
Performance Analysis of Object-Oriented Spatial Access Methods

Byungyeon Hwang

Department of Computer Science
Songsim University

Kyonggi, Puchon 422-743, Korea
byhwang@ sicom.kaist.ac.kr

Abstract

In geographic and CAD applications as well as in
VLSI design, the practical need for access methods that
crllow f o r efJicient spatial searching has increased
considerably. In this paper, we show a performance
comparison of the most promising spatial imess
methods, BR tree, R-tree, and R'-tree, through
performance results from analytical study. For search,
BR tree produces the best perfomunce with respecr to the
number of disk a c c m e s since it generates the smallest
number of nodes and uvoids overlapping of rectang1e.v.
On the other hand, R'-tree gives the smallest nuniber of
false drops because it avoids overlapping of rectangles
unlike R-tree and conrains more reduced empty space
than BR tree. Furthermore, the experimem results are
relatively similar to the results from analyticul stu&

Songchun Moon

Department of Information and
Communications Engineering, KAIST
207-43, Cheongryangni, Dongdaemun

Seoul 130-012, Korea

spatial object by the minimum bounding rectangle with
the sides of the rectangle parallel to the axes of the data
space. The most important property of this simple
approximation is that a complex object is represented by a
limited number of bytes. Although a lot of information is
lost, minimum bounding rectangles of spatial objects
preserve the most essential geometric properties of the
object, i. e. the location of the object and the extension of
the object in each axis. Our studies include the
experiment results obtained from a real data as well as
analytical study and simulation results.

The remainder of this paper is organized as follows.
Section 2 describes the representative spatial access
methods like R-tree [lo], R'-tree [19], and our spatial
access method, BR tree [12]. Section 3 shows the
p e r f o m c e results from analytical study for R-tree, R'-
tree, and BR tree. The comparison of performance from
analytical study and experiment is shown in Section 4.
Finally, conclusions appear in Secuon 5.

1: Introduction
2: Spatial access methods

In geographic and CAD applications as well as in
VLSI design, the practical need for access methods that
allow for efficient spatial searching has increased
considerably. Spatial data access methods provide a
means of retrieving objects which are n dimensional
points, lines, rectangles, or polygons. In particular, they
optimize spatial queries which retrieve all points or
rectangles which are enclosed in or overlap a specific
search region.

Recently, there have been a substantial number of
access methods proposed to manage point or solid data
[l , 3, 7, 11, 13, 181. However, performance studies of
these access methods have often been analytical rather
than based on real world implementations [6,9, 151. Also,
the non-analytical performance studies consider the
simulation results for a random data 12, 58, 133.

In this paper, wc will present a performance
comparison of the most promising spattal access methods
which are based on the approximation of a complex

The access methods which we consider optimize
queries that retrieve all the data objects overlapping a
user-specified rectangular window Q. The definition of
window query and allowable geometry is shown in Fig. 1.
Here objects B, C, and D overlap the search region Q. In
this study, we restrict boxes to 2-dimensional rectangles,
specified 4 byte integer numbers, Xm,, X-, Y,,, and Y-.
In Fig. I, for instance, boxes B through E are legal,
whereas box A and F are not.

Iol
Fig. 1. Window query and allowable geometry

2.1: R-tree

R-tree is a height-balanced tree similar to the B-tree

0-8186-6430-4/94 $4.00 0 1994 IEEE
364

141. Let M be the maximum number of entries that fit in
one node, and let m I MI2 be a parameter specifying the
minimum number of entries in a node. The number of
index record entries in each leaf node of an R-tree lies
between m and M. The index enay has the form:

(I, tuple-identfler),
where tuple-identifier refers to a tuple in the database and
I is an n-dimensional rectangle which is the bounding box
of the spatial object indexed. Z is represented as I = (I, Z,,
..., Here, n is the number of dimension and Ii is a
closed bounded interval, [a, b], describing the extent of
the object along dimension i. Each non-leaf node contains
be%ween m and M entries, each of which has the form:

(I, child-pointer),
where child-pointer is a pointer to a successor node in the
next level of the R-tree, and Z is the smallest rectangle
that spatially contains the rectangle in the child node.

