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ABSTRACT
The stock market break of Oct. 1987 has
drawn widespread attention and attempts at
explanation. Chaos has captured the fancy of
many financial economists. The attractiveness of
chaos is its ability to generate large movements
which appear to be random, with gerater
frequency than linear models. This paper
examines the sort of stock return volatility that
could be generated by a chaotic market and
explores a simple set of sufficient conditions for
chaos to occur in the stock market. And we
investigate whether there is long memory, or

chaos, in the Korean stock market.

Key Words : Volatility, R/S Analysis, Chaos,

Neural Network

I. INTRODUCTION

Recently, several studies have raised
questions concerning the efficiency of stock
markets. The stock market break of Oct. 1987 has
drawn widespread attention and attempts at
explanation. Chaos is a nonlinear determinstic
process which ‘looks’ random. There is a very
good description of chaos and its origins in the

popular book by James Gleick (1987), entitled

E-Mail : cspark@msd. kaist.ac.kr

Chaos. Also Baumol and Benhabib (1989) gives a
good survey of economic models which produce
chaotic behavior.

And Summers(1986) argued that fact,
although they have nothing to do with
fundamentals, in fact play an important role in
financial asset pricing, and Brock, Laknishok, and
LeBaron(1992) found that abnormal returns could
arise due to simple technical trading rules such as
the moving average. In addition, Fama and
French(1988) discovered that stock returns are
positively correlated over long horizons and
negatively correlated over short horizons.

Since then, many studies have attempted to
investigate the long-tern behavior of stock prices,
using artificial intelligence techniques for long
memory analysis, chaotic dynamics, or neural
networks which are not compatible with the
efficient market hypothesis.

Among these, Peters (1994) employed
R/S analysis in studying the long-term behavior
of stock prices. R/S analysis was actually first
introduced by a British hydrologist, H. E. Hurst,
in 1950s to investigate rainfall along the Nile
River, and it was later refined by Mandelbrot

(1972) to study chaotic dynamics.
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Peters argued that there is strong evidence
of the existence of chaos in the stock returns from
the Dow Jones Industrial Average and that
efficient market theory cannot explain stock price
movements as actually observed. However, Lo
(1991), using so-called modified R/S analysis,
found to the contrary that there is no evidence of
chaos in the U.S. stock market, Cheung and Lai
(1993, 1995), furthermore, found no evidence of
chaos in either the gold markets or major stock
markets around the world.

In this study, we seek to determine
whether there is chaos in the Korean stock market,
using so-called classical R/S analysis as
developed by Hurst(1951), Mandelbrot (1972),
and Peters (1994). We perform R/S analysis on
the AR residuals of daily stock returns as well as
on the original daily stock returns themselves in
order to circumvent the bias problems which arise
due to short-term dependence in daily returns.
Unlike Peters, however, we find not strong
evidence of the existence of chaos in the Korean
stock market.

We also study chaos in the volatility of
daily stock returns. Since we cannot actually
observe volatility itself directly, we employ an
GARCH(Generalized Autoregressive Conditional
Heteroskedasticity) model and neural network
model to estimate the daily stock returns.
According to our R/S analysis on the volatility,
there seems to be chaos in the volatility of daily
stock returns.

This paper is organized as follows. In
section II, an analysis for the descriptive statistics

of stock returns from the Korean stock market is

provided. R/S analysis is introduced in section III,

and its application to the stock markets is
presented. The results of the R/S analysis on daily
stock returns are then provided in section [V and
those on volatility in section V. Concluding

remarks are in section VI.

I1. DESCRIPTIVE STATISTICS OF
STOCK RETURNS

In this section, we study the
distributional properties of the nominal daily
stock returns obtained from the KOSPI(Korea
Stock Price Index). That is, The kurtosis of stock
returns calculated based on the Dow Jones
Industrial Index is much greater than that of a
normal distribution, implying that stock returns
give rise to a fat-tailed distribution. The existence
of fat-tailed distributions is often cited as
evidence of a long memory system generated by a
nonlinear stochastic process.

