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Abstract 

In geographic and CAD applications as well as in 
VLSI design, the practical need for  access methods that 
crllow f o r  efJicient spatial searching has increased 
considerably. In this paper, we show a performance 
comparison of the most promising spatial imess 
methods, BR tree, R-tree, and R'-tree, through 
performance results from analytical study. For search, 
BR tree produces the best perfomunce with respecr to the 
number of disk a c c m e s  since it generates the smallest 
number of nodes and uvoids overlapping of rectang1e.v. 
On the other hand, R'-tree gives the smallest nuniber of 
false drops because it avoids overlapping of rectangles 
unlike R-tree and conrains more reduced empty space 
than BR tree. Furthermore, the experimem results are 
relatively similar to the results from analyticul stu& 
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spatial object by the minimum bounding rectangle with 
the sides of the rectangle parallel to the axes of the data 
space. The most important property of this simple 
approximation is that a complex object is represented by a 
limited number of bytes. Although a lot of information is 
lost, minimum bounding rectangles of spatial objects 
preserve the most essential geometric properties of the 
object, i. e. the location of the object and the extension of 
the object in each axis. Our studies include the 
experiment results obtained from a real data as well as 
analytical study and simulation results. 

The remainder of this paper is organized as follows. 
Section 2 describes the representative spatial access 
methods like R-tree [lo], R'-tree [19], and our spatial 
access method, BR tree [12]. Section 3 shows the 
p e r f o m c e  results from analytical study for R-tree, R'- 
tree, and BR tree. The comparison of performance from 
analytical study and experiment is shown in Section 4. 
Finally, conclusions appear in Secuon 5. 

1: Introduction 
2: Spatial access methods 

In geographic and CAD applications as well as in 
VLSI design, the practical need for access methods that 
allow for efficient spatial searching has increased 
considerably. Spatial data access methods provide a 
means of retrieving objects which are n dimensional 
points, lines, rectangles, or polygons. In particular, they 
optimize spatial queries which retrieve all points or 
rectangles which are enclosed in or overlap a specific 
search region. 

Recently, there have been a substantial number of 
access methods proposed to manage point or solid data 
[ l ,  3, 7, 11,  13, 181. However, performance studies of 
these access methods have often been analytical rather 
than based on real world implementations [6,9, 151. Also, 
the non-analytical performance studies consider the 
simulation results for a random data 12, 58, 133. 

In this paper, wc will present a performance 
comparison of the most promising spattal access methods 
which are based on the approximation of a complex 

The access methods which we consider optimize 
queries that retrieve all the data objects overlapping a 
user-specified rectangular window Q. The definition of 
window query and allowable geometry is shown in Fig. 1. 
Here objects B, C, and D overlap the search region Q. In 
this study, we restrict boxes to 2-dimensional rectangles, 
specified 4 byte integer numbers, Xm,, X-, Y,,, and Y-. 
In Fig. I, for instance, boxes B through E are legal, 
whereas box A and F are not. 

Iol 
Fig. 1. Window query and allowable geometry 

2.1: R-tree 

R-tree is a height-balanced tree similar to the B-tree 
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141. Let M be the maximum number of entries that fit in 
one node, and let m I MI2 be a parameter specifying the 
minimum number of entries in a node. The number of 
index record entries in each leaf node of an R-tree lies 
between m and M. The index enay has the form: 

(I,  tuple-identfler), 
where tuple-identifier refers to a tuple in the database and 
I is an n-dimensional rectangle which is the bounding box 
of the spatial object indexed. Z is represented as I = (I, Z,, 
..., Here, n is the number of dimension and Ii is a 
closed bounded interval, [a, b], describing the extent of 
the object along dimension i. Each non-leaf node contains 
be%ween m and M entries, each of which has the form: 

(I, child-pointer), 
where child-pointer is a pointer to a successor node in the 
next level of the R-tree, and Z is the smallest rectangle 
that spatially contains the rectangle in the child node. 

