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ABSTRACT

This paper investigates the predictability of stock index returns by using the multivariate nearest neighbor model
which considers the trading volume as well as the stock price. The optimal choice for the embedding dimension,
the number of neighbors, and the contribution of the trading volume are determined by the cross validation
method which minimizes the mean square error in the training set. The empirical results by using the KOSPI
composite index and 16 industry indexes indicate that the multivariate ncarest neighbor model provides
statistically significant forecast improvements over the random walk model and the univariate nearest neighbor
model.
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1. Introduction

Forecasting the levels and direction of financial terms is of interest to participants in financial markets. There are
numerous approaches in the literature, yet when Meese and Rogoff [13] examined an exhaustive set of linear
time series, reduced form and structural models, they found no model that consistently produced forecasts
superior to the random walk.

An emerging body of research has stressed nonlinearities as one of the potential reasons for such poor
performance. Analysis of nonlinearities in the dynamics of short-term stock returns is of great importance at both
theoretical and empirical levels. On the other hand, recent advances in both analytic and computational methods
have helped empirical analysis of nonlinear models and have encouraged the research in this area, dramatically
increasing the number of approaches to forecasting financial terms. One of these approaches are the nearest
neighbor predictors.

We employ a nonparametric nearest neighbor model which is known to perform well at forecasting low-
dimensional chaotic data generators infected with high levels of noise. Unlike ordinary least squares which fits
the regression surface globally, the nearest neighbor model provides a local approximation. In contrast to
parametric nonlinear approaches, our nonparametric approach does not impose any specific type of nonlinearity
in the forecasting process. Therefore, the nonparametric approach avoids the parametric-model selection
problem and allows for a wider array of nonlinear behavior. The basic idea behind these predictors is that pieces
of time series sometime in the past might have a resemblance to pieces in the future. The nearest neighbor model
uses the data scatter to weight observations near to the dependent variables more heavily.

In this paper, we propose a multivariate nearest neighbor (MNN) model which considers the trading volume as
well as the stock price. We measure the forecasting accuracy of our model using both mean absolute prediction
error (MAPE) and mean squared prediction error (MSPE) criteria. We compare the forecasting performance of
the MNN model with the performance of two benchmark models: the random walk (RW) model and the
univariate nearest neighbor (UNN) model. We use a robust test statistic due to Mizrach [14] to evaluate whether
forecasts generated by the MNN model are significantly better than forecasts generated by the RW and the UNN
models. The optimal choice of embedding dimension, number of neighbors, and the contribution of the trading
volume are determined by the cross validation method which minimizes the mean square error in the training set.

The plan of the paper is as follows. Section 2 develops the necarest neighbor methodology. In Section 3 we
discuss the relationship between stock price and trading volume and develop the MNN. Section 4 gives the main
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results of the paper demonstrating out of sample forecast improvements for stock index returns. Section 5
concludes.

2. Forecasting Methodology

The conditional mean of a random variable x, given a vector of conditioning variables w, can be written as
E (xlw) =M(w). In parametric estimation, M(w) is typically assumed to be linear in w, but in the nonparametric

approach M(w) remains a general functional form. In this paper we take a simple approach to forecasting M(w),
using the nearest neighbor model of Stone [20]. Applications of nearest neighbor model include the work of
Robinson [16] in a regression context as well as the work of Yakowitz [21] in a time series forecasting context.

The first step in the model is the creation of a state space library that contains the geometric sections that have
occurred in the past. The model reviews the time series iteratively using ‘embedding dimensions’, £. As the
number of embedding dimensions increases, the model becomes capable of picking up more complicated
attractors. The model uses lagged coordinates to represent each sequence of data points as a vector, x,, in E-
dimensional state space such that

X, = (X ooy X goay N X0 X,) (H

For each embedding dimension, the model retains the time series values of variables for the next time period
associated with that E-dimensional vector. Mulhern and Caprara [15] refers to the data for these next time period
as the outcome data associated with a particular vector. The outcome data are not future values, but the historical
time series values that come in the period immediately following each vector formed by the model. The outcome
data represent the historical response of the time series when a particular pattern of behavior, represented by a
state space vector, is observed.