Table 1 shows the mean, variance,
skewness, and kurtosis of Korean daily stock
returns from January 1980 to December 1996. It
seems that the kurtosis of daily stock returns was
much greater than that of a normal distribution as
in the U.S. stock market. The skewness of Korean
daily stock returns is 0.14, so we cannot reject the
null hypothesis for normal distribution. The
kurtosis, however, is 5.86, which is a sufficiently
large figure to allow us to reject the null
hypothesis. We can therefore say that Korean
daily stock returns do not follow a normal
distribution.

The daily limit on price movements in
the Korea stock market is one of the reasons for
the high kurtosis. Because stock prices can only

move within a certain range each trading day, the
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daily stock returns naturally tend to be
concentrated around the mean. Thus, the variance
is small and the kurtosis is very high. What is
more, the limit also causes the daily stock returns
to be strongly autocorrelated. In cases where the
price of a particular stock hits the upper bound of
the limit during any given trading day, the price
will probably continue to rise the next day. This
kind of phenomenon applies to price declines of

the same magnitude as well. Table 2 shows the

<Table 1> Stock Return Statistics

Ljung-Box Q-statistics, and these permit us to see
the degree of autocorrelation in daily stock
returns. It is in fact found to be very strong, thus
requiring us to apply the AR model to exclude the
effects of short-term dependence. We need to
perform R/S analysis not only on daily stock
returns but also on the residuals from the AR

model as well.

Mean 0.00043
Variance 0.00014
Skewness 0.14101
Kurtosis 5.86038

* The size of the sample population is 4,980.

<Table 2> Autocorrelation of Daily Stock Returns

Ljng-Box Q—statisticé Significance level
Q) 92.134 0.000000
Q(50) 109.512 0.000000’
Q(200) 326.186 0.000000
Q(600) 349.629 0.000001
Q(1500) 1435.127 0.000513
II1. R/S ANALYSIS AND ITS
APPLICATION

1. Basic Concepts of R/S Analysis

Mandelbort (1972) proposed the R/S
statistic from rescaled range (or R/S) analysis,
originally developed by Hurst(1951), as a tool for
testing for chaos. The R/S statistic is simply the

ratio of the range and standard deviation. In other

words, the R/S statistic is the rescaled range of the
partial sum of deviations normalized by the
standard deviation.

For a simple example of R/S analysis,
Let’s begin with a time series, X,, X,, ...X,, of n

consecutive values. The mean value of the time
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series is defined as :

1 n
X==>% M
n j=l

The range is defined as:

k _ 3 _
Re= Max Y. (X,-X,)- Min2 (X;=X,) (@)

Isksn  j=i Isksn j=1

The range is the difference between the maximum
value and the minimum value out of the n
cumulative sums of (X; - S(—n). In this case,
the maximum value will always be greater than
zero, and the minimum value will always be less
than zero. Hence, the range R,, is always non-
negative.

The rescaling factor, S, is the sample

standard deviation of X;

S,,=\/12(X,—Z)’ ®

n-y

The R/S statistic, Q(=(R/S),) can be
obtained by normalizing the range, R, with the

sample standard deviation, S, '

0, == Q)

In most stochastic models, including
the random walk and ARMA models, the ratio of

log(Q,) to log(n) converges to 1/2. In other words,

in stochastic models, the Hurst exponent, H is

1/2 in equation (5). In equation (5), c is constant,

A
and H is the Hurst exponent. The Hurst

exponent can be used to test the existence of

chaos. Mandelbrot proved that there exists chaos

A
in a time series when H # 1/2.

e log(Q,)

H= s
log(n) ©)

Classical R/S Analysis can be used for any
time series without and restriction, but the results
it produces may be biased if there is short-term

dependence.

