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Abstract

In this paper, we present a distributed backpropagation algo-
rithm of a fully connected multilayered neural network on a
distributed-memory multiprocessor system. In our system, the
neurons on each layer are partitioned into p disjoint sets and
each set is mapped on a processor of a p -processor system. A
fully distributed backpropagation algorithm, necessary com-
munication pattern among the processors, and their time/space
complexities are investigated. The p -processor speed-up of the
backpropagation algorithm over a single processor is analyzed
which can be used as a basis in determining the most cost-
effective or optimal number of processors. The experimental
results with a network of Transputers are also presented to
confirm our model and analysis.

1. Introduction

Recently, extensive research efforts are being devoted to
the theory, implementation, and application of neural networks.
However, since they require huge amounts of computational
resources, and current technology is not mature enough to
implement a large neural network directly in hardware, digital
computer simulations are the primary method of implementing,
experimenting, and applying neural networks. Because the size
of neural networks is typically conceived as being very large,
the ability to simulate them is generally limited by the speed
and storage capacity of digital computers.

One natural way to overcome the time and space limit of
neural network simulations is to exploit the parallel processing
technique, and as such, there have been several research efforts
to implement a fast simulator on commercially available paral-
lel computers such as the Connection Machine [4], the Warp
[11], the MPP [8], and the BBN Butterfly [5).

In this paper, we investigate neural network simulations
on a distributed-memory, message-passing multiprocessor
(DMM) system such as the Intel Hypercube, Ncube, or the
Inmos Transputer system which are more widely available than
the aforementioned parallel computers. In particular, we inves-
tigate a fully connected multilayered network using the back-
propagation learning algorithm, the most common and popular
neural network [3], on the DMM. Simulating neural networks
on a DMM have already been considered in some previous
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works. For example, {6] and [10] used the Transputer-based
DMM, but their approaches are based on the systolic algorithms
which are not well suited for the DMM nature. Also [7] and {2]
considered using the DMM, but they assumed that neural net-
works can be partitioned into groups of neurons such that the
connectivity within a group is much higher than the overall net-
work connectivity, which is not well applicable to the fully con-
nected networks.

In our model, a multilayered network is vertically parti-
tioned into p subnetworks, and each subnetwork is mapped on
a processor of the p -processor DMM. Based on this partition-
ing and mapping scheme, a fully distributed parallel backpropa-
gation algorithm is derived, and the time/space complexities of
it are also computed. The p-processor speed-up and space-
reduction bound are also derived by comparing them with the
single processor’s case. The experimental results with 32 Tran-
sputers show that our algorithm and analysis are valid.

2. Multilayer Neural Networks

The neural network we are focusing is a fully connected
multilayered neural network using the backpropagation learn-
ing algorithm which is the most popular one [3].

2.1 A Fully Connected Multilayer Network

A fully connected multilayered network consists of L+1
layers as shown in Figure 1. The first layer at /=0 is the input
layer and contains n¢ neurons. Subsequent layers are labeled 1
<! < L; the I-th layer contains n; neurons. Each neuron in a
layer is connected to all neurons in the next layer. Associated
with each neuron i on layer / is an activation value a;(/), and
attached to each connection, connecting neuron i on layer / to
neuron j on layer [ +1, is a weight wj; (I,[+1).

2.2 The Backpropagation Learning Algorithm

The backpropagation learning algorithm [12], a kind of
supervised learning one, consists of three passes; forward exe-
cution (Eq.(1)), backpropagation of the error (Eq.(2)), and
weight update (Eq.(3)), where f is a nonlinear sigmoid function
of the form of f(x) = (1 +e~*)"1, §;(1) is the error value of
neuron i on layer /, ;(L) is the desired value of neuron i in the
output layer, and 7 is a learning rate.

a;(D=f (}’gw.-j(l—l,l)-a,(l—l) ), i=1,..,nand I=1,..,.L (1)
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Figure 1: A Fully Connected Multilayered Network
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3. Multilayer Neural Network on a Distributed-Memory
Multiprocessor

Though the full implementation, in which a dedicated pro-
cessor is assigned to each neuron, provides a natural way to
implement the neural network, it is difficult to change the
neural network parameters such as neural network structure,
neuron characteristics and leamning rule. So at present, almost
all neural network systems are being virtually implemented in
which a processor simulates a subset (or whole) of network in a
multiplexing fashion. The central issue in virtual

implementation of neural networks on parallel computers is the
way of mapping neural networks onto them so that the perfor-
mance of simulation can be maximized.