The forecast of nearest neighbor model at time #+1 is given by:
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'{‘1+| = ZW”][d(Xi,X‘)<T]1YH1 (2)

i=l

where [ is the indicator binary function, which is 1 if x; is neighbor and 0 otherwise, d is the distance of each
vector, 77 is some constant, w;, is a sequence of weights, and x;,, is the outcome data of vector X;.

An important issue is how the nearest neighbors are identified. There are a variety of approaches for doing so.
In the studies of Gencay [6] and Barkoulas et al. [1], the model calculates the Euclidean distance between the E-
dimensional vector and each vector in the state space library and retains a specified number of vectors with the
smallest distances. The distance, d, between two vectors in E-dimensional space, often known as a norm, is
calculated as
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where x;, is the value of the vectors of the state space library, x,, is the value of the vector for which a prediction
is desired, and £ is the embedding dimension. Alternatively, Casdagli [2] and Jaditz and Sayers [9] suggested
using the supreme norm to calculate distances:

E-Il
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Other implementations of the nearest neighbor model advocate local weighting schemes that place greater
weights on near observations. Stone [20] formulated the problem of consistent estimation through regularity
conditions on weights for the neighbors. As the sample grows large, the number of neighbors, ¢, must go off to
infinity, but at a slower rate than the rate at which the sample size increases. Consistency becomes a matter of
imposing a selection rule involving 7. As a practical matter, our investigation will look over a range of ¢’s.

Typically one uses the distance of neighbors to compute their weights. We use exponential weighting
algorithm of Linden et a/. [12] that regulates the contribution of each vector by a function of its distance from the
original vector:
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where d, is the distance of each neighbor, g is the number of neighbors. Mulhern and Caprara [15] suggested
using the power factor, p, to calculate weights. A negative exponent assures that the greatest weight is given to
the neighbor that is closest to the vector for which a prediction is desired:

P
w, = d 6)

We obtain the optimal choice of embedding dimension and number of nearest neighbors by the cross validation
method which minimizes the mean square error in the training set.

3. Multivariate Nearest Neighbor Model

There are several explanations for the presence of a causal relation between stock prices and trading volume.
First, the sequential information arrival models of Copeland [3] and Jennings et al. [10] suggested a positive
causal relation between stock price and trading volume in either direction. Second, Lakonishok and Smidt [
showed that current volume can be related to past stock price changes duc to tax- and non-tax-related trading
motives. The dynamic relation is negative for tax-related trading motives and positive for certain non-tax-related
trading motives. Third, in the mixture of distributions model of Epps and Epps [5], trading volume is used to
measure disagreement as traders revise their reservation prices based on the arrival of new information into the
market. Their model suggested a positive casual relation running from trading volume to absolute stock returns.

Examining the relation between returns and volume, a positive contemporancous correlation was found by
Rogalski [17] using monthly stock and warrant data and by Epps [4] using transactions data. To explain such
results, Epps [4] proposed a theoretical framework consistent with his findings. His framework implied the ratio
of volume to returns should be greater for price increases than for price decreases, which was supported by
empirical evidence in Smirlock and Starks [18]. More recent empirical work has investigated the lagged relation
between price changes and volume. For example, Smirlock and Starks [19], employing individual stock
transactions data, documented a strong positive lagged relation between absolute price changes and volume. In
addition, Hiemstra and Jones [8] found a new result through the use of nonlinear Granger causality. They found a
significant positive relation going in both directions between stock returns and trading volume.

Despite the relation between stock price and trading volume, there have been few stock return forecasting
models which include trading volume. In this paper, we propose a multivariate nearest neighbor (MNN) model
which considers the trading volume as well as the stock price. Compared with univariate nearest neighbor
(UNN) model, the MNN model uses two series of data, price (p,), and volume (vy).

X = P Fig-1) A orn,on )
‘ A\ Veggey A vy

In the MNN model, the distance between two vectors is calculated as

E-l E-l %
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where r;; and v, are the values of the vectors of the state space library, r,; and v, are the values of the vectors
for which a prediction is desired, & is the contribution of the trading volume, and £ is the embedding dimension.
If a =0, this model becomes the UNN model.

