EXPLOITING THE INHERENT PARALLELISMS OF BACK-PROPAGATION
NEURAL NETWORKS TO DESIGN A SYSTOLIC ARRAY

Jai-Hoon Chung, Hyunsoo Yoon, and Seung Ryoul Maeng

Department of Computer Science
Korea Advanced Institute of Science and Technology (KAIST)
373-1 Kusong-Dong, Yusung-Gu
Taejon 305-701, Korea

ABSTRACT

In this paper, a two-dimensional systolic array for back-propagation neural network is presented. The design is
based on the classical systolic algorithm of matrix-by-vector multiplication, and exploits the inherent parallelisms
of back-propagation neural networks. This design executes the forward and backward passes in parallel, and ex-
ploits the pipelined parallelism of multiple patterns in each pass. The estimated performance of this design shows
that the pipelining of multiple patterns is an important factor in VLSI neural network implementations.

1. Introduction

As simulations of artificial neural networks (ANNSs) are time consuming on a sequential computer, dedicated ar-
chitectures that exploit the parallelisms inherent in the ANNs are required to implement these networks. A systol-
ic array [Kung82] is one of the best solutions to these problems. It can overcome the communication problems
generated by the highly interconnected neurons, and can exploit the massive parallelism inherent in the problem.
Moreover since the computation of ANNs can be represented by a series of matrix-by-vector multiplications, the
classical systolic algorithms can be used to implement them.

There have been several research efforts on systolic algorithms and systolic array architectres to implement
ANNs. The approaches can be classified into three groups. One is mapping the systolic algorithms for ANNs
onto parallel computers such as Warp, MasPar MP-1, and Transputer arrays, another is designing programmable
systolic arrays for general ANN models, and the other is designing a VLSI systolic array dedicated to a specific
model. All of these implementations exploit the spatial parallelism and training pattern parallelism inherent in
ANN, and suggest the systolic ring array or two-dimensional array structures.

The back-propagation neural network [Rume86}, in addition to the above two types of parallelism, has one more
parallel aspect that the forward and backward passes can be executed in parallel with pipelining of multiple pat-
temns. This paper proposes a systolic design dedicated to back-propagation neural network that can exploit this
type of parallelism.

In the following sections, the existing systolic implementations and inherent parallelisms that we can exploit are
first reviewed. Then a systolic array that can exploit the forward/backward pipelining of multiple pattems is
presented. Finally the potential performance of this design is analyzed.

2, Background

The Back-Propagation Model

Let us consider an L -layer (layer 1 to layer L) network consisting of N neurons at the k-th layer. Layer 1 is the
input layer, layer L is the output layer, and layers 2 to L—1 are the hidden layers. The operations of the back-
propagation mode] are represented by following equations.

The Forward Pass
P =iy, (n=1) (1.1)
= e DwpO -6, @SnSL) a2
W=, (=D @D
= f(xéj»))=l—+:—_x;l;y, @<n<L) @2

CH 3065-0/91/0000-2204 $1.00 © IEEE

The Backward Pass

B =y’ —dpj. (n=L) 3.0
B = S OwE0), @<n SL-D) 62)
8 =Ry -y =3B, 2snsL) @
The Weight Increment Update
AwS u+1) = AwfNu) + 8Py eV, (2<a <L) ®)
whE+1) =wXt) + eAwfr), 2<n<L) ©)
Terminating Conditions
N,
E=zz-:,=zi;(y;(->-d,.-)2<a U]
P P =l
Inherent Parallelisms

There are three types of parallelisms inherent in back-propagation neural networks. The first is the spatial paral-

lelism which can be exploited by executing the operations required in each layer on many processors. The spatial
parallelism may be classified into three levels according to the degree of parallelism exploitation.

S1) Partitioning the neurons of each layer into groups
$2) Partitioning the operations of each neuron into sum of products operations and the non-linear function
S3) Partitioning the sum of products operations into several groups.

These partitioned operations can be executed on different processors in paraliel. Most of neural network simula-
tors implemented onMIMDcompum exploit parallelism S1) and S2), but parallelism S3) is not exploited much
due to the communication overhead.

The second type of parallelism is the pattern parallelism which can be exploited by executing the different pat-
terns on many processors. The pattern parallelism can be classified as follows:

P1) Partitioning the training pattern set, independent execution on many processors, and epoch update
[Pome88, Mili89, Sing90]

P2) Pipelining of multiple training patterns

P3) Pipelining of multiple pattern recalls

The parallelism P2) can be exploited by allowing some processors that completed the parts of operations required
to execute training for a pattern to start training for the next training pattern while the other processors are pro-
cessing for the previous training pattems presented. The parallelism P3) can be exploited by allowing the pipelin-
ing of multiple pattern recalls.

The third type of parallelism is the forward/backward pipelined parallelism which can be exploited by executing

the forward and backward passes of different training patterns in parallel [Sing90]. This parallelism implies the

exploitation of the parallelism P2). The depth of pipelining can be maximized to two times the number of neurons

in the network, and it is effective if the size of the training set is much larger than the number of neurons in the

lfletwork. The forward/backward pipelined parallelism can be classified according to the depth of pipelining as
ollows:

F1) Pass-by-pass pipelining

F2) Layer-by-layer pipelining

F3) Neuron-by-neuron pipelining

F4) Connection-by-connection pipelining

2205

Systolic Implementations of Artificial Neural Networks
There have been several systolic implementations of artificial neural networks, which can be classified as follows:
1) Mapping systolic algorithms for neural networks onto parallel computers [Mann90, Mill89, Pome88, Chin90]
2) Design of a programmable systolic array for general neural networks [Kung88, Rama90]
3) Design of a VLSI systolic amay dedicated to a specific neural network model [Blay89, Blay90, Kwan90]
These also can be classified according to the dimension of their resultant systolic array. These implementations
are summarized in Table 1. As shown in Table 1, the two-dimensional approaches can exploit more parallelisms.
Our approach is distinguished from the other approaches in that it exploits the forward/backward pipelined paral-
lelism described above.