An example set of data rectangles and its
corresponding R-tree are shown in Fig. 2 and Fig. 3,
respectively. In the Figures, for instance, the spatial
objects D and H denote the 2-dimensional rectangles
stored in a leaf node, and the region R 3 denotes the
minimum rectangle that contains the objects in the
descendant node.

Fig. 2. Rectangles organized Fig. 3. An R-tree for the
according to an R-tree rectangles of fig. 2

The term branching factor, called fan-out, can be used
to specify the maximum number of entries that a node can
have. For example, each node of an R-tree with branching
factor 4 points to a maximum of 4 descendents (among
non-leaf nodes) or 4 objects (among the leaves).

When we consider perfomance of R-tree with respect
to the search, the concepts of coverage and overlap are
important. The coverage of a level is defined as the total
area of all the rectangles associated with the nodes of that
level, and the overlap of a level is defined as the total area
contained within two or more nodes. Obviously, efficient
R-tree searching demands that both coverage and overlap
be minimized, although overlap seems to be the more
critical of the two issues. For a search window falling in
the area of N overlapping leaves, in the worst case, N
paths from the root to each of the overlapping leaves have

to be followed slowing down the search from h to hlv,
where h is the height of the tree. The minimum coverage
reduces the amount of empty space covered by the nodes,
and the minimum overlap reduces the false drop problem
which causes unnecessary searches of tree. In order to
search Q in Fig. 2, both subtrees rooted at nodes R1 and
R4 must be searched although only the latter will be true.

2.2: R+-tree

R'-tree may be thought as an extension of K-D-B tree
[17] to cover spatial objects. Unlike R-tree, R'-tree does
not limit the minimum number of entries contained in a
leaf or non-leaf node. The index structure of R'-tree is the
same as that of R-tree except that an object can be stored
in several nodes because R'-tree avoids overlapping of
rectangles. That is, in some cases, in which a given
rectangle covering a spatial object at the leaf level
overlaps with another rectangle, R'-tree decomposes it
into a collection of non-overlapping sub-rectangles whose
union makes up the ariginal rectangle. Each leaf node of
an R'-tree contains an entry of the form:

(Rectangle, tuple-identij?er),
where fuple-identz$er is an object identifier and is used to
refer to an object in the database. Rectangle is used to
describe the boundary of data objects. Each non-leaf node
contains an entry of the fom:

(Rectangle, child-pointer),
where child-pointer is a pointer to a lower level node of
the tree and Rectangle is a representation of the enclosing
rectangle.

Tbe R'-tree and its rectangles correspondmg to the
rectangles in Fig. 2 are shown in Fig. 4 and Fig. 5.

Fig. 4. Rectangles of Fig. 2 Fig. 5. An R'-tree for the
on basis of an R+-tree rectangles of fig. 4

In R'-tree all the pointers of a sub-rectangle clipped
point the same object. R'-tree prevents overlapping of
rectangles, but the depth of tree becomes high. For
example, the height of the R-tree in Fig. 3 is 2 and that of
the R'-tree in Fig. 5 is 3. Therefore, R'-tree requires large
storage space.

385

2.3: BR tree

The BR tree is a new data structure for spatial
indexing based on the z-transform [161. In n-dimensional
space, one point is represented by n coordinate values, i.e.
n binary strings. For example, (6, 3, 7) represents a point
in 3-dimensional space. Z-transform is the function that
transforms an n-dimensional (1122) point into an one-
dimensional point, called z-value. Z-value is obtained by
extracting the first bit from each binary string and then
enumerating these extracted bits, and then extracting the
second bit, and so on For example, if one point is n
binary strings like (b1,hl,* ... blk, b2,1Rn ... b,, ..., bulb,, ...
bnk), where b, is the j bit of i dmension, z-value
becomes bl,b,, ... b,,b,,h,, ... bn2 blkb, ... bd.

Z-transformed subspace, we call z-area, is represented
by its z-value. The z-value for the z-area is constructed by
interleaving the bits of each dimension, which describes
the range of values covered by the z-area, bit by bit.
Assume that the horizontal and bertical axes of a ?-
dimensional space are X and Y. respectively. Suppose
lhat the ranges of X and Y values covered by the z-area
are described by (4 I X 2 5, 0 I Y 5 3). In binary, these
ranges are U 0 I X I JQl, QOO 2 Y I 011). The z-area IS

expressed by the common prefix of each range: (10, 0).
When the prefm value of X begins first, interleaving these
bits yields a z-value of 100.