Previous UNN models have used the distance of price vector itself to obtain the neighbors. Our model,
however, identifies neighbors by the weighted average of distances of price vector and volume vector.
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4. Forecasting Results

There have been some price restrictions in the Korean stock market: until March 1995, prices were allowed to go
up only by a fixed amount. Since April 1, 1995 they have been allowed to go up by 6%, depending on the
closing price of the security on the last trading day. Price restriction was relaxed to 8% from November 25, 1996,
12% from March 2, 1998, and 15% from December 7, 1998. Under these price restrictions, transactions are
interrupted when price reaches the limit. It means that the information obtained may not reflect the market
promptly. Hence, the past data which were generated under the strong restrictions cannot explain the present data.
In fact, the volatility of present data is much greater than that of past data. To take account of price restrictions,
we limit our analysis to data since March 2, 1998 when the restriction was relaxed to 12% of the closing price on
the last trading day.

The data used in this paper are based on time series of daily stock prices as well as trading volumes obtained
from the Korean Stock Exchange during March 2, 1998 ~ December 28, 1999, for a total of 493 observations.
We compute stock returns from daily closing prices for the Korea Composite Stock Price Index (KOSPI) and 16
industry stock price indexes. Industry stock price indexes used in this paper are Fishing (FS), Mining (MI), Food
& Beverages (FB), Textile & Wearing Apparel (TW), Wood & Wood Products (WW), Paper & Paper Products
(PP), Chemicals & Chemical Products (CC), Non-metallic Mineral Products (NM), Basic Metal Industries (BM),
Fabricated Metal Products, Machinery & Equipment (FME), Other Manufacture (OM), Construction (CO),
Wholesale Trade (WT), Transport & Storage (TS), Financial Institutions (F 1), and Insurance (IN). The summary
statistics of the log differences of daily prices and volumes are presented in Table 1 and 2, respectively. All series
exhibit slight skewness and high kurtosis, which is common in high frequency financial time series data.

Table 1
Summary statistics for the daily stock indexes prices: log difference, 1998/3/3 ~ 1999/12/28.
Industry Mean * 100 Star}dgrd Skewness Kurtosis Maximum Minimum
Deviation
KOSPI 0.1183 0.0263 0.0700 3.4216 0.0816 -0.0844
FS 0.0744 0.0380 0.1431 3.8137 0.1391 -0.1247
Mi 0.0136 0.0479 0.1576 3.1796 0.1200 -0.1285
FB 0.1278 0.0240 0.3418 4.4715 0.1045 -0.0709
™ -0.0186 0.0251 -0.0884 4.1189 0.0970 -0.1016
Ww -0.1202 0.0425 -0.1093 3.8065 0.1381 -0.1591
PP -0.0792 0.0299 -0.2069 3.5717 0.0949 -0.1032
CcC 0.0898 0.0257 -0.1005 3.4087 0.0815 -0.0857
NM 0.0148 0.0269 0.0903 3.5468 0.1003 -0.0957
BM 0.0600 0.0297 0.1756 5.0830 0.1161 -0.1080
FME 0.0913 0.0299 0.2851 3.7543 0.0966 -0.0874
OM -0.0418 0.0319 -0.3446 3.7877 0.1045 -0.1116
8[0) 0.0065 0.0377 0.4791 5.0574 0.1388 -0.1496
WT 0.0360 0.0335 -0.0009 3.7766 0.1125 -0.1012
TS 0.0908 0.0347 0.0300 3.4632 0.1172 -0.1254
FI -0.0012 0.0356 0.1027 3.4783 0.1134 -0.1231
IN -0.0129 0.0356 0.2759 4.0352 0.1360 -0.1055
Table 2
Summary statistics for the daily stock indexes volumes: log difference, 1998/3/3 ~ 1999/12/28.
Industry Mean * 100 gtar?de!rd Skewness Kurtosis Maximum Minimum
eviation
KOSPI 0.1942 0.2349 -0.2605 3.9864 0.7853 -0.7635
FS 0.3764 0.5551 0.2104 3.7291 1.9144 -1.5055
MI 0.3814 0.4919 1.1417 8.5727 3.5648 -1.5003
FB 0.3525 0.3510 -0.1496 3.6498 1.0645 -1.1142
™™ 0.1684 0.3208 0.1366 3.6279 1.1243 -1.0575
WwW 0.0218 0.4996 0.1858 3.4511 1.6266 -1.6702
PP 0.0455 0.3377 0.0474 3.4848 1.1276 -1.0451
cC 0.1693 0.2653 -0.2152 3.7080 0.8317 -0.8852
NM 0.0720 0.3797 -0.1158 5.5214 1.5803 -2.0696
BM 0.1932 0.3298 -0.1280 4.8420 1.3085 -1.5858
FME 0.2164 0.2693 -0.3425 4.3910 1.1121 -1.0077
oM 0.0957 0.4424 0.2531 4.5269 1.8055 -1.8099
CO 0.1704 0.3653 0.3258 5.2900 1.7709 -1.3369
WT 0.1982 0.3321 0.1012 3.8414 1.2549 -1.1709
TS 0.5611 04134 0.0882 3.6690 1.4530 -1.3025
FI 0.1392 0.3326 0.2343 3.5215 1.0855 -1.0845
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To Choose the optimal embedding dimension, the number of neighbors, and the contribution of volume, we
use the cross validation method which minimizes the mean square error in the training set. The training set is
from January 4, 1999 to June 30, 1999. Table 3 summarizes the optimal embedding dimension, the number of
neighbors, and the contribution of volume of the UNN and the MNN models.