3.1 Partitioning Strategy

A DMM in our model consists of p processors, has no
shared memory, and communicates only by message passing
via a point-to-point link. Each layer of n; neurons is partitioned
into p parts, and each part of n;/p neurons is assigned to each
processor as shown in Figure 2.

Each processor maintains in its local memory the activa-
tion values, the error values, and the input and output weight
vectors of the assigned neurons. Since an input weight value of
layer [ is the output weight value of layer /-1, the same value
is stored in two processors. Though this partitioning scheme
results in the duplication of weight values, it allows to avoid the
complex communication requirement during the execution of
the distributed backpropagation algorithm. On the other hand,
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Figure 2: A Neural Network Partitioning Example
all the values of activations and errors are completely parti-
tioned into p disjoint sets. Figure 3-(a) shows our partitioning
scheme onto a 4-processor DMM when a fully connected net-
work consists of 3 layers and each layer has 4 neurons, while
Figure 3-(b) presents the distributions of activation values, error
values, and weights when a DMM is connected using the ring

topology.
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(a) Network Partitioning

activation values : {a(x1),a(yl),a(zl)}
error values : {d(x1), d(y1), d(z1)}
input weight vectors :
({111,112,113,114}, {wll,w12,w13,w14}}
output weight vectors :
{({111,021,31,141), {w11,w21,w31,w41}}

activation values : {a(x3),a(y3),a(z3)}
error values : {d(x3), d(y3), d(z3)}
input weight vectors :
({B1132,33,134}, (w31,w32,w33,w34}}
output weight vectors :
{{113,123,133,143}, {w13,w23,w33,w43}}

(b) Data Distribution
Figure 3: A Partitioning and Data Distribution Example



3.2 A Fully Distributed Backpropagation Algorithm

Each processor in a DMM basically executes the three
passes expressed in Eq.(1)-(3), but some communications are
necessary because data in layer / such as activation values
(a;(1)) and error values (8;(1)) are fully distributed over p pro-
Cessors.

In the following, it is shown the necessary communication
patterns and the distributed version of backpropagation algo-
rithm for each pass, where it is assumed that N;(/) is a set of
indices of neurons in layer ! assigned to a processor p;. Note

n
| = —.
that | N,(I) D

3.2.1 First Pass : Forward Execution

To compute the g;(!) using Eq.(1), the p; should know all
aj(l—l) stored in different processors. This requirement could
be satisfied by the way in which every processor p; broadcasts
the a;(I-1) for each neuron jeN,(I-1), and receives the

a;(l-1) for each neuron j’éN,(I-1). Tt is a process, called
all-to-all broadcasting (9], whereby a set of messages, with a
distinct message initially residing at each processor, is dissem-
inated so that eventually a copy of each message comes to
reside at each processor.

Once all-to-all broadcasting is completed, every processor
is informed of all the necessary activation values of all other
neurons in layer /-1, and can execute Eq.(1) for the assigned
neurons independently. The forward pass of the distributed
backpropagation algorithm for p, is presented in Algorithm 1,
in which all-to-all-broadcast is a procedure to broadcast and
receive @;(I-1). (This procedure will be described in more
detail in Section 3.3.)