An example set of data rectangles and its 
corresponding R-tree are shown in Fig. 2 and Fig. 3, 
respectively. In the Figures, for instance, the spatial 
objects D and H denote the 2-dimensional rectangles 
stored in a leaf node, and the region R 3  denotes the 
minimum rectangle that contains the objects in the 
descendant node. 

Fig. 2. Rectangles organized Fig. 3. An R-tree for the 
according to an R-tree rectangles of fig. 2 

The term branching factor, called fan-out, can be used 
to specify the maximum number of entries that a node can 
have. For example, each node of an R-tree with branching 
factor 4 points to a maximum of 4 descendents (among 
non-leaf nodes) or 4 objects (among the leaves). 

When we consider perfomance of R-tree with respect 
to the search, the concepts of coverage and overlap are 
important. The coverage of a level is defined as the total 
area of all the rectangles associated with the nodes of that 
level, and the overlap of a level is defined as the total area 
contained within two or more nodes. Obviously, efficient 
R-tree searching demands that both coverage and overlap 
be minimized, although overlap seems to be the more 
critical of the two issues. For a search window falling in 
the area of N overlapping leaves, in the worst case, N 
paths from the root to each of the overlapping leaves have 

to be followed slowing down the search from h to hlv, 
where h is the height of the tree. The minimum coverage 
reduces the amount of empty space covered by the nodes, 
and the minimum overlap reduces the false drop problem 
which causes unnecessary searches of tree. In order to 
search Q in Fig. 2, both subtrees rooted at nodes R1 and 
R4 must be searched although only the latter will be true. 

2.2: R+-tree 

R'-tree may be thought as an extension of K-D-B tree 
[17] to cover spatial objects. Unlike R-tree, R'-tree does 
not limit the minimum number of entries contained in a 
leaf or non-leaf node. The index structure of R'-tree is the 
same as that of R-tree except that an object can be stored 
in several nodes because R'-tree avoids overlapping of 
rectangles. That is, in some cases, in which a given 
rectangle covering a spatial object at the leaf level 
overlaps with another rectangle, R'-tree decomposes it 
into a collection of non-overlapping sub-rectangles whose 
union makes up the ariginal rectangle. Each leaf node of 
an R'-tree contains an entry of the form: 

(Rectangle, tuple-identij?er), 
where fuple-identz$er is an object identifier and is used to 
refer to an object in the database. Rectangle is used to 
describe the boundary of data objects. Each non-leaf node 
contains an entry of the fom: 

(Rectangle, child-pointer), 
where child-pointer is a pointer to a lower level node of 
the tree and Rectangle is a representation of the enclosing 
rectangle. 

Tbe R'-tree and its rectangles correspondmg to the 
rectangles in Fig. 2 are shown in Fig. 4 and Fig. 5. 

Fig. 4. Rectangles of Fig. 2 Fig. 5. An R'-tree for the 
on basis of an R+-tree rectangles of fig. 4 

In R'-tree all the pointers of a sub-rectangle clipped 
point the same object. R'-tree prevents overlapping of 
rectangles, but the depth of tree becomes high. For 
example, the height of the R-tree in Fig. 3 is 2 and that of 
the R'-tree in Fig. 5 is 3. Therefore, R'-tree requires large 
storage space. 
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2.3: BR tree 

The BR tree is a new data structure for spatial 
indexing based on the z-transform [ 161. In n-dimensional 
space, one point is represented by n coordinate values, i.e. 
n binary strings. For example, (6, 3, 7) represents a point 
in 3-dimensional space. Z-transform is the function that 
transforms an n-dimensional (1122) point into an one- 
dimensional point, called z-value. Z-value is obtained by 
extracting the first bit from each binary string and then 
enumerating these extracted bits, and then extracting the 
second bit, and so on For example, if one point is n 
binary strings like (b1,hl,* ... blk, b2,1Rn ... b,, ..., bulb,, ... 
bnk), where b, is the j bit of i dmension, z-value 
becomes bl,b,, ... b,,b,,h,, ... bn2 ... ... blkb, ... bd. 