Table 3
The optimal embedding dimension (E), the number of neighbors (¢), and the contribution of volume (@) in the training set:
1999/1/4 ~ 1999/6/30.

The UNN model The MNN model
Industry
E q E q a

KOSPI 6 50 3 20 0.05
FS 3 40 2 30 0.15
MI 7 60 6 40 0.50
FB S 40 5 20 0.20
TW 2 50 3 20 0.05
wWw 5 40 5 30 0.45
PP 3 90 2 60 0.30
CcC 3 80 2 40 0.05
NM 4 30 5 30 0.10
BM 8 30 8 30 0.05
FME 7 60 7 40 0.05
OM 3 90 4 100 0.45
CO 2 70 5 60 0.75
WT 6 10 3 20 0.15
TS 3 20 10 10 0.85
FI 10 100 3 20 0.60
IN 2 90 4 10 0.55

For each stock index, the out-of-sample forecasting performances of the RW, UNN and MNN models are
examined. The out-of-sample one-step ahead forecasts are calculated from the prediction set July 1, 1999 ~
December 28, 1999 for a total of 125 observations. As a measure of performance, the MAPE and the MSPE are
used. These errors of three models are presented in Table 4. To assess the statistical significance of forecasting
performance, we test for the differences in mean squared forecast errors using the approach originally derived by
Granger and Newbold [7] and updated by Mizrach [14]. Granger and Newbold [7] pointed out that direct testing
of hypotheses about the relative magnitudes of the forecast errors generated by two alternative forecasting
methods is complicated by the fact that the forecast errors themselves are likely to be correlated. Let e, be the
forecast residuals from method 1, and let e,, be the forecast residuals from method 2. Suppose that these two
forecast residual series are normally distributed and serially uncorrelated. If the forecast errors were from a
bivariate normal population (e, ), with zero means, the correlation p, and the standard deviations, o, and 05, a
straightforward test of the forecast improvement is available. Let U =¢,—e, and V,=¢, +e,,. Then, (U, V))

has a bivariate normal distribution with parameters:

EU)=EF)=0

Var(U,)= o0, =0} + 0} - 2p0,0,
Var(V) =0} = 0} + 0} +2po,0,
Cov(U,,¥,) =0, = po,o,

