKFLOW MODELING PROCESS

n

U

.1 Modeling using a Domain-dependent Case
Search
Modeling using the domain-dependent case search
is a kind of breadth-first search, which examines all of

the nodes (cases) in a case tree (the case base) beginning

with the root node (Business layer), as shown in Figure
9. If the user can find a similar case, he can reuse it
without any change or adapt it according to his

requirements.

-

{ Business Arew case Selection J

|
I Functional Aren case Selection I -
|

— &=
E Iiﬁunabn case Sclection ! CoeB
i ~ l ase Base

r Workflow case Selection]

Waorkflow Case Adapeation
using Adaptation process of CBR

!

r Workflaw Case Storage l

<Figure 9> Domain-dependent case search process

Because, in general, the retrieved case does not
exactly match the user’s requirements, adaptation rules
are needed to change the differences, fill in the missing
parts and remove the unnecessary parts. In modeling
using the domain-dependent case search, the retrieved
case will be adapted by using the adaptation process of
CBR, through which the unmatched parts could be
substituted with a reusable part of any other case.

Finally, if the solution model is created through the
above processes, this new case should be saved in the

case base for future reuse.

5.2. Modeling using Case-based Reasoning
Approach

When the user cannot find similar cases using the
domain-dependent case search, the user should employ
the case-based reasoning approach instead. This strategy
may be regarded as a kind of the bottom-up approach in
some ways, from the point of view that it starts from the
tasks which constitutes the bottom layer of the case

hierarchy in the case base.

5.2.1 Input Model Initiation

As shown in Figure 10, to initiate an input model,
the user should find the tasks that are supposed to be the
tasks of the solution model. But it is not so easy for the
user to guess the tasks just by using his imagination.
The user needs a mechanism to help him with this job.
For this, the vocabulary base, the repository including

the task names, is structured and managed.

- 450 -

First, the user guesses what tasks the solution model
would include in it and finds each of those tasks’ names
with the help of the Vocabulary base manager of the
system. If the user inputs a verb (or noun), the system
suggests the counterpart nouns (or verbs) which are
connected to that verb (or noun). For example, if the
user inputs the verb ‘take’, the system will show the
related nouns, “receipt” from “take receipt’ and “report”

from “take report” and so on.

G-
J

— r Vocabulary Base Search l

l Task_Name Candidates

[Task Name selection I

l Selected Task_Name

| Task Weight Determination I

I Task_Name with Weight

A S I S R N S TSI .

J

l Input Model formation]

Input Model

<Figure 10> Input Model Initiation process

Next, the user should determine the weight of the
selected task in terms of how that task is important to
achieve the goal of the target workflow. For example, in
‘order_processing’ workflow, the task ‘make
order_specification’ is a more important factor than the
task ‘check production plan’ in that, without the former,
the whole processing can not be done completely.

The user repeats the above process to get several
tasks that are needed to formulate an input model. When
the user thinks that the necessary tasks are all ready, the
user begins to initiate an input model by setting up the
intertask dependencies among tasks in terms of how
those tasks should be interconnected for the job to be

done.

5.2.2 Case Retrieval and Case Selection

As shown in Figure 11, by inputting an input model,
the system calculates the similarity score for every case
in the case base using the case retrieval rules which are

in the form of a formula and then ranks the retrieved

-451 -

cases in the order of the similarity score. Among them,
the user sclects the case with the highest similarity score

as the most similar case.

5.2.2.1 Task Similarity Calculation

As shown in Figure 11, the task similarity
calculation consists of three steps: task name, document
name and agent name similarity calculation. The task
name similarity score is calculated by comparing the
name of the specific task i in the input model with the
task names in the similar term set (as shown in Formula
1 and 2) of a task in a workflow case. If the name of the
specific task / in the input model is included in this
similar term set, it can get a correspondent similarity
score. For example, a task name ‘receive order’ has its
similar term set of {receive order, I, take order, 1,
request order, 0.8,}, where the similar term ‘take
order’ has the similarity weight 1 and ‘request order’
has 0.8, and so on.