Z-transformed subspace, we call z-area, is represented 
by its z-value. The z-value for the z-area is constructed by 
interleaving the bits of each dimension, which describes 
the range of values covered by the z-area, bit by bit. 
Assume that the horizontal and bertical axes of a ?- 
dimensional space are X and Y. respectively. Suppose 
lhat the ranges of X and Y values covered by the z-area 
are described by (4 I X 2 5,  0 I Y 5 3). In binary, these 
ranges are U 0  I X I JQl, QOO 2 Y I 011). The z-area IS 

expressed by the common prefix of each range: (10, 0). 
When the prefm value of X begins first, interleaving these 
bits yields a z-value of 100. 

In a BR tree, each z-area corresponds to one disk 
block. When we represent a set of z-areas by one- 
dimensional array named r, each I-bit entry of :may r 
should be changed to the address of disk block in order l o  
index disk blocks. If the address of disk block is 0, i.e. 
null, this means that the partition does riot exist. When the 
index itself is stored in disk and the size of one disk block 
IS fixed, in order to insert many objects of real space, 
inore than one disk block can be required. If these blocks 
are stored in continuow blocks, search operation becomes 
poor by sequential search. Therefore, in order to retrieve 
indices stored in more than one disk block effectively, an 
index structure of tree form is required, 

In a BR tree, data objects are stored at leaf nodes, and 
the subregions in the children nodes are stored at non-leaf 
nodes. An example set of data rectangles and its 
corresponding BR tree are shown in Fig. 6 and Fig. 7, 
respectively. The branching factor is assumed to be 4. In 
the Figures, for instance, the spatial objects A and B are 
the 2-dimensional rectangles intersected or included in 
the z-area whose &value is 01. The second entry in the 
non-leaf node indicates the block address of the leaf node 
containing the objects A and B. 

Fig. 6. Rectangles organized Fig. 7. A BR tree for the 
rectangles of Fig. 6 according to a BR tree 

Each leaf node in a BR tree contains index record 
entries of the form: 

(Od, R), 
where Oid is an object identifier which is used to refer to 
an object and R represents the boundary of the objects. 
For the object B in Fig. 7, Oid is the pointer to the disk 
block containing the object, and R is the values of 
coordinates enclosing the object. Each non-leaf node 
contains entries of the form: 

where each cpi is a pointel to a child node. Let A4 be the 
maximum number of entries in a non-leaf node. The BR 
tree satisfies the following properties. 

(CP,? CP23 .a., CP"), 

The root node has between 2 and A4 children. 
Every non-leaf node has between I and M children 
unless it is the root. 
Every leaf node contains between 0 and 
1W((p+2nd)/p), index records, where p is the size of 
pointer, n is the number of dimension, and d is the size 
of each element in the values of coordmates . 
Non-leaf node is not necessarily the smallest rectangle 
that spatially contains the rectangles in the child node 
because the pointer values in each node represent the 
location of a region. For the first entry of non-leaf 
node in Fig. 7, the first 0 and the second 0 denote the 
left and low side of partitioned space, respectively. 
The null pointer in non-Zeuf node means that a 
partition does not exist. 

3: Analytical study for point queries 

In this section, we analyze the performance of BR 
trees, R'-trees, and R-trees with respect to the effects of 
the number of disk accesses for point queries. For these 
access methods, the search performance depends on not 
only the data itself, i.e. the number of objects, sizes, and 
locations, but also the sequence of objects inserted in the 
access methods [ 6 ] .  To avoid the effects of the insertion 
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sequences and splil routines on the number of disk 
accesses and storage overhead, we perform a best-case 
comparison: Given all the data objects in advance, the 
non-leaf nodes of each access method have minimal 
coveruge and overlap in the split algorithm. The coverage 
of a level is defined to be the total area of all the 
rectangles associated with the nodes of that level, and the 
overkip of a level is defined to be the total area contained 
within two or more non-leaf nodes of the tree index 
structure. 