In a BR tree, each z-area corresponds to one disk
block. When we represent a set of z-areas by one-
dimensional array named r, each I-bit entry of :may r
should be changed to the address of disk block in order l o
index disk blocks. If the address of disk block is 0, i.e.
null, this means that the partition does riot exist. When the
index itself is stored in disk and the size of one disk block
IS fixed, in order to insert many objects of real space,
inore than one disk block can be required. If these blocks
are stored in continuow blocks, search operation becomes
poor by sequential search. Therefore, in order to retrieve
indices stored in more than one disk block effectively, an
index structure of tree form is required,

In a BR tree, data objects are stored at leaf nodes, and
the subregions in the children nodes are stored at non-leaf
nodes. An example set of data rectangles and its
corresponding BR tree are shown in Fig. 6 and Fig. 7,
respectively. The branching factor is assumed to be 4. In
the Figures, for instance, the spatial objects A and B are
the 2-dimensional rectangles intersected or included in
the z-area whose &value is 01. The second entry in the
non-leaf node indicates the block address of the leaf node
containing the objects A and B.

Fig. 6. Rectangles organized Fig. 7. A BR tree for the
rectangles of Fig. 6 according to a BR tree

Each leaf node in a BR tree contains index record
entries of the form:

(Od, R),
where Oid is an object identifier which is used to refer to
an object and R represents the boundary of the objects.
For the object B in Fig. 7, Oid is the pointer to the disk
block containing the object, and R is the values of
coordinates enclosing the object. Each non-leaf node
contains entries of the form:

where each cpi is a pointel to a child node. Let A4 be the
maximum number of entries in a non-leaf node. The BR
tree satisfies the following properties.

(CP,? CP23 .a., CP"),

The root node has between 2 and A4 children.
Every non-leaf node has between I and M children
unless it is the root.
Every leaf node contains between 0 and
1W((p+2nd)/p), index records, where p is the size of
pointer, n is the number of dimension, and d is the size
of each element in the values of coordmates .
Non-leaf node is not necessarily the smallest rectangle
that spatially contains the rectangles in the child node
because the pointer values in each node represent the
location of a region. For the first entry of non-leaf
node in Fig. 7, the first 0 and the second 0 denote the
left and low side of partitioned space, respectively.
The null pointer in non-Zeuf node means that a
partition does not exist.

3: Analytical study for point queries

In this section, we analyze the performance of BR
trees, R'-trees, and R-trees with respect to the effects of
the number of disk accesses for point queries. For these
access methods, the search performance depends on not
only the data itself, i.e. the number of objects, sizes, and
locations, but also the sequence of objects inserted in the
access methods [6] . To avoid the effects of the insertion

366

sequences and splil routines on the number of disk
accesses and storage overhead, we perform a best-case
comparison: Given all the data objects in advance, the
non-leaf nodes of each access method have minimal
coveruge and overlap in the split algorithm. The coverage
of a level is defined to be the total area of all the
rectangles associated with the nodes of that level, and the
overkip of a level is defined to be the total area contained
within two or more non-leaf nodes of the tree index
structure.

The largest portion of the analysis i!, devoted in
calculating the characteristics of the optimal fathers
having minimal coverage and overlap in the split
algorithm. For each method we consider the cases where
all the nodes are full. To simplify the analysis, we assume
that the data objects belong to a few classes and each
class consists of objects of the same size since the
analyucal method consisting objects of the different size
is impossible. This is m e in the engineering application
like VLSI designs, where there are a few types of
elements, e.g. busses, NOR-gates etc., with many
instances of the elements in the design. Geographic
applications follow this assumption with small deviations.
For example, the states of the U. S . A. have similar sizes,
with few exceptions. Furthermore, we assume that the
objects are uniformly distributed. A characteristic of the
uniform distribution for the objects is that the optimal
father nodes will also be uniformly distributed.