Task Similarity Calculation I

[fask Name amulanty calculation]

[l -

! I neument Name sumitanty caleulation

I

[Apent Name sumilants calculation

g

Dependency Similarity Calculation

l Dependeney Distance simikanty N\Luxuund

l’ Dependeney Type sumlaney caleutauon

Similarity Calculation for each case -

4

Case Prioritization and Case Selection

<Figure 11> Case Retrieval and Case Selection

Procedure

The document and agent similarity score calculation
process is based on the same concept as the task name
similarity score calculation process, as shown in

Formula 3 and 4.

T,=Tn,+D,+ 4,

D, ={(X 1Dn,)/ m+ (3. 0Dny)/ ny 12

a=l b=l

A, =z,:(An,.r)/1

=]
T;: similarity degree of Task i
Tn; : name similarity degree of Task i
D; : name similarity degree of Document of Task i
R, : name similarity degree of Agent of Task i
IDnj, : name similarity degree of Input Document
ODny, : name similarity degree of Output Document
An;. : name similarity degree of Agent
: index of task

a : index of Input Document

b : index of Output Document

c : index of Agent

m : number of [nput Documents processed by Task i
n : number of Output Documents produced by Task i
I : number of Agent of Task I

<Formula 1> Task Similarity Calculation Formula

Similar_Term (Tn)={Tn;,w;,Tny,wy,Tns,ws,.....Tny, wy)

Tn : task name
Tny : the K, member of similar term set

wy : weight of the ky, member of similar term set

(Example)
Similar_Term(take order)={take order, 1.0, receive
order, 0.8, get order, 0.6, have order, 0.5,...... }

<Formula 2> Similar Term Set Representation and
Example

k !
D, ={(3.1Dn,)/ K+ (D> 0Dn,)/1}/2

P P
D, : name similarity degree of documents of Task i
IDn;, : name similarity degree of Input Document ia
ODnj, : name similarity degree of Output Document ib
i: index of task

a: index of Input Document

b : index of Output Document
k : number of Input Documents processed by Task i

1 : number of Output Documents produced by Task i

<Formula 3> Document Similarity Calculation Formula

4 :i(Anw)/I

o
A; : name similarity degree of Agents of Task i
An;. : name similarity degree of Agent ic

i : index of Task

c : index of Agent

| : number of Agents of Task i

<Formula 4> Agent Similarity Calculation Formula

5.2.2.2 Intertask Dependency Similarity Calculation

The intertask dependency similarity score is
calculated by comparing the distance and type of the
intertask dependency between two tasks in the input
model with those of the intertask dependency between
the corresponding two tasks in a workflow case, as
shown in Formula 5. In order to get the intertask
dependency similarity degree, therefore, there should be
the correspondent two tasks in a workflow case.

The distance similarity degree of a specific intertask
dependency is decided by how similar the distance of a
specific intertask dependency in the input model is with
the correspondent one in a workflow case. The intertask
dependency distance of the specific two tasks is
calculated by the number of intertask dependencies
between themn and if there are many routes between two
tasks, the shortest one is chosen as a correspondent
comparable intertask dependency.

For example, in Figure 12, There are two routes
from task A to B, [A =>C’=>D’'=>B] and [A =>C’=>B].
But the comparable intertask dependency would be [A
=>C’=>B], because its route is shorter than the other.
Therefore, the distance of the intertask dependency
between task A and B is 2 and its similarity score is 0.8,
as shown in Figure 13.

The similarity score of the intertask dependency
type is calculated by applying the matrix for the
similarity score of the intertask dependency type, as
shown in Figure 14. As we have seen before in Figure |,
the intertask dependency type could be categorized in
terms of the activity-resource relationship among tasks.
If both intertask dependencies are in a same category,

the similarity score will be 1 or 0.5.