The largest portion of the analysis i!, devoted in 
calculating the characteristics of the optimal fathers 
having minimal coverage and overlap in the split 
algorithm. For each method we consider the cases where 
all the nodes are full. To simplify the analysis, we assume 
that the data objects belong to a few classes and each 
class consists of objects of the same size since the 
analyucal method consisting objects of the different size 
is impossible. This is m e  in the engineering application 
like VLSI designs, where there are a few types of 
elements, e.g. busses, NOR-gates etc., with many 
instances of the elements in the design. Geographic 
applications follow this assumption with small deviations. 
For example, the states of the U. S .  A. have similar sizes, 
with few exceptions. Furthermore, we assume that the 
objects are uniformly distributed. A characteristic of the 
uniform distribution for the objects is that the optimal 
father nodes will also be uniformly distributed. 

3.1: Method for analytical study 

'The proofs of the forthcoming analyses can be derived 
more easily if we consider rectangular objects as points in 
a 4-dimensional space [ I l l .  For a rectangular object 
aligned with the axes, four coordmates, i.e. the x and y 
coordinates of the lower-left and upper-right comers, are 
enough to uniquely determine it. Since 4-dimensional 
spaces are impossible to be illustrated, in this paper we 
consider line segments (1-d objects) instead of rectangles 
(2-d objects), and we transform the segments into points 
in a 2-d space. Each segment is uniquely determined by 
(Xstan, Xend), the coordinates of its start and end points. 
Obtaining formulas and results for line segments is a frrst 
step to the analysis of 2-d rectangular objects, or even 
rectangles of higher dimensionality. 

In the case of line segments, the "screen" collapses to a 
line segment, which starts at 0 and ends at 1. An example 
set of line segments and their 2-d representation are 
shown in Fig. 8 and Fig. 9, respectively. In the Figures, 
some important observations with respect to the 
transformed space are as follows. 

(1) There are no points below the diagonal in Fig. 9 since 
Xstart IXend .  

(2) In Fig. 9, line segments of equal size such as B and C 
are represented by points that lie on a line parallel to 
the dmgonal. Zero-size segment, i.e. point, like F, is 
represented by point on the diagonal. 

(3) Line segments not entirely within the screen like A in 
Fig. 8 are allowed. In the analysis we consider their 
remainder after clipping (solid part of A in Fig. 8). 

(4) Points outside the shaded area in Fig. 9 are of no 
interest because tbe corresponding segments do not 
intersect with the screen. 

Fig. 8. Some line 
segments 

Fig. 9.2-d representation of the 
line segments of Fig, 8 

( 5 )  The segments are semi-open. That is, they contain 
their leftmost end, but not the rightmost one. The 
screen is semi-open, too, including "0", but not "1". 
Query segments are closed. 

(6) The segments covering a given point X, of the screen 
are transformed to points in a shaded area as shown in 
Fig. 10. The s h a d  area in Fig. 11 corresponds to all 
the segments intersecting with the segment S(X,, XJ. 

Fig. 10. Segments Fig. 11. Segments intersecting 
with the segment S(X,, X,) covering the point X, 

To make the analysis tractable, we assume that the line 
segments of a given size need not be totally within the 
screen. These segments divide the interval ( -0 , l )  to N+l 
equal subintervals, where N is the number of segments 
and CJ is their size. An example set of 5 segments of size 
0.25, which are uniformly distributed, and their 
corresponding 2-d transformations are shown in Fig. 12 
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and Fig. 13, respectively. In Fig. 13, 5 segments divide 
the interval (-0.25, 1) to 6 equal subintervals. 