2. Application to Stock Returns.

In this section, we apply R/S analysis
to daily stock returns. We begin with a time series
of stock prices of length L. Convert this into a
time series of length n = L - 1 with daily stock
retums r;

r, = In(P,

o /P iEL23, L) (6)
where P, is the stock price index in period i, Now,
we divide the entire sample period into M
contiguous subperiods of length K, such that
K=n/M. In this case, the number of elements in
the mth subperiod, Sy, is K. Then, 7, is the ith
element of the mth subperiod.

The sample means of each subperiod,

S, He, are defined as:
Ly
Ho = =2 Gem ™
K&

We need to calculate the range in order
to obtain the rescaled range. In each subperiod,
Sm, we calculate the cumulated sum of deviations

Z as follows:
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A
ZA.m = Z ( r},,m -m, ), 1<A<K. 8)
k=1

Z4,m is a cumulated sum up to the Ath stock
return is subperiod Sp;. In each subperiod, the
number of cumulated sums is therefore X.

The range of daily stock returns in
subperiod S;; can be obtained by finding the
difference between the maximum value and the

minimum value of Z4 p.

R, =max(Z,,)-min(Z,,), 1 <A <K. %)
The rescaling factor, the standard deviation of

subperiod Sy, is defined as:

K
Z rk m “’m
_ k=1

S,\'
" K

(10)

And the (R/S) value of subperiod S,y is defined as

follows.

R
(R/S); = —= (1n

We repeat this process for each subperiod and
obtain the corresponding (R/S) values. Then, the
mean of the (R/S) values can be calculated, and
the rescaled range (R/S), which is of K magnitude

in each subperiod, can be obtained.

M
QOx =(R/S)y =£{—Z(Rs_/ss_) 12)
m=/

We can obtain a series of (R/S)

statistics from the daily stock returns as we repeat

the above process by changing the sample size.
With this series of R/S statistics, we can then
estimate the Hurst exponent, by which we can
verify the existence of chaos, Consider of the

following equation.

Q, =cen® (13)
In equation (13), ¢ is a constant, and H is the
Hurst exponent. f equals 0.5 in the case of
Brownian motion. The R/S value, @y fluctuates
as much as /A times with the progress of time.

The Hurst exponent can be
approximated by plotting the log(R/S), versus the
log(n) and solving for the slope through an
ordinary least squares regression. Taking the log

in equation (13), we have

log(Qp) = log(c) + H log(n) (14)

If a time series had normal distribution,
then A=0.5. For a time series which is chaotic,
however, H is greater than 0.5. We can test
whether H is 0.5 by a traditional hypothesis test
on regression coefficients. It should be noted,
though, that this is not a formal test to verify the
the null

existence of chaos: even though

hypothesis. H=0.5, is rejected by tests on
regression coefficients, this cannot be used as

direct evidence that chaos does not exist.

IV. R/STESTS ON KOREAN STOCK
MARKET DATA

In order to obtain statistically
significant results from R/S analysis, we need a
large number of observations from a sufficiently

long period of time. Because there is no formal
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criteria for determining just how many
observations or how long a period is required,
however, we use all of the available stock market
data in Korea from January 1980 to December
1996, a period which includes more than 4,980

trading days.

1. R/S Test on Stock Returns

As shown in Table 8, The Hurst
exponent estimated from the daily stock returns,
p is 0.59732, and the standard deviation is
0.0042. According to the hypothesis test on
regression coefficients, the Hurst expohent for r¢
is statistically different from 0.5: it is significantly
smaller than 0.7. The Hurst exponent estimated
is based on data from the Dow Jones Industrial
Average of the United States.

As noted in the previous section, since
there is no formal test statistic for the Hurst
exponent, the above result is not sufficient
evidence on chaos. The fact that the Hurst
exponent in the Korean stock market is much
lower than that in the U.S. implies that chaos may
not exist in Korean daily stock returns. In addition,
considering the autocorrelation in Korean daily
stock returns, it is possible that the Hurst
exponent would be biased. which also implies
low possibility of chaos in Korean stock prices.