3.1: Method for analytical study

'The proofs of the forthcoming analyses can be derived
more easily if we consider rectangular objects as points in
a 4-dimensional space [I l l . For a rectangular object
aligned with the axes, four coordmates, i.e. the x and y
coordinates of the lower-left and upper-right comers, are
enough to uniquely determine it. Since 4-dimensional
spaces are impossible to be illustrated, in this paper we
consider line segments (1-d objects) instead of rectangles
(2-d objects), and we transform the segments into points
in a 2-d space. Each segment is uniquely determined by
(Xstan, Xend), the coordinates of its start and end points.
Obtaining formulas and results for line segments is a frrst
step to the analysis of 2-d rectangular objects, or even
rectangles of higher dimensionality.

In the case of line segments, the "screen" collapses to a
line segment, which starts at 0 and ends at 1. An example
set of line segments and their 2-d representation are
shown in Fig. 8 and Fig. 9, respectively. In the Figures,
some important observations with respect to the
transformed space are as follows.

(1) There are no points below the diagonal in Fig. 9 since
Xstart IXend .

(2) In Fig. 9, line segments of equal size such as B and C
are represented by points that lie on a line parallel to
the dmgonal. Zero-size segment, i.e. point, like F, is
represented by point on the diagonal.

(3) Line segments not entirely within the screen like A in
Fig. 8 are allowed. In the analysis we consider their
remainder after clipping (solid part of A in Fig. 8).

(4) Points outside the shaded area in Fig. 9 are of no
interest because tbe corresponding segments do not
intersect with the screen.

Fig. 8. Some line
segments

Fig. 9.2-d representation of the
line segments of Fig, 8

(5) The segments are semi-open. That is, they contain
their leftmost end, but not the rightmost one. The
screen is semi-open, too, including "0", but not "1".
Query segments are closed.

(6) The segments covering a given point X, of the screen
are transformed to points in a shaded area as shown in
Fig. 10. The s h a d area in Fig. 11 corresponds to all
the segments intersecting with the segment S(X,, XJ.

Fig. 10. Segments Fig. 11. Segments intersecting
with the segment S(X,, X,) covering the point X,

To make the analysis tractable, we assume that the line
segments of a given size need not be totally within the
screen. These segments divide the interval (-0 , l) to N+l
equal subintervals, where N is the number of segments
and CJ is their size. An example set of 5 segments of size
0.25, which are uniformly distributed, and their
corresponding 2-d transformations are shown in Fig. 12

367

and Fig. 13, respectively. In Fig. 13, 5 segments divide
the interval (-0.25, 1) to 6 equal subintervals.

Parameter Descnpuon

. c the capacity of the data pages (=data objects per pagt
the fanout of the internal nodes of the BR tree
the fanout of the internal nodes of the R+-tree
the fanout of the internal nodes of the R-tree
the height of a BR tree
the height of an R+-tree
the height 01 an R-tree

Fbr
4+
Fr

Hb,
Hr+
H r

Fig. 12. Segments of size Fig. 13.2-d transformations
of the segments of Fig. 12 0.25, on the screen

Definition: For a given point, let overlap Ov be the
number of segments that contain it.

Tuble I indicates the parameters common to all the
forthcoming analyses.

Table 1 Parameters of the analysis

3.2: Analytical study for BR tree

We consider N segments of size a, which are
uniformly distributed as described before. An important
lemma is as follows.

Lemma: Given N segments of size a, which are
uniformly dismbuted on the screen, a line segment (query
segment) of size q intersects with intsecr(N, CT , q)
segments, where

Proof: Consider Fig. 14. Projecting the line A B on the
horizontal axis, we have the line AB', of size l+o. The
query region (shaded area) intersects the line AB on a
segment CD, whose projection C'D' is of a size wq. The
fraction of the intersected segments, i.e. circles on line
CD or circles on line ("'D', is length(CD) / ZengrhIAB) =
(o+y) / (l+o). Since the line AB is divided into N+1 equal
subintervals by the circles, the line CD will contain on

the average

circles, which is exactly the number of segments that the
query segment q will intersect.

Fig. 14. N segments of size a represented as circles

Notice that the formula does not depend on the
position of the query segment on the screen since we have
defined the uniform distribution of the N segments. For
q=O, that is, the query segment is a point, we have the
formula for the overlap.