Parameter Descnpuon 

. c  the capacity of the data pages (=data objects per pagt 
the fanout of the internal nodes of the BR tree 
the fanout of the internal nodes of the R+-tree 
the fanout of the internal nodes of the R-tree 
the height of a BR tree 
the height of an R+-tree 
the height 01 an R-tree 

Fbr 
4+ 
Fr 

Hb, 
Hr+ 
H r  

Fig. 12. Segments of size Fig. 13.2-d transformations 
of the segments of Fig. 12 0.25, on the screen 

Definition: For a given point, let overlap Ov be the 
number of segments that contain it. 

Tuble I indicates the parameters common to all the 
forthcoming analyses. 

Table 1 Parameters of the analysis 

3.2: Analytical study for BR tree 

We consider N segments of size a, which are 
uniformly distributed as described before. An important 
lemma is as follows. 

Lemma: Given N segments of size a, which are 
uniformly dismbuted on the screen, a line segment (query 
segment) of size q intersects with intsecr(N, CT , q )  
segments, where 

Proof: Consider Fig. 14. Projecting the line A B  on the 
horizontal axis, we have the line AB', of size l+o. The 
query region (shaded area) intersects the line AB on a 
segment CD, whose projection C'D' is of a size wq. The 
fraction of the intersected segments, i.e. circles on line 
CD or circles on line ("'D', is length(CD) / ZengrhIAB) = 
(o+y) / (l+o). Since the line AB is divided into N+1 equal 
subintervals by the circles, the line CD will contain on 

the average 

circles, which is exactly the number of segments that the 
query segment q will intersect. 

Fig. 14. N segments of size a represented as circles 

Notice that the formula does not depend on the 
position of the query segment on the screen since we have 
defined the uniform distribution of the N segments. For 
q=O, that is, the query segment is a point, we have the 
formula for the overlap. 

Corollary: Given N segments with size a, which are 
uniformly distributed on the screen, the overlap is 
constant, and given by the formula: 

0 
0, (N  0) = W + I )  (2) 

(1 + 0) 
From (1) and (2) we have inrsec?(N, a, q) = O$V, 0) + 

For example, consider the case of N=5 and + O S .  For 
the segments shown in Fig. 15, the overlap is [ O S  / 
(1+0.5)] x (5+1) = 2. Every point on the screen is covered 
by 2 segments. 

q(N+l-Ov(N, 0)). 

I I I 
-0.2s 0 0.5 1 1.25 

Fig. 15. 5 segments of size 0.5 each 

Assume that we have N segments of size 0, which are 
uniformly distributed on the screen, as explained before. 
Let Hbr be the height of a BR tree, which is assumed to be 
full, that is, every data page contains C entries, each 
internal node has Fbr sons. We assume that level 1 is the 
first level above the data objects and the root is at level 
Hbr+l. 

The total number of data pages will be F Hbr dividing 
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the screen into F Hbr intervals. Due to the uniformity 
assumption, each interval will be of a size 1/F Hbr. Each 
page corresponds to one such interval. Tbe segments that 
intersect such an interval will be entered in the 
corresponding page. Since each page is full, we have 
C = intsect(hr, 9 I/F% ) or C = 0 + 1  ( N + l - 0 )  

F H b r  

where 0 is the overlap 0 = Ov(N, 0) of the given set of 
segments. 

The total number of disk accesses br-da for a point 
query is the height incremented by one, to account for the 
retrieval of the data page. The root of the tree is assumed 
to be on the disk. Thus, the br-& for a point query is as 
follows. 

br-du = I +log '+'so (3a) 
F& C-o 

or, since N >> 1 and N >> 0, 

3.3: Analytical study for R-tree 

In the same way as above we do the analytical study 
for R-tree. The tree is assumed to be full. Thus, the 
segments are grouped in N/C pages, in groups of size C. 
Each page is characterized by the "minimum enclosing 
segment", which covers all the segments in this page. 
This segment corresponds to a point in the transformed 
space. For example, in Fig. 16, "A" is the minimum 
enclosing segment for the segments A, and A,. 