Lo (1991) argued that short-term
dependence can produce biased results in R/S
analysis and therefore proposed modified R/S
analysis. which is robust with regard to the short-
term dependence. We apply Lo’s method to the
analysis of Korean stock returns.

Let V denote the limiting distribution

of On / \/; when there is no short-term

dependence. Then, the limiting distribution of On
/Nn  with short-term dependence can be

expressed as follows.

L

Jn

£, =&V (15)

where Oy is an R/S value, » is the sample size,
and £ is factor which takes into account the
effects of short-term dependence.

& can be obtained as follows. Let’s first
assume that the daily stock return, rp follow

stationary AR(1). That is,

n=pr_ 0, n~WNO,o))1pe®.))  (16)

Then & is defined as follows.

1+
E = !——p a7
1-p

In this case, the limiting distribution of O /v
isgv.

Table 3 shows R/S values, On / \/; .
When the sample size n is 4,980, the R/S vaiue,
QOp is estimated as 137.5421, and QOn /\/;is
1.9376. This itself may not be sufficient evidence
to determine whether or not there is chaos in daily
stock returns, however. If daily stock returns do
not follow the AR(1) process, we cannot use § to
correct problems caused by  short-term
dependence, and estimation of § will not be as
simple as the above. Thus, without evidence that
daily stock returns follow stationary AR(1), the

above test does not confirm the existence of chaos.
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<Table 3> QOn/ \[r; Statistics

N . RS 1
| N

60 8.9624 13411
100 13.2928 1.3899
160 18.7485 1.4248
240 21.6006 1.4472
320 25.5278 1.4935
480 33.3421 1.4399
1200 61.3451 1.5837
2400 101.1231 1.8975
4980 137.5421 1.9376

2. R/S Test on Randomly Scrambled Stock
Returns

Because of the short-term dependence
in daily stock returns, the previous test do not
offer any clear conclusion with regard to the
existence of chaos in Korean daily stock returns.
A random scrambling method, however, can be
used as an indirect solution for problems arising
due to short-term dependence. This method is
based on the correlation dimension method
developed by Schinkman and LeBaron(1980).

If a time series follows a chaotic
process, the order in the time series would be
important. Accordingly, if the time series was
scrambled without order, the Hurst exponent
would be lower than the original Hurst exponent,
H. As shown in Table 8, the Hurst exponent, H,
from randomly scrambled daily stock returns is
0.5476, which seems significantly lower than the
original Hurst exponent(H=0.59732). Since the
standard error of the regression coefficient is
0.00611, the null hypothesis of the two Hurst
exponents using equal, H=Hj, is rejected at any

significance level.

3. R/S Tests on AR(n) Residuals

As noted in the previous section, the
daily returns observed on the KOSPI are
significantly  autocorrelated, so the Hurst
exponent and R/S statistic estimated based on
them might be biased. What we do in this section
to get rid of this bias is, first, estimate the AR
models for daily stock returns, and then, perform

R/S tests on AR residuals.

r,=a+ib,.r,_,-+e, j=123. (18)

i=l

The bias problem caused by autocorrelation
in estimating the Hurst exponent can be resolved
partially by using the residuals from the AR(n)
model. There should be a much lower degree of
autocorrelation in the residuals from AR(1) than
in the original time series. Comparing the Hurst
exponents from daily stock returns and from the
AR(1) residuals, we can study the effects of short-
term dependence on estimation of the Hurst
exponents from daily stock returns and from the
AR(1) residuals is 0.5872, which is slightly

smaller than that for original daily stock returns.
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<Table 4> Performance of Stochastic Models

Model MSE r
AR (1) 0.6521 0.5821
AR (2) 0.6368 0.5929
AR (3) 0.5586 0.6131
ARMA(3, 3) 0.6115 0.6068