Corollary: Given N segments with size a, which are
uniformly distributed on the screen, the overlap is
constant, and given by the formula:

0
0, (N 0) = W + I) (2)

(1 + 0)
From (1) and (2) we have inrsec?(N, a, q) = O$V, 0) +

For example, consider the case of N=5 and + O S . For
the segments shown in Fig. 15, the overlap is [O S /
(1+0.5)] x (5+1) = 2. Every point on the screen is covered
by 2 segments.

q(N+l-Ov(N, 0)).

I I I
-0.2s 0 0.5 1 1.25

Fig. 15. 5 segments of size 0.5 each

Assume that we have N segments of size 0, which are
uniformly distributed on the screen, as explained before.
Let Hbr be the height of a BR tree, which is assumed to be
full, that is, every data page contains C entries, each
internal node has Fbr sons. We assume that level 1 is the
first level above the data objects and the root is at level
Hbr+l.

The total number of data pages will be F Hbr dividing

368

the screen into F Hbr intervals. Due to the uniformity
assumption, each interval will be of a size 1/F Hbr. Each
page corresponds to one such interval. Tbe segments that
intersect such an interval will be entered in the
corresponding page. Since each page is full, we have
C = intsect(hr, 9 I/F%) or C = 0 + 1 (N + l - 0)

F H b r

where 0 is the overlap 0 = Ov(N, 0) of the given set of
segments.

The total number of disk accesses br-da for a point
query is the height incremented by one, to account for the
retrieval of the data page. The root of the tree is assumed
to be on the disk. Thus, the br-& for a point query is as
follows.

br-du = I +log '+'so (3a)
F& C-o

or, since N >> 1 and N >> 0,

3.3: Analytical study for R-tree

In the same way as above we do the analytical study
for R-tree. The tree is assumed to be full. Thus, the
segments are grouped in N/C pages, in groups of size C.
Each page is characterized by the "minimum enclosing
segment", which covers all the segments in this page.
This segment corresponds to a point in the transformed
space. For example, in Fig. 16, "A" is the minimum
enclosing segment for the segments A, and A,.

'E

Fig. 16. Illustration of fathers of level 1 (G2)

containing F, data pages (and therefore CFr segments), to
form the lowest level of internal nodes of the R-tree
("fathers of level 2"). In general, "fathers of level i" have
size

and are uniformly distributed, in the sense described
before. The root of tbe R-tree corresponds to a father of
level H, +l.

for fathers of level i is the
number of fathers of level i containing a point on the
screen, Since the number Nfarher, ,of i-level fathers is

The overlap Oy,

' N

CFr
(6)

N
father, i = -

their overlap Ov,fa,,cr, is, from the corollary CEq. (2))
a father, i

+ I) (7) -
Os, father, i - I + 0 (Nfather, i - .

father, i

which becomes
0 - I

To find the number of disk accesses r-du in answering
a point query, we have to add all the fathers of any level,
which cover the query point. That is

H r + l

r-ah = Ov, futher, i (9)
i = I

where H, is the height of the full R-tree.
N

r C
H , = l o g , - (10)

Then, (8) and (10) give when H . is an integer

3.4: Analytical study for R+-tree

In the same way as above we do the analytical study
for R'-tree. The R'-tree is similar to the BR tree since
they prevent overlapping of rectangles in the non-leaf
nodes of a tree by clipping objects which cause
overlapping region. However, unlike BR trees, R'-trees
need the values of coordmates in representing a region of
non-leaf nodes. Therefore. the fan-out of an R'-tree is

These segments will be referred as by "fathers of level
, of equal size, which 1". It can be proven in [6] and

are uniformly dntributed, is as follows.

0 faher, I = - + O) (C - l) + O (4) smaller than that of a BR tree. That is, R'-trees have the
smaller entries than BR trees in each non-leaf node.
Using the same arguments as BR trees, we have:

(N+ I ,J
Data pages are grouped in N/(CF,,) groups, each group

369

3.5: Analytical results for point queries

Based on the formulas described in the previous
secuon, we obtain some results that indicate how BR
trees are compared to R'-trees and R-trees. The following
values are assumed.

s i ze juge = 1,024 bytes, size-rectangle = 16 bytes
s i ze jo in ter = 4 bytes, size-header = 24 bytes

Given these numbers we can derive the fan-out Fr+, Fr,
and the capacity C of leaf pages. We assume that the first
24 bytes of a page are taken for the header. 1 =50

1;L 4 I

(sizegage - size-header)

(size-rertangk + sizegoarter)
F = F = C =

r t r 1
However, unlike R-tree and R'-tree, BR tree does not

need the values of coordinates in representing a region of
a non-leaf node since the region is simply represented by
a relative pointer value. Therefore, k'br is as follows.
';hr = 1 (s izesage sizc:-header)

Fig. I7 gives the disk accesses as a function of N
segments in the case where overlap 0 = 40. Fig. I 8 gives
the same values as a function of 0 in the case where N =
100,000.