'E 

Fig. 16. Illustration of fathers of level 1 (G2) 

containing F, data pages (and therefore CFr segments), to 
form the lowest level of internal nodes of the R-tree 
("fathers of level 2"). In general, "fathers of level i" have 
size 

and are uniformly distributed, in the sense described 
before. The root of tbe R-tree corresponds to a father of 
level H, +l. 

for fathers of level i is the 
number of fathers of level i containing a point on the 
screen, Since the number Nfarher, ,of i-level fathers is 

The overlap Oy, 

' N  

CFr 
(6) 

N 
father, i = - 

their overlap Ov,fa,,cr, is, from the corollary CEq. (2)) 
a father, i 

+ I )  (7) - 
Os, father, i - I +  0 ( Nfather, i - .  

father, i 

which becomes 
0 - I  

To find the number of disk accesses r-du in answering 
a point query, we have to add all the fathers of any level, 
which cover the query point. That is 

H r + l  

r-ah = Ov, futher, i (9) 
i = I  

where H, is the height of the full R-tree. 
N 

r C  
H , = l o g ,  - (10) 

Then, (8) and (10) give when H .  is an integer 

3.4: Analytical study for R+-tree 

In the same way as above we do the analytical study 
for R'-tree. The R'-tree is similar to the BR tree since 
they prevent overlapping of rectangles in the non-leaf 
nodes of a tree by clipping objects which cause 
overlapping region. However, unlike BR trees, R'-trees 
need the values of coordmates in representing a region of 
non-leaf nodes. Therefore. the fan-out of an R'-tree is 

These segments will be referred as by "fathers of level 
, of equal size, which 1". It can be proven in [6] and 

are uniformly dntributed, is as follows. 

0 faher, I = - + O) ( C - l ) + O  (4) smaller than that of a BR tree. That is, R'-trees have the 
smaller entries than BR trees in each non-leaf node. 
Using the same arguments as BR trees, we have: 

(N+ I ,J 
Data pages are grouped in N/(CF,,) groups, each group 
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3.5: Analytical results for point queries 

Based on the formulas described in the previous 
secuon, we obtain some results that indicate how BR 
trees are compared to R'-trees and R-trees. The following 
values are assumed. 

s i ze juge  = 1,024 bytes, size-rectangle = 16 bytes 
s i ze jo in ter  = 4 bytes, size-header = 24 bytes 

Given these numbers we can derive the fan-out Fr+, Fr, 
and the capacity C of leaf pages. We assume that the first 
24 bytes of a page are taken for the header. 1 =50 

1;L 4 I 

(sizegage - size-header) 

(size-rertangk + sizegoarter) 
F = F = C =  

r t  r 1 
However, unlike R-tree and R'-tree, BR tree does not 

need the values of coordinates in representing a region of 
a non-leaf node since the region is simply represented by 
a relative pointer value. Therefore, k'br is as follows. 
';hr = 1 (s izesage sizc:-header) 

Fig. I7 gives the disk accesses as a function of N 
segments in the case where overlap 0 = 40. Fig. I 8  gives 
the same values as a function of 0 in the case where N = 
100,000. 

(19024-24) = 250 
sizegointer 

3 1 3 2 1 0  3 1 0 4 1 0 5 1 0 6  107 0 I O  20 30 40 50 60 

riumba of segments overlap 

Fig. 17. Disk access for N Fig. 18. Disk access for 0 

As expected the R-tree always performs worse than the 
BR tree and R'-tree since the excessive searching hy 
overlapping of non-leaf nodes is required. Also, the BR 
lree has always better performance than the R'-tree since 
it contains more entries than the R+-tree in non-leaf 
nodes. 

In three access methods the number of disk accesses 
increases with the number of segments since the height of 
the tree increases. Finally, increasing overlap also 
increases the number of pages searched; in R-trees this IS 

due to multiple paths that have to be followed till the 

leaves have been reached, while in the BR tree and R'- 
tree it is due to increasing number of sub-segments that 
have to be created because of splits. 