Since the AR(1) residuals could be serially
correlated, we perform the R/S test on the AR(3)
residuals. We expect that we can get rid of any
serial correlation in residuals with AR(3) and that
test results will be different from the previous test
results. As it turns out, however, we get the
similar results as in the AR(1) case. The Hurst
exponent is estimated as 0.6104, not greatly
different compared to A, or Hyg. This means
that short-term dependence does not give rise to
serious problems in estimating the Hurst
exponents. Considering that the Hurst exponent
for randomly scrambled stock returns is about
0.5476 and that there is no serial correlation in,
AR(3), this suggests that there might be chaos in
daily stock returns. However, it seems that there
are no nonperiodic cycles, which implies no
chaos. Table 4 presents results for the best

stochastic models

V.R/S TESTS ON THE
VOLATILITY

Volatility - the variation in prices for a given time
interval - is the most revealing indicator of market
behavior. Not only does it give the size of current
and recent price movements, it can also provide
an indication of variables about which there little
real information, such as who is present in the
market and the volumes being traded. In addition,
it can provide evidence of the persistence of

trends in price movements.

Many studies have shown which periods of
high and low volatility trend to persist in the
markets longer than can be accounted for by the
efficient market theory. The markets appear to
have ‘memory' - at least of volatility if not of the
prices themselves.

Meanwhile, during periods of low
volatility prices tend to follow trends for longer
than expected, while trends persist for less time
than expected during periods of high volatility. So
volatility is an indicator of the persistence of price
trends.

In this test we modeled the change in
volatility between t and t+1 based on previous
changes in volatility and based on the volatility at
time t. We used to test the neural network, as
well as to test conditional variances model. Figure

1 presents overall architecture of volatility

estimation models.

1. Neural network Model

Artificial neural network (ANN) is a model
that simulates a biological neural network. ANN
have become mature tools for capital market
analysis in finance. ANN have successfully been
applied to areas such as stock price prediction,
option trading, forecasting business distress, bond
rating and security trading system.

The data set used for both ANN modeling
consisted of 4980 frames of daily stock return
observed on the KOSPI, of which the first 2500
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were used for model identification and ANN
training and the last 2480 for model validation
and ANN testing.

The residual analysis indicated that AR(3)
model was the most appropriate, suggesting the
use of a feedforward ANN with 3 external inputs.
The results are presented in Table S, where the
notation x-y-z stands for an ANN with x external

inputs, y hidden layers and z output.

2. Conditional Variances Model
We employ the AR(3)-GARCH(1,1) model for
the estimation of conditional variances of daily

stock returns.

3
L =“+Zﬂ/4-/'+€:
i=t

& ~N(0,h,) (19)

h, =a+bel, +ch,_,

The results of estimation are presented
in Table 6. We find that there is a significant
ARCH effect in daily stock returns, so there is
time variation in conditional variances.

To be sure, we must also determine the
validity of the model, and we can do so by
performing several specification tests and residual
diagnostic tests. the first of these is the likelihood
ration test on the null hypothesis. In this test,
b=c=0 and the x* statistic under the null
hypothesis is 915.55, hence the null hypothesis is
rejected. As reported in Table 7, the Ljung-Box
Q-statistics indicate no serial correlation in
residuals nommalized by conditional variances.
Finally, the heteroskedasticity test by Domowitz
and Hakkio (1985) and Bollerslev (1990) is
performed, and the null hypothesis that the model

is correctly specified cannot be rejected. Thus, the

results from the various tests provide no evidence

for incorrect model specification.

3. R/S Tests on Conditional Variances model
and Neural Network Model

We need to generate the series of
conditional variances and neural network model
for the R/S tests on volatility. A series of
conditional variances is generated according to
equation (19).

The Hurst exponent estimated with this
series is 0.7547, as shown in Table 8. This can be
interpreted as an indication of the existence of
chaos in the volatility of daily stock returns. Even
considering the bias in the Hurst exponent caused
by short-term dependence in conditional
variances, it seems that we should therefore not
reject the hypothesis that there exists chaos in the
volatility of daily stock returns. This being the
case, we can conclude that there indeed exists

chaos in the volatility of daily stock returns.