Algorithm 1: A Distributed Forward Execution Algorithm
for/ =1toL do
/* Broadcasts and Receives a;(I-1) */
for each neuron je N, (/-1) do
all-to-all-broadcast(a;(1-1)) ;
end_for
/* Computes a;(l) */
for each neuron i e N,(/) do
ny-
aih)=f (Fwi(-11ya;A-1));
7~
end for
end_for ~

3.2.2 Second and Third Pass:
Backpropagation of the Error and Weight Update

The backpropagation of the error pass is similar to the 1st
pass except for broadcasting 8 (/+1) rather than a;(I-1). To
compute the error value 8;(/) where ie N, (1), all 8¢ (I+1) stored
in different processors are required. This requirement could be
satisfied by the way in which every processor p, broadcasts the
8, (1+1) for each neuron ke N,(I+1), and receives 8;-(I+1) for
each neuron k¢ N,.

Now, let us explain how to update the weights stored in
two different processors. A naive method to maintain the con-
sistency of weight values is by communication, i.e., one proces-
sor computes the new weight value and sends it to the other
processor as presented in [13]. This kind of information
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exchange can be accomplished by all-to-all personalized com-
munication [9)], because computing and sending the new
weights are necessary for all connections between the neurons
mapped onto different processors. The all-to-all personalized
communication is a process by which each processor sends a

unique message to every other processors. However the time
complexity of this method depends on the processor intercon-
nection topologies{13). Furthermore, because it is proportional
to the number of connections in the neural networks, it is a very
time-consuming process when the size of a neural network is
very large.

Another method to maintain the consistency of weight
values, used in our model, is a recomputation method with an
additional all-to-all broadcasting of activation or error values.
Assume that neuron k in layer /+1 and neuron i in layer [ are
mapped onto p, and p,, respectively. The difference of weight,
Awy;(l,]+1), can be computed in p, if it knows the Se(I+1)
stored in py, since the wy; (1,1+1) is kept locally in p; as an out-
put weight. Similarly, the difference of weight, ANwg(l,1+1),
can also be computed in p, independently if it knows the a;(/)
stored in p;, since the wy;(I,1+1) is kept locally in p, as an
input weight. Furthermore, Awy(/,/+1) and Awy(l,1+1) are
identical because p; and py use the same values for computa-
tion, and thus the weight value consistency is guaranteed.
When p; sends a;(!) and px sends 8;(/+1), they should be
broadcasted because each neuron in layer [ is connected to all
neurons in layer / +1.

A distributed error backpropagation and weight updating
scheme for p, is presented in Algorithm 2.

Algorithm 2: A Distributed Error Backpropagation
and Weight Update

/* Computes Error Values for Output Layer */
for each neuron ie Ny(L) do

8 (L) = [;(L)-a;(L)}a; (L) (1-ai(L))]
end_for

for! =L-1to1do
/* Broadcasts and Receives 3;(/+1) */
for each neuron ke N,(/+1) do
all-to-all-broadcast(d; (1+1)) ;
end_for

/* Computes &;(I) */
for each neuron ie N;(/) do

&)= [Zz;ﬁk(lﬂ)w(l J+DHai()-(1-a; ()]

end_for

/* Updates Output Weight Vector wii(/,/+1) */
for each neuron i e Ny(I) do
for k =1to n;4; do
Awi (L I+ =18, (I+1)a; (1) ;
wi(LI41) = w (L1+1) + Awi (LI+1) 5
end_for
end_for

/* Updates Input Weight Vector w;; (I -1,1) */

/* Broadcasts and Receives a ‘(I—IS */

for each neuron jeN,(/-1) do
all-to-all-broadcast(a;(I-1)) ;

end_for



/* Updates w;;(I-1,1) */
for each neuron i e N;(/) do
fOl’j =1ton.-;do
Awi(I=-1,1)=n-8;(I)a;(I-1);
Wi; [—1,1) = w,~j(l—1,1) + Aw;j(l—l,l) N
end_for
end_for
end_for

3.3 Time Complexity and Speed-up Ratio

The time required for a single processor to execute the
backpropagation algorithm given in Egs.(1)-(3) for a layer of n
neurons is given by Ty =1, + 12 + t3, where ¢; is the time to
execute the i-th pass. They could be expressed approximately
as follows;

ti=n(n-Mz+F)

t2=n-(n-My)
t3=n-(n"Mg)
Ti=t1+1ty+13
=n(3nM;+F) @)

where M, is a multiply-and-add time of two floating-point
numbers, and F is the time to evaluate the sigmoid function. It
is assumed in evaluating the time complexity that n; = n for
1=0,...,.L for the sake of simplicity.