Fo=Pd +{(L_Pt,+L_Pc)/2+(R_Pt1,+R_Pc,)/2
P; : dependency similarity degree of intertask
dependency j

Pd; : dependency distance similarity degree of intertask

- 452 -

dependency j

L_Pt; : dependency type similarity degree of the left-
side of intertask dependency j

L_Pc; : dependency cardinality similarity degree of the
left-side of intertask dependency j

R_Pt; : dependency type similarity degree of the right-
side of intertask dependency j

R_P¢; : dependency cardinality similarity degree of the
right-side of intertask dependency j

j: index of Intertask Dependency

<Formula 5> Intertask Dependency Similarity

Calculation Formula

Input mode! : @ @

Case model : A @ D’

<Figure 12> Example of the Intertask Dependency

Distance

Dependency Distance 1 2 3 Over 4

Similanty Score 1 0.8 0.6 0

<Figure 13> Matrix for Similarity Score of the Intertask

Dependency Distance

“g‘c::‘“:"‘;ﬁ ‘;’" FLOW SHARING FIT

ANBl se | 1T Jos | as | o) | A
FISE| L 0.5 | 00 | 00 |00 | 00
v IT 0.5 1 00 | 00 0.0 0.0
#olos [00 [00| 1 |05 |00 |00
; AS |00 | 00 | 05| 1 00 | 0.0
F {05 | 00 | 00|00 |00 | 1 [05
T Al oo | 00| 00| 00 05| 1

<Figure 14> Matrix for Similarity Score of the Intertask

Dependency Type

As shown in Formula 6, the total similarity score of
a case model is calculated by combining the task
similarity score which is weighted in terms of each

task’s importance in a workflow case and the intertask

dependency similarity score.

Once we find the similarity in some tasks, we can
judge that two workflow models are similar, because the
similarity between intertask dependencies is dependent
on the similarity in tasks. Therefore, the similarity
between intertask dependencies is not a decisive factor,
just an additional factor which increases the total
similarity degree. The more a workflow case includes
tasks with higher weight (that is, key tasks), the higher
the total similarity score it gets.

TSS = Z]: oW, +ZPJ (=1,2,...,mj=1,2,...n)

=
TSS : total similarity score

T, : similarity degree of Task i

W, : weight of Task i

P; : similarity degree of Intertask Dependency j
m : the number of Task

n : the number of Intertask Dependency

<Formula 6> Total Similarity Calculation Formula for
Each Case

5.2.3 Case Adaptation

The selected case should be modified by combining
the input model and the selected model according to
adaptation rules. The principles for combination of the
input model and the selected model are as follows:

First, those that are determined only by the user, (e.g.
task name, document name, role name) are combined
based predominantly on the input model.

Second, those that are determined by the business
policy rather than the user’s judgement (e.g. intertask
dependency type and cardinality) are combined based
predominantly on the input model.

Third, for those, which are thought of as ‘the more,
the better’ cases (e.g. the similar term set of task,
document and agent name), the input model and the
retrieved model are combined on a par with each other.

In general, most of the combined models are not so
satisfactory for the user’s requirements. So the user
should find out the unsatisfactory parts and adapt the
combined model. For this, the user uses again the CBR
approach to get alternatives for unsatisfactory parts
from the other cases in the case base. If the user finds
alternative parts, the user can adapt the combined model
using them. By repeating this process, the user could

proceed to a more complete solution model, step by step.

- 453 -

5.2.4 Case Storage

The storage rule is needed to add a new case, or
solution model, to the case base and to manage all
workflow models systematically for future reuse. We
can more systematically represent and classify the
workflow models by using specialization and
inheritance mechanisms, as shown in Figure 15, which
means that, like in object-oriented methodology, a
workfow model could be created differently to ensure

versatile workflow models.

Order_Processing

order_Processing Order_Processing
taltemative A) (alternative 13)

{ ¢nder_Processmg
1 falternanve \l)

Grder_Processing
(alternative A2)

<Figure 15> Specialization of workflow

Order_Processing Order_Processing
(alternative 131 (slternative 12)

6. CONCLUDING REMARKS

In this paper, we proposed the workflow model
reuse methodology using a case-base reasoning
approach. With the help of DWMSS, enterprises and
consulting compantes can reduce the cost and time
needed to design a workflow model from a draft.
Furthermore, these past workflows are very useful
materials for employee training, helping them
understand the whole picture of their job easily. And
these accumulated workflows are valuable information
assets of a company, thus they should be well organized
and maintained.