VI. CONCLUSIONS

In this study, using so-called classical
R/S analysis by Husrt(1951) and
Mandelbrot(1972). We investigate whether there
is long inemory, or chaos, in the Korean stock
market. This of course requires not only a large
amount of data but a set of data which is observed
over a fairly long period time. We therefore
employed all of the available data in the Korean
stock market (4,980) data points from January
1980 to December 1996.

Since the classical R/S analysis on the
data with short-term dependence may produce
significantly biased results, we also perform tests

on the AR residuals as weil as on the original
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stock returns. The Hurst exponents for daily stock
returns and for AR residuals are approximately
0.6. The statistical tests on the regression
coefficients reveal that the coefficients are
significantly different from 0.5, which indicates
that there is chaos in stock returns. However,
we need to use other additional statistical test to
verify the existence of this chaos because these
are not formal statistical test, and no formal test in
R/S analysis has yet been devised. We
nevertheless find strong evidence of the existence
of chaos in the volatility stock returns. Volatility
cannot of course be observed directly, so we use
the GARCH model to estimate it. the Hurst

exponent for volatility is larger than 0.75, which

strongly suggests the existence of chaos.

In summary, we cannot offer clear evidence
of chaos in daily stock prices in Korea, but there
does seem to be chaos in volatility. As
mentioned earlier, however, we do not have any
formal statistical tests in R/S analysis at our
disposal, and the Hurst exponent might be biased
due to autocorrelation. We, therefore, cannot state
definitively whether there is chaos or not in daily
stock returns and volatility. We need other
statistical methods such as modified R/S analysis
by Lo (1991) for more conclusive investigation
and artificial intelligence techniques such as

recurrent neural networks.

<Table 5> Perfomance of Feedforward ANN’s

Y
3-3-1 0.5026 0.6875
3-6-1 0.5241 0.6531
4-4-1 0.6289 0.6394
8-8-1 0.5268 0.6687
<Table 6> Estimation of AR(3)-GARCH(1,1) for Stock Returns
| Coefficients | Standard errors | t-statistics Significance level
o 2.4132e-004 1.3321e-004 2.18472 0.02978
By 0.0899 0.0123 6.40344 0.00000
B2 -0.0425 0.0137 -2.96798 0.00211
B3 0.0344 0.0121 2.77825 0.00325
A 1.01392e-005 1.160e-005 9.32522 0.00000
B 0.2216 0.0756 12.64622 0.00001
C 0.72653 0.0187 36.9345 0.00000
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<Table 7> Diagnostic chicking

 Ljung-Box Q-statistic Ljung-Box Q-statistic
€,/ N, 2 /h,
Q(10) 15.8524 4.0250
(0.10394) (0.94621)
Q(50) 38.1543 7.5803

(0.00848*) (0.99430)

Q(100) 119.0813 38.6362

(0.09370) (1.00000)

Q(200) 191.4497 121.3761

(0.65553) (0.99999)

Q(1500) 1157.4514 796.2582

(0.80658) (1.00000)

<Table 8> Hurst Exponents
5 “re B ot a2 TR L R i, ?’W‘” e Mwav i&“"&y&? i, N e e DI NSRS ORPAS LA CIES - 2 3
Models S ‘Hurst Exponents Standard Deviation
Daily stock returns 0.59732 0.00425
Randomly scrambled daily stock returns 0.5476 0.00611
(scrambled r)
AR(1) residuals 0.5872 0.00417
AR(3) residuals 0.6104 0.00398
ANN(3-3-1) 0.7138 0.00562
Conditional variances 0.7547 0.00936
<Fig. 1> The overall architecture
yo(t+1) >
Yolt)

Observations (y,)  y,(t-p)

e(t)

Errors () e(t-q)

FETOZ

e(t+1)
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