The time complexity of our distributed backpropagation
algorithm for a layer of n neurons running on a p -processor
DMM, Tp, are shown in Eq.(5). In Eq.(5), r;" is the time to
execute Algorithm 1, and 7, is to execute Algorithm 2, and
AAB(p) is the time to complete all-to-all broadcasting on the

p-processor DMM. The factor % is due to the fact that every

processor is assigned % neurons per layer.

1'= %'AAB(p)+ %'(n-Ma +F)
ty = %-(Z'AAB(p) +3n-M,)
T,=t+1)

= %~(3-AAB (P)+4nM,+F) ©)

Now, let us consider the all-to-all broadcasting algorithm
and its time complexity on a p -processor DMM. To evaluate
this, one must first assume the communication capability of
each processor. In this paper we adopt the one-port communi-
cation [9] in which a processor can send and receive a unit of
message on one of its ports, during each period of unit time.
The port on which a processor sends and receives can be dif-
ferent. The unit time of communication for a processor sends
and/or receives a unit of message is defined as C which
includes the overhead of setting up the necessary communica-
tion mechanism and the actual message transfer time. The mes-
sage unit is a word representing the floating-point number of
the activation or error value.

In one-port communication, the lower bound for ail-to-all
broadcasting on a p-processor DMM is (p—1)C since each
processor needs to receive from every other processor, i.e.,
(p-1) processors. This lower bound can be achieved in the ring

topology. Note that as far as one-port communication is
assumed, other topologies such as the complete connection,
hypercube, and mesh which have more connections than the
ring, do not perform all-to-all broadcasting better than the ring.
If a processor can send and receive on its d-ports, d>1, con-
currently during each time unit, more richly connected topolo-
gies would result in less all-to-all broadcasting time. However,
the d-port communication is not realistic in most commercial
message-passing multiprocessors, which is the reason why we
adopted the assumption of one-port communication.

An AAB(p) algorithm for p, when processors are con-
nected by a ring topology is presented in Algorithm 3. In this
algorithm, we assume that p processors in the ring-connected
DMM are numbered from 0 to p—1 successively such that pro-
cessor p; is directly connected t0 P 141y mod p @04 P (t-1) mod p-

Algorithm 3: An AAB(p) Algorithm on the Ring Topology
/* Sends an element (A[0]) and
Receives p—1 elements (A[1]-A[p—1]) ¥/
fori=0top-2do
parbegin
send Ali] to p4; ;
receive A[i+1] fromp,_; ;
parend
end_for

Using Eqs.(4) and (5), the p-processor speed-up ratio,
S(p)= T—’ can be obtained as follows :
P

Ty

S(p)=-Tp— by C=AM, ,F=6:M;)

_ p-(3nM;+6M,)
=AM, (p-1)+4n M, +OM,

_ ‘(3n+86
“3A@-D+4n +

Once the learning is complete for a specific application, the
application can be hard-wired, and the network may execute
only the forward execution pass. The p -processor speed-up for
forward execution, S ‘(p ), can be obtained as follows;

PO 5 U ‘(n+6
s (P)‘TT‘_L(‘—)_G'A-@-U+"+

If the size of a neural network is extremely larger than p, the
Sp)is %p and the S’(p) is p in a p -processor DMM ;

®

@

. _ 3
limS@)=7P
lim§’(p)=p

The reason that S (p) is not p but %—-p when p processors are

used, comes from the fact that the same computations for
weight updates are performed twice in weight update pass.

In Eqs.(6) and (7), the most important parameter is the
communication/computation ratio A whose value lies between
0.5 ~ 256 [1]. The theoretical learning speed-up aspects for
various A values are shown in Figure 4-(a) graphically, where n
= 2048 neurons/layer and 6=40. The theoretical forward execu-
tion speed-up is also shown in Figure 4-(b) under the same
assumptions.
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Figure 4: The p -processor speed-up when n =2048

For the distributed simulation of a multilayered neural net-
work, it is seen from Figure 4 that there is a cost-effective
number of processors depending on the A values, such that
though more processors are added to the simulation, the speed-
up ratio is not increased as much.

