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Abstract

We show how transport capacity in bit-meters/s/Hz
scales as the node density increases in ad-hoc networks.
This was considered by many including [2, 3, 4]. In this
paper, we do not consider the scaling law of the trans-
port capacity of the entire network, but focus on the
transport capacity of one source-destination pair. We
assume opportunistic routing [1] is used to select the
best relay node that is closest to the destination among
nodes who successfully decode the current packet. We
assume the squared channel gain decays as e−αd/dγ ,
where α ≥ 0 is the absorption constant, γ ≥ 0 is
the path exponent, and d is the distance between a
transmitter-receiver pair. We assume uniformly dis-
tributed nodes in n dimensions.

We show the transport capacity is bounded from
above if there is no fading. Assuming slow flat Rayleigh
fading and α = 0, we show the transport capacity scales
as Θ((lnλ)1/γ) as the node density λ tends to infin-
ity for one-dimensional networks. For any dimensional
network, the transport capacity scales as Θ(

√
lnλ) if

α = 0 and γ = 2.

1. Introduction

The transport capacity of wireless ad-hoc networks
was analyzed by Gupta and Kumar [2] and in related
papers [3, 4]. They show asymptotically how the ca-
pacity scales in the number of nodes. Such scaling de-
pends on many factors including traffic model and node
placements.

Since the per-node transport capacity of a pure
wireless network scales as Θ(1/

√
n) in the number of

nodes n under a very general set of assumptions [2],
it is obvious that letting all nodes transmit simulta-
neously becomes impractical as the node density in-
creases. Therefore, such a wireless network can be more
useful for intermittent traffic, e.g., emergency traffic. In
this case, a more important metric is how fast we can
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convey such information from the source to the desti-
nation. For this reason, we consider there is only one
source-destination pair in the entire network and con-
sider the maximum possible transport capacity in bit-
meters/sec/Hz for the pair. Our analysis can also be
applied to the case when the bandwidth is abundant
such that the actively used bandwidth scales linearly
with the number of senders.

We show how the transport capacity scales as the
node density increases. We consider two scenarios, with
and without fading. As fading provides the multi-user
diversity gain [5], we can expect similar effect in oppor-
tunistic routing [1, 6, 7], i.e., the capacity is expected to
increase as the node density increases. In [4], the effect
of fading on transport capacity was analyzed. However,
only the cases when the absorption constant is posi-
tive or when the path loss exponent is greater than 3
were considered in [4]. In this paper, we consider more
general cases when the path exponent has any value.
Furthermore, our approach is different from that of [4]
since we do not consider the scaling law of the trans-
port capacity of the entire network, but focus on the
transport capacity of one source-destination pair.

This paper is organized as follows. In Section 2 we
define our network and channel models. In Section 3
we analyze the transport capacity.

2. Network Model

In this section we describe our network model. We
first assume one- or two-dimensional distribution of
nodes, where nodes are uniformly distributed in infi-
nitely big one- or two-dimensional line or plane, re-
spectively. Let λ and µ denote the node densities for
the one- and two-dimensional networks, i.e., λ is the
node density (number of nodes per meter) for the one-
dimensional network and µ is the node density (num-
ber of nodes per square meter) for the two-dimensional
network.

We assume multi-hop routing. When there are
one or more receivers correctly decoding the packet,
the one that is closest to the destination relays the



packet. Finding the node closest to the destination
among nodes successfully receiving the packet can be
done by using timers whose values depend on the dis-
tance to the destination [1]. Each node is programmed
to broadcast a short signaling message upon expiration
of the timer to indicate that it will be responsible for
relaying the message. Upon receiving such a message,
all other nodes discard the current message. When
no receiver correctly decodes the packet, no node will
transmit the signaling message and the current trans-
mitter retransmits. Such a signaling message should be
broadcasted with a high power to have enough cover-
age. If the signaling message size is much shorter than
the data packet size, the overhead due to the signaling
can be ignored.

This is repeated until the packet reaches the des-
tination. We assume the destination is infinitely far
away. Each hop is independent in this case if we assume
independent fading and Poisson distribution of nodes
that is randomized for each transmission, e.g., due to
mobility. Even if there is no mobility, our asymptotic
analysis still holds at high node density regime as long
as the fading is independent. Note that it is enough to
analyze the maximum traverse distance per hop under
these assumptions. Therefore, from now on we focus on
a single hop, where there is one transmitter and mul-
tiple receivers, where one of them will be relaying the
packet in the next hop.

We assume no other cooperation between relay
nodes. We assume no other signaling messages and
thus no channel state information (CSI) is available at
the transmitter. Therefore, we assume the transmitter
transmits at a fixed power and at a fixed rate.