(19024-24) = 250
sizegointer

3 1 3 2 1 0 3 1 0 4 1 0 5 1 0 6 107 0 I O 20 30 40 50 60

riumba of segments overlap

Fig. 17. Disk access for N Fig. 18. Disk access for 0

As expected the R-tree always performs worse than the
BR tree and R'-tree since the excessive searching hy
overlapping of non-leaf nodes is required. Also, the BR
lree has always better performance than the R'-tree since
it contains more entries than the R+-tree in non-leaf
nodes.

In three access methods the number of disk accesses
increases with the number of segments since the height of
the tree increases. Finally, increasing overlap also
increases the number of pages searched; in R-trees this IS

due to multiple paths that have to be followed till the

leaves have been reached, while in the BR tree and R'-
tree it is due to increasing number of sub-segments that
have to be created because of splits.

4: Comparison of performance from
analytical study and experiment

In this section, we compare performance results from
analytical study and those from experiment [12] with
respect to the number of disk accesses for point queries in
order to verify the correctness of the analytical model.
The experiment results are relatively similar to the results
from analytical study. For example, as expected in the
results from analytical study, BR tree produces the best
search performance in simulation results since it induces
the smallest number of nodes and avoids overlapping of
rectangles of non-leaf nodes. Furthermore, R-tree always
performs worse than the BR tree and R'-tree since the
excessive searching by overlapping of non-leaf nodes is
required. In three access methods, the number of disk
accesses increases with the number of objects since the
height of the tree increases. Unlike R+-tree, BR tree does
not need downward propagation for split in the non-leaf
nodes. Therefore, the depth of BR tree is smaller than that
of R'-tree and the experiment search perfonnance of BR
tree is better than the analytical search performance.

We consider a quantitative comparison for the
analytical study and simulation. Table 2 gives a list of
performance results from analytical study and those from
simulauon for BR tree and in addition a set of relative
errors between them. Herc the error rate is computed as
follows.

Error Rate = [Max@, A) - Min(E, A)] / Max@, A)
where E and A indicate the performance results from
simulation and those from analytical study. respectively.

Table 2 Comparison of performance from
analytical study and experiment

Theoly 1.84 I 1.94 I 2.14
Experiment I 1.51 I 1.66 I 2.0 I 2.2

I Error Rate I 11.7 percent 19.8 percent I 3.0 percent1 2.7 percent]

From the table, we can see that the error rates between
the performance results from analytical study and those
from simulation with respect to the number of disk
accesses are about 2-11 percent. Unlike in simulation
results, we assumed that all the leaf nodes of each access
method are full and the non-leaf nodes have minimal

370

coverage and minimal overlap in analytical study.
Therefore, the quantitative performance values from
analytical study may be different from those from
simulation. The relative performance comparison is more
important than the quantitative performance comparison.
In both the analytical study and simulation, BR tree
always produces the best search performance and R-tree
always performs worst. As a result, it is shown that the
performance results from simulation and those from
analytical study relatively agree well.

5: Conclusions

In this paper, our spatial access method, called BR
tree, is compared with the two representative spatial
access methods, R-tree and R'-tree, through the
performance results from analytical study and those from
simulation approach for a VLSI data.

For point queries, BR tree has always better
performance than R-tree and R'-tree since it contains
more entries than R-tree and R'-tree in non-leaf nodes. In
three access methods, the number of disk accesses
increases with the number of objects since the height of
the tree increases. Furthermore, increasing overlap also
increases the number of pages searched; in R-tree this is
due to multiple paths that have to be followed till the
leaves have been reached, while in BR tree and R'-tree it
is due to increasing number of nodes that have to be
created because of splits.