3.4 Space Complexity

The total space requirement to execute the backpropaga-
tion algorithm for a fully connected neural network which con-
sists of L layers of n neurons, on a single processor, M |, could
be computed as follows;

Mi=nL+nL+n2L-1)
The total space requirement of the distributed backpropa-

gation algorithm for the same neural network on a p -processor
DMM, M,, could be computed as follows :

My=nL+nL+2n2(L-1)+pn
=n-@L +p)+2n2(L-1)
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Since the M, could be equally partitioned into p spaces inap-
processor DMM, the space-reduction ratio, M (p), could be
computed as follows ;

Mp)= 1

p-@nL+n%L-1)
n-2L+p)+2n2(L-1)

If the size of a neural network becomes large, the space-
reduction ratio approaches to % H

JimM @)=4

4. Experimental Speed-up on a Network of Transputers

Our distributed backpropagation algorithm has been
implemented on a network of Transputers, especially T414.
The Transputer provides relatively small A value because the
capabilities to communicate with other Transputers are embed-
ded in its architecture, which motivated us to adopt the network
of Transputers as our testbed system. The A value of Tran-
sputer is about 0.05 {14].

An experimental speed-up of our distributed backpropaga-
tion algorithm on a ring of 32 T414-17MHz are obtained. All
benchmark applications consist of 3 layers, in which the neu-
rons in adjacent layers are fully connected. The sizes of bench-
mark application are as follows :

Number (80 x 9 x 4) : 8-by-10 Numbers
Hangul (1600 x 50 x 256) : 40-by-40 Korean Characters
Numl8x12 (216 x 216 x 216) : 18-by-12 Numbers

Figure 5-(a) shows the speed-up of the distributed backpropaga-
tion algorithm while Figure 5-(b) shows the speed-up of the for-
ward pass of it.

The speed-up of Hangul and Numl8x12 applications are
generally same as the analyzed speed-up, while Number is not.
This aspect comes from the fact that Number application does
not have enough neurons(or connections) to utilize the full
power of multiprocessor system.

Another interesting feature in Figure 5 is that the speed-up
of the forward pass of Hangul application is not linear, but
almost a step function. The reason is that the number of neurons
in a layer, n, is not always divisible by p in the p -processor
DMM. Therefore, though a processor in the p -processor DMM

. . n .
has finished the computation for |_7'J neurons, it may have to

. . n
wait other processors which take charge of [—’] neurons.

Because of this synchronization overhead, the speed-up ratio is
increased in a stepwised fashion. For example, the speed-up
ratios of Hangul application with 18 and 24 Transputers are
almost same. (See Figure 5-(b))

5. Summary and Concluding Remarks

The backpropagation learning can take huge amount of
time for a practical application. One natural way to overcome
the time and space limit is to use parallel computers. We stu-
died the distributed backpropagation on the p -processor DMM.
Especially, we derived the fully distributed backpropagation
algorithm, identified the necessary communication mode (all-
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to-all broadcasting), derived the time complexity of communi-
cation and computation, thereby obtained the theoretical upper-
bound of speed-up, and finally presented the experimental
speed-up of our algorithm on a ring of 32 Transputers which
confirmed our model and analysis. Also we found a very
interesting result that the processor interconnection topologies
such as ring, mesh, hypercube and complete connection do not
influence to the speed-up ratio because they all could provide
the O(p —1) complexity which is the lower bound for AAB().
Thus, no more powerful topologies than the ring need to be
used in our distributed backpropagation algorithm.

Our model and equations for the speed-up/space-reduction
ratios can be very useful for studying the effect of the number
of neurons in a neural network, the communication / computa-
tion ratio, and the number of processors, on the backpropaga-
tion algorithm speed-up.
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