Let (xk, yk) denote the coordinate of the k-th receiv-
ing node, where k = 1, 2, . . .. In the one-dimensional
network, yk = 0 for all k. We assume the transmitting
node is at the origin. Let dk =

√

x2
k + y2

k denote the
distance in meters between the transmitter and the k-
th receiver. Note that the final destination is infinitely
far away on the x axis, i.e., at (∞, 0). The received
SNR at the k-th receiver is given by

e−αdk

dγ
k

P

N0W
|hk|2,

where hk is the fading coefficient from the transmit-
ter to the receiver, P is the transmission power, W
is the bandwidth and N0 is the noise spectral density
assuming the additive-white Gaussian noise (AWGN)
channel. We assume hk = 1 if there is no fading, i.e.,
line of sight, and assume |hk|2 is exponentially distrib-
uted and E[|hk|2] = 1 for Rayleigh fading. We assume
hk’s are independent and they do not change during
the transmission of a packet but change randomly for

the next transmission, i.e., block fading. Note that the
above propagation model is not very accurate when dk

is very small, but it will be asymptotically accurate
since as we will show later dk for the node closest to
the destination tends to infinity as the node density
tends to infinity if there is fading.

3. Transport Capacity

In this section, we analyze the transport capac-
ity of our network. We define the transport capacity
C(R) in [bit-meters/s/Hz] given the transmission rate
R [b/s/Hz] as follows

C(R) = E

[

sup
k

(Rkxk)+
]

,

where x+ = x if x > 0 and x+ = 0 otherwise
and Rk = R if Ck ≥ R and Rk = 0 otherwise,

where Ck = log2

(

1 + e−αdk

dγ

k

|hk|2SNR
)

[b/s/Hz] and

SNR = P/N0W . The expectation is over all instances
of node locations and over all fading instances. Note
that supk(Rkxk)+ = 0 if there is no successful recep-
tion, in which case the current transmitter needs to
retransmit and the contribution to the transport ca-
pacity is zero for the failed transmission.

We define the transport capacity C∗ as the supre-
mum of C(R) over all R > 0.

C∗ = sup
R>0

C(R)

We define the maximum coverage radius L given
the transmission rate R assuming no fading as follows

log2

(

1 +
e−αL

Lγ
SNR

)

= R

We define the effective node density ρ(x) at distance
x (on the x axis) from the transmitter that includes
only the nodes that satisfies Ck ≥ R, i.e.,

ρ(x) = λPr

[

log2

(

1 +
e−αx

xγ
|h|2SNR

)

≥ R

]

for the one-dimensional network and

ρ(x) =

∫ ∞

−∞
µ Pr

[

log2

(

1 +
e−α

√
x2+y2

(x2 + y2)γ/2
|h|2SNR

)

≥ R

]

dy

for the two-dimensional network.
When there is fading, we get

ρ(x) = λ exp
[

−e−α(L−x)(x/L)γ
]

(1)



for the one-dimensional network and

ρ(x) =

∫ ∞

−∞
µ exp

[

−e−α(L−
√

x2+y2)

(

x2 + y2

L2

)γ/2
]

dy

(2)
for the two-dimensional network.

When there is no fading, we get

ρ(x) =

{

λ x ≤ L
0 x > L

for the one-dimensional network and

ρ(x) =

{

2µ
√

L2 − x2 x ≤ L
0 x > L

for the two-dimensional network. Note that these are
equivalent to the fading case if we set γ = 0 and α → ∞
or if we set α = 0 and γ → ∞ in (1) and (2).

The following shows how C(R) can be computed.

Proposition 1 The transport capacity C(R) given the
transmission rate R is given by the following

C(R) = R

∫ ∞

0

e−
R

∞

s
ρ(t)dtsρ(s)ds

Proof: Define ϕ(x) as follows

ϕ(x) = E

[

sup
k

(Rkxk)+

R

∣

∣

∣

∣

sup
k

(Rkxk)+

R
≤ x

]

Using ϕ(x + δx) ∼ xρ(x)δx + (1− ρ(x)δx)ϕ(x), we get

ϕ′(x) + ρ(x)ϕ(x) = xρ(x)

Solving this differential equation for ϕ(x) using the
initialization condition ϕ(0) = 0, we get C(R) =
Rϕ(∞) = R

∫∞
0 e−

R
∞

s
ρ(t)dtsρ(s)ds as shown above. �

The transport capacity when there is no fading be-
comes

C(R) = RLΦ1(λ̄)

for the one-dimensional network, where Φ1(ν) = 1 −
(1 − e−ν)/ν and λ̄ = λL and

C(R) = RLΦ2(µ̄)

for the two-dimensional network, where

Φ2(ν) =

∫ 1

0

eν(u
√

1−u2+sin−1 u−π/2)2νu
√

1 − u2du

and µ̄ = µL2.
Since Φ1(ν) ≤ 1 and Φ2(ν) ≤ 1, the transport ca-

pacity C(R) is upper-bounded by RL for both one- and
two-dimensional networks. The bound is tight as the

node density tends to infinity. Therefore, the transport
capacity C∗ tends to R∗L∗ as the node density tends
to infinity, where

L∗ = argmax
L

L log2

(

1 +
e−αL

Lγ
SNR

)

(3)

and

R∗ = log2

(

1 +
e−αL∗

L∗γ
SNR

)

. (4)

If α = 0 and γ = 2, we get R∗ ∼ 2.30 and L∗ ∼ 0.505
assuming SNR = 1. From now on we assume SNR = 1
without loss of generality when α = 0 since we can
scale L accordingly.