For region queries, in general, BR tree gives the
smallest number o f disk accesses since i t avoids
overlapping of rectangles in non-leaf nodes and decreases
the number of nodes. However, when the size of a query
window is above 10 percent of each dimension, the empty
space of BR tree increases, and R-tree gives the smallest
number of disk accesses.

On the other hand, R'-tree gives the smallest number
of false drops because it avoids Overlapping of rectangles
unlike R-tree and contains more reduced empty space
than BR tree.

In the analytical study for spatial access methods, we
considered line segments (1 -dimensional objects) instead
of boxes (2-Qmensional objects), and transformed the
segments into points in a 2-dimensional space. It would
be desirable to extend the analytical study to the case of
arbitrary dimensions. This will allow us to examine
objects in Zdimensional spaces which are found in many
applications.

References

[I] J. Banerjee and W. Kim. "Supporting VLSI Geometry

Operations in a Database System," Proc. r)f 2nd lnt. Conf.
on Data Engineering, 1986,409-415.

[2] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger,
"The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles." Proc. of ACM SIGMOD, 1990,

[3] T. Brinkhoff, H. P. Kriegel, and B. Seeger, "Efficient
Processing of Spatial Joins Using R-trees," Proc. of ACM
SIGMOD, 1993,237-246.

[4] D. Comer, "The Ubiquitous B-Tree," ACM Computing
Surveys, Vol. 11, No. 2, Jun. 1979, 121-137.

[5] C. Faloutsos and Y. Rong, "DOT: A Spatial Access
Method Using Fractals," Proc. of 7th Int. Conf. on Data
Engineering, 1991, 152-159.

[6] C. Faloutsos, T. Sellis, and N. Roussopoulos, "Analysis of
Object Oriented Spatial Access Methods," Proc of ACM
SIGMOD, 1987,426-439.

[7] M. Freeston, "The BANG file. A New Kind of Grid File,"
Proc. of ACM SIGMOD, 1987,260-269.

[8] D. Greene, "An Implementation and Performance Analysis
of Spatial Data Access," Proc. of 5th Int. Conf. on Data
Engineering, 1989,606-615.

[9] 0. Gunther and H. Noltemeier, "Spatial Database Indices
for Large Extended Objects," Proc. of 7th Int. Conf. on
Data Engineering, 1991,520-526.

[lo] A. Guttman, "R-trees: A Dynamic Index Structure for
Spatial Searching," Proc. of ACM SIGMOD, 1984,47-57.

[111 K. Hinrichs and I. Nievergelt, "The Grid File: A Data
Structure to Support Proximity Queries on Spatial Objects."
Technical Report 54, ETH, Zurich, 1983.

[12]B. Y. Hwang, B. W. Kim, and S. C. Moon. "Efficient
Access Method for Multi-Dimensional Complex Objects in
Spatial Databases: BR Tree," Journal of Microprocessing
and Microprogramming, Vol. 32, No.1-5, 1991, 765-772.

[131 W. Lu and J. Han, "Distance-Associated Join Indices for
Spatial Range Search," Proc. of 8th Int Conf. on Data
Engineering, 1992,284-292.

[141 W. Mendenhall, Introduction to Probability and Statistics,
Duxbury Press, 1987.

151 J Nievergelt, H. Hinterberger, and K. C. Sevcik, "The Grid
File: An Adaptable, Symmetric Multikey File Structure,"
ACM Trans. on Database Systems. Vol. 9, No. 1, 1984,

161 J A. Orenstein, "Spatial Query Processing in An Object-
oriented Database System," Roc. of ACM SIGMOD, 1986,

171 J T. Robinson, "Tbe K-D-B Tree: A Search Structure for
Large Multidimensional Dynamic Indexes," Proc. of ACM

[18]B. Seeger and H. P. Kriegel, "The Buddy Tree: An
Efficient and Robust Access Method for Spatial
Databases," Proc. of 16th Int. Conf. on Very Large
Databases, 1990,590-601.

[191 T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R'-tree:
A Dynamic Index for Multi-dimensional Objects," Proc. of
13th Int. Conf. on Very Large Databases, 1987,507-518.

322-331.

38-71.

326-336.

SIGMOD, 1981,lO-18.

37 1