In terms of the original population, o, =0} ~0?. If the mean squared prediction errors in the original
population are equal, then the covariance in the transformed population must be zero. Therefore, if the sample
correlation s is significantly greater (less) than 0, then O',2 is significantly greater (less) than 0'22. However,

the approach of Granger and Newbold [7] cannot handle our stock return populations. The assumptions of
unbiasedness and normality are clearly violated in the population. Moreover, given that we are working with
times-series data, the forecast errors are also likely to be serially correlated. Mizrach [14] relaxed the
assumptions of Granger and Newbold [7], extending the approach to allow the forecast error series to be biased,
non-normal, serially correlated and heteroskedastic. Mizrach [14] showed that the statistic
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We apply the Mizrach’s test to three forecasting models above and the results are presented in Table 4. Test
statistics with positive value indicates that the forecasting performance of the latter model is superior to that of
the former model. We make pairwise comparisons between the models. The test results show that the UNN
model provides a forecast improvement over the RW model for almost all indexes (except MI, WW, CO).
Forecasting improvements of the UNN model over the RW model, however, are statistically significant for TW
and BM only. The MNN model provides a forecast improvement for the RW model across all indexes, and
forecasting improvements of the MNN model for the RW model are significant for 11 out of 16 indexes. The
MNN model is superior to the UNN model in the forecasting of almost all indexes (except BM), and provides
statistical significance for FS, FB, FME, and CO.

Table 4
The MAPE, MSPE, and the test statistics of forecasting performances of three models: 1999/7/1 ~ 1999/12/28
MAPE MSPE Test statistics

Industry RW & RW & UNN &
RW UNN MNN RW UNN MNN UNN MNN MNN

KOSPI 1.957 1.975 1.968 6.138 6.115 6.036 0.2398 0.5607 0.4630
FS 2.797 2.778 2.733 13.31 13.02 12.35 1.2046 2.5281 2.0727
MI 3.114 3.138 3.123 16.53 16.33 16.12 -0.284 0.6351 0.9130
FB 2.180 2.142 2.113 9.067 8.877 8.619 0.9766 1.8302 1.9875
W 1.904 1.788 1.757 5.729 5.176 5.152 2.9011 3.0131 0.2739
WW 2.455 2.457 2.435 9.171 9.082 8.617 -0.629 0.0638 0.6130
Pp 2.255 2.225 2.204 8.443 8.246 8.204 1.3494 1.9339 1.0727
CC 2.041 2.003 1.987 6.618 6.487 6.398 0.8917 1.4880 1.2592
NM 1.878 1.862 1.854 5.764 5.562 5.502 1.3404 1.5508 0.2152
BM 2.401 2.336 2.337 9.772 9.232 9.300 2.2901 1.7662 -1.566
FME 2.389 2.381 2.360 9.287 9.050 8.847 1.3726 1.7548 2.0043
OM 2.615 2.593 2.561 11.29 11.09 10.98 0.8103 2.6095 0.8989
CO 2.393 2.385 2.311 11.08 11.10 10.71 -0.023 3.7842 3.1600
WT 2.800 2.767 2.752 12.95 12.50 12.36 1.0136 1.7680 0.7134
TS 2.922 2.892 2.805 13.86 13.56 13.04 0.8662 1.8733 1.0675
FI 2.578 2.567 2.588 11.88 11.78 11.43 0.9965 1.6682 1.1475
IN 2915 2.871 2.909 14.98 14.80 14.23 1.0028 1.4693 1.1461

Note: MAPE and MSPE are reported in levels (x10%) and (x10%), respectively. All statistics are distributed standard normal
in large samples. All bold statistics are significant at the 5% level.

5. Conclusion

This paper compares the out-of-sample stock index returns forecasts of the RW, the UNN, and the MNN
models. The forecasts generated by the nonparametric models (UNN, MNN) dominate the RW model. Among
the nonparametric models, the forecasts of the MNN model dominate those of the UNN model. This suggests the
effectiveness of the multivariate nearest neighbor method as a modeling strategy for stock index returns. We find
that the forecasts of the MNN model are superior to those of the RW and the UNN models. This evidence
therefore establishes the presence of substantial nonlinear mean predictability in the stock index returns as well
as the effectiveness of the MNN method as a modeling strategy for stock index returns.
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It is preferable to have a sufficiently long time series so that all areas of the attractor appear several times in
the time series. This allows the model to select nearest neighbors from many locations in the time series. When
the time series is short, however, the number of vectors in any onc area of the attractor may be relatively small.
Another problem of the Korean stock market data is that the data suffer some forms of price restrictions. Under
these restrictions, the information entered into the market may not affect the price and volume promptly. Further
rescarch should try different data set, perhaps based on longer periods with less restrictions.
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