If there is fading, the transport capacity C(R) for
one dimensional network is given by

C(R) = RLΦ1f(λ̄, ᾱ, γ),

where ᾱ = αL and

Φ1f (λ̄, ᾱ, γ) =

∫ ∞

0

λ̄v exp
[

−e−ᾱ(1−v)vγ
]

×

exp

[

−
∫ ∞

v

λ̄ exp[−e−ᾱ(1−u)uγ ]du

]

dv

If α = 0 and γ = 1, we get

Φ1f (λ̄, 0, 1) = γ0 + Γ(0, λ̄) + ln λ̄, (5)

where γ0 ∼ 0.577 is the Euler’s constant and Γ(a, x) =
∫∞

x
ta−1e−t dt is the incomplete gamma function.

Since Γ(0, x) → 0 as x → ∞, the transport capacity
in this case increases logarithmically in the node den-
sity. When α = 0 and γ > 1, when α > 0 and γ = 1,
or when α > 0 and γ > 1, the asymptotic transport ca-
pacity increases slower than the logarithmic growth of
(5) in the node density since the asymptotic behavior
depends only on ρ(x) when x is large and ρ(x) is at-
tenuated more under one of these conditions. Figure 1
shows the transport capacity C(R) for one-dimensional
network with fading when α = 0 and γ = 2. It also
shows simulation results, where 10,000 transmissions
are simulated with random node locations and fading.
It matches our calculation very closely.

If α = 0, we get the following scaling law for C∗.

Proposition 2 The transport capacity C∗ scales as
Θ((ln λ)1/γ) as λ tends to infinity for one-dimensional
network with fading when α = 0. Furthermore, the op-
timal rate R∗ and the optimal L∗ giving C∗ are given
by (4) and (3), respectively asymptotically as λ tends
to infinity, i.e., the optimal rate and the optimal L for
the no fading case.



Proof: We give a brief sketch of the proof. When α =
0, we get

Φ1f (λ̄, 0, γ) =

∫ ∞

0

λ̄v exp

[

−vγ − λ̄

γ
Γ

(

1

γ
, vγ

)]

dv

Since exp
[

− λ̄
γ Γ
(

1
γ , vγ

)]

exhibits a sharp transi-

tion from 0 to 1 at v∗ as λ tends to infinity,
we can use the following approximation Φ1f ∼
∫∞

v∗
λ̄ve−vγ

dv = λ̄
γ Γ
(

2
γ , v∗γ

)

, where v∗ is the solution

to exp
[

− λ̄
γ Γ
(

1
γ , v∗γ

)]

= 1
e , where v∗ tends to infinity

as λ̄ tends to infinity. We get

Φ1f ∼ v∗ (6)

and v∗ ∼ (ln λ)1/γ asymptotically as the node den-

sity tends to infinity since Φ1f ∼ λ̄
γ e−v∗γ

v∗γ(2/γ−1) and
λ̄
γ e−v∗γ

v∗γ(1/γ−1) ∼ 1 using Γ(a, x) = e−xxa−1(1 +

O(1/x)) and the fact that v∗ is the solution to

exp
[

− λ̄
γ Γ
(

1
γ , v∗γ

)]

= 1
e . Note that the optimal rate

R∗ and the optimal L∗ resulting in the optimal trans-
port capacity C∗ are the same as that of the no fading
case (4) asymptotically as the node density tends to
infinity since asymptotically Φ1f ∼ (lnλ)1/γ is a func-
tion of λ only and therefore C∗ is maximized by (3)
and (4). �

The accuracy of (6) is demonstrated in Figure 2, which
compares the transport capacity C∗ with and without
fading and also shows the asymptote (6) for the fading
case. Note that v∗ used in Figure 2 was obtained by

numerically solving exp
[

− λ̄
γ Γ
(

1
γ , v∗γ

)]

= 1
e for v∗ not

by using v∗ ∼ (lnλ)1/γ . Furthermore, the values of L∗

and R∗ used in Figure 2 were calculated for each value
of λ instead of using (3) and (4). These two should give
us a better fit even for small λ’s as can be seen from
the figure. Note that the transport capacity for the no
fading case is upper-bounded, but it is unbounded and
scales as Θ(

√
lnλ) for the fading case with γ = 2.

For the two-dimensional network with fading and
α = 0, γ = 2, we get

ρ(x) =

∫ ∞

−∞
µ exp[−(x2 + y2)/L2]dy

= e−x2/L2√
πLµ,

i.e., the result is identical to the one-dimensional case
if we use λ = µL

√
π. Similar is also true for dimensions

higher than two.
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Figure 1: Transport capacity C(R) computed for one-
dimensional network with fading when α = 0 and
γ = 2. Curves from bottom to top correspond to
λ = 2k, where k = 0, 1, . . . , 14. Also shown are sim-
ulation results for λ = 2k, where k = 0, 1, . . . , 6 (©, �,
△, ×, +, ▽, ♦, respectively).
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Figure 2: Transport capacity C∗ for fading (©) and
no fading (�) cases for one-dimensional network with
α = 0 and γ = 2. Asymptote (6) (solid curve without
markers) is also plotted for the fading case.