The following are some further research areas on
the basis of this paper. First, the workflow model case
representation should be reinforced to cover as many
workflow models as possible. Second, the case retrieval
method needs to be extended to cover the overall
structure of workflow, which means that the whole
realm of the key tasks and their intertask dependencics
should be considered in calculating their similarity
scores. Third, DWMSS needs to be more automated to
be more helpful to users because this system still needs

more interaction between humans and the system.

REFERENCES

Armitage, J. and M. Kellner, “A Conceptual Schema for
Process Definitions and Models”, In Proc. 3 mnt'l

Conf.. on the Software Process, Reston, Virginia, USA,
October 1994, pp.153-165.

Booch, G., 1. Jacobson and J. Rumbaugh, UML version 1.0,
Rational Software, 1997.

Bracchi, G. and B. Pemnici, “The Design Requirements of
Office Systems,” ACM Transactions on Office
Information Systems, vol.2,no.2, 1984, pp.151-170.

Brown, C.E. and U.G. Gupta, “Applying Case-Based
Reasoning to the Accounting Domain™, /ntelligent
Systems in Accounting, Finance and Management,
vol.3, 1994, pp.205-221.

Curtis, B, M. [. Kellner, and J. Over, “Process Modeling”,
Communications of the ACM, Sept. 1992, vol. 35, No.9,
pp.77.

Ellis, C. and ‘G. Nutt, “Office Information Systems and
Computer Science”, ACM Computing Survey, vol.12,
no.l, 1980, pp.27-60.

Frank, U., “Enhancing Object-Oriented Modeling with
Concepts to Integrate Electronic Documents”, /n Proc.
of the 30" Hawaii Inte’l Conf. on System Science, vol.6,
1997, pp.127-136.

Lawrence, P., Workflow Handbook 1997, John Wiley & Sons
Inc., pp.27-32.

Han, J., “Case-Based Reasoning Framework for Data Model
Reuse”, In Proc. of Korea Expert System Society, Dec.
1997, vol.3, no.2, pp.33-55.

Han, J., Object Model Reuse by Case-Based Reasoning,
Dissertation, Ajou University of South Korea, 1998,

pp-48-82.
Lee. H. and W. Suh, “A Workflow-Based Methodology tor
Developing Hypermedia Systems™, Joumal of

Organizational Computing and Electronic Commerce,
vol.11,n0.2, 2001, pp.77-103.

Jablonski, S. and C. Bussler, “Workflow Management;
Modeling Concepts, Architecture and Implementation”,
International Thomson computer press, London. 1996,
pp-3-12.

Kolodner, J.. Case-Based Reasoning, Morgan Kaufmann, San
Mateo, CA., 1993. pp.3-30.

Korczak, J.J.. L.A. Maciaszek. and G.L. Stafford, “Knowledge
Base for Database Design”, In Proc. of Int'l Symposium
on Database Systems for Advanced Applications, 1989,
pp.61-68.

Malone, T. W. and K. Crowston, and J. Lee et al., “Tools tor
Inventing Organizations: Toward a Handbook of
Organizational Processes”, MIT Center for
Coordination Science, Jan. 1997, (http://ideas.
uqam.ca/ideas/data/Papers/wopmitccs198. html).

Morshheuser. S., H. Raufer. and C. Wargitsch, “Challenges and
Solutions of Document and Workflow Management in a
Manufacturing Enterprise: A Case Study,” /n Proc. 29"
Hawaii Int’l. Conf. on System Sciences - Digital
Documents. 1996, pp.4-12.

Paek Y.. J. Seo, and G. Kim, “An expert system with case-
based reasoning for database schema design”, Decision
Support Systems, vol.18, 1996, pp.83-95.

Riesbeck, C.D. and R. Schank., “Inside Case-Based
Reasoning™, Hillsdale, NJ: Erlbaum, 1989, pp.25-26.

Sprague R.H., “Electronic Document Management: Challenges
and Opportunities for Information Systems Managers™,
MIS Quarterly, Mar. 1995, pp.29-49.

Uijlenbroek, JJ.M. and H.G. Sol, “Document Based Process
Improvement in the Public Sector: Settling for the
Second Best is the Best You Can Do,” /n Proc. of the
30" HICSS, vol.6, 1997, pp.107-117.

- 454 -