4: Comparison of performance from 
analytical study and experiment 

In this section, we compare performance results from 
analytical study and those from experiment [12] with 
respect to the number of disk accesses for point queries in 
order to verify the correctness of the analytical model. 
The experiment results are relatively similar to the results 
from analytical study. For example, as expected in the 
results from analytical study, BR tree produces the best 
search performance in simulation results since it induces 
the smallest number of nodes and avoids overlapping of 
rectangles of non-leaf nodes. Furthermore, R-tree always 
performs worse than the BR tree and R'-tree since the 
excessive searching by overlapping of non-leaf nodes is 
required. In three access methods, the number of disk 
accesses increases with the number of objects since the 
height of the tree increases. Unlike R+-tree, BR tree does 
not need downward propagation for split in the non-leaf 
nodes. Therefore, the depth of BR tree is smaller than that 
of R'-tree and the experiment search perfonnance of BR 
tree is better than the analytical search performance. 

We consider a quantitative comparison for the 
analytical study and simulation. Table 2 gives a list of 
performance results from analytical study and those from 
simulauon for BR tree and in addition a set of relative 
errors between them. Herc the error rate is computed as 
follows. 

Error Rate = [Max@, A) - Min(E, A)] / Max@, A) 
where E and A indicate the performance results from 
simulation and those from analytical study. respectively. 

Table 2 Comparison of performance from 
analytical study and experiment 

Theoly 1.84 I 1.94 I 2.14 
Experiment I 1.51 I 1.66 I 2.0 I 2.2 

I Error Rate I 11.7 percent 19.8 percent I 3.0 percent1 2.7 percent] 

From the table, we can see that the error rates between 
the performance results from analytical study and those 
from simulation with respect to the number of disk 
accesses are about 2-11 percent. Unlike in simulation 
results, we assumed that all the leaf nodes of each access 
method are full and the non-leaf nodes have minimal 
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coverage and minimal overlap in analytical study. 
Therefore, the quantitative performance values from 
analytical study may be different from those from 
simulation. The relative performance comparison is more 
important than the quantitative performance comparison. 
In both the analytical study and simulation, BR tree 
always produces the best search performance and R-tree 
always performs worst. As a result, it is shown that the 
performance results from simulation and those from 
analytical study relatively agree well. 

5: Conclusions 

In this paper, our spatial access method, called BR 
tree, is compared with the two representative spatial 
access methods, R-tree and R'-tree, through the 
performance results from analytical study and those from 
simulation approach for a VLSI data. 

For point queries, BR tree has always better 
performance than R-tree and R'-tree since it contains 
more entries than R-tree and R'-tree in non-leaf nodes. In 
three access methods, the number of disk accesses 
increases with the number of objects since the height of 
the tree increases. Furthermore, increasing overlap also 
increases the number of pages searched; in R-tree this is 
due to multiple paths that have to be followed till the 
leaves have been reached, while in BR tree and R'-tree it 
is due to increasing number of nodes that have to be 
created because of splits. 

For region queries, in general, BR tree gives the 
smallest number o f  disk accesses since i t  avoids 
overlapping of rectangles in non-leaf nodes and decreases 
the number of nodes. However, when the size of a query 
window is above 10 percent of each dimension, the empty 
space of BR tree increases, and R-tree gives the smallest 
number of disk accesses. 

On the other hand, R'-tree gives the smallest number 
of false drops because it avoids Overlapping of rectangles 
unlike R-tree and contains more reduced empty space 
than BR tree. 

In the analytical study for spatial access methods, we 
considered line segments (1 -dimensional objects) instead 
of boxes (2-Qmensional objects), and transformed the 
segments into points in a 2-dimensional space. It would 
be desirable to extend the analytical study to the case of 
arbitrary dimensions. This will allow us to examine 
objects in Zdimensional spaces which are found in many 
applications. 
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