Table 1. Systolic Implementations of Artificial Neural Networks

Di 1 R hers Model Exploited Parallelisms | Target System
1-D Kung & Hwang General Spatial 1) Transputer
Systolic [Kung88) Model Pattern P1) Array
Armray

Pomerleau, et al. Back Spatial S1), $2) Warp
[Pome88] Propagation | Pattern P1)
Millan & Bofill Back Spatial S1) Transputer
[Millg9] Propagation | Pattern P1) Array
Mann & Haykin Kohonen Pattern P1) arp
[Mann90]
Kato, et al. Back Spatial S1) Sandy/8
[Kato90) Propagation
Ramacher, et al. General Spatial S1), §2) Dedicated
[Rama90} Model Pattern P3) VLSI
2-D Blayo & Hurat Hopfield Spatial S1), S2), $3)
Systolic [Blay89] Pattern P3)
Array
Blayo & Lehmann Hopfield Spatial S1), $2), $3) Dedicated
[Blay90] Kohonen Pattern P3) VLSI
Rwan & Tsang ack Spatial ST), §2),53)
[Kwan90] Propagation | Pattern P3)
Chinn, et al. Back Spatial S1), $2), 83) MasPar MP-1
[Chin90] Propagation
Approach Back Spatial ST), $2), $3) Dedicated
Propagation | Pattern P2), P3) VLSI
Pipelined F4)

Updating the Weights

The issue of the weight updating time has been controversial with contention between researchers who update net-
work weights continuously after each training pattern is presented (continuous updating) and those who update
weights only after some subset, or often after the entire set, of training patterns (batch updating). To exploit the
traing pattern pipelining, we use the batch updating method because the weights must not be changed for the for-
ward pass and the backward pass of a pattern as shown in Equations (1)(6), although the systolic array proposed
in this paper can support both of the weight updating methods.

3. A Systolic Array for Back-Propagation Neural Network

The computation of artificial neural networks can be represented by a series of matrix-by-vector multiplications
interleaved with the non-linear activation functions. The matrix represents the weights associated to the connec-
tions between two adjacent layers, and the vector represents the input patterns or the outputs of a hidden layer in
the forward pass, or the errors propagated in the backward pass. The resultant vector of a matrix-by-vector multi-
plication is applied to the non-linear activation function and to the next layer.

To exploit the spatial parallelism, we do not consider the one-dimensional arrays. And to efficiently organize the
systolic array even for a network in which the numbers of neurons of the adjacent layers are much different, we
didn't use the systolic algorithms proposed in [Kung88, Kato90].

2206

Array Organization

In Figure 1(a), the systolic array ization between two adjacent layers is shown. One layer consists of 5 neu-
rons and the other layer consists of 3 neurons. Each basic cell w; is a computational element which contains the
weight value and the weight increment associated to the connection between neuron i of a layer and neuron j of
the next layer. The basic cell executes the sum-of- ts operations as shown in Equations (1.2) and (3.2) and
weight ing operations as shown in Equation (5) and (6).

The weight matrix is shared between the forward and backward passes, and the data of the activations
forward-propagated and the errors back-propagated are disjoint. The Of unit executes thresholding and the
activation function as shown in Equations (1.2) and (2.2), and the g unit executes the derivative of the activation
function as shown in Equation (4). The g unit has a FIFO queuve to contain the outputs of a neuron, that are fed
back to the basic cells to compute the weight updates in the backward pass. The operations of the basic cell that
can be executed in parallel are shown in Figure 1(b).

Activation
forward-propagated ,
on @™ ¥
y .
Error ™
back- . o™
propagated

= NW X W + WS
= NW

SE = WN XW + NE

(b)
Figure 1. Systolic array organization between two adjacent layers of multi-layer neural networks: (a) combined
design for forward and backward passes; (b) basic cell operations.

Input patterns

e o ¢ X
pom s ¢ o o &

2 .
i1 . o
I~ 1Y

E Termination

—= Forward pass

—— Backward pass
d.z Desired outputs
Figure 2. An example of a systolic array organization for (5-3-2) 3-layer neural network.

In Figure 2, an example of a systolic array organization for (5-3-2) 3-layer network is shown., The elements of
two weight matrix are set into the two dimensional arrays, the 3-by-5 weight matrix represents the weights associ-
ated to the connections between the input layer and the hidden layer, and the 2-by-3 weight matrix represents the
weights associated to the connections between the hidden layer and the output layer. The second matrix is tran-
spots:ld in the figure. While the weights are updated, the feeding of training patterns are stopped, and the pipeline
is stalled.

Basic Cell Architecture

The internal data path of the basic cell is shown in Figure 3. It consists of three multipliers, three adders, two re-
gisters for weight value and weight increment. The communication clock cycle can be two times fast than the
computation clock cycle, and the g unit sends the value at idle cycle.

wla NE

TL e AW xW ;5. AW
T2 4 WN xW ;BN o« WK
T3 = WN x ¥E; SE = NE

Figure 3. Internal data path of the basic cell
4. Performance Evaluation

Let us consider an L -layer network consisting of Ni neurons at the k-th layer. The required cycles, C, for for-
ward and backward passes of this design are denoted by Equation 8):

Cormard = ;N,- +L-2 ®.1)
c,,,,,,.,,:lf;zv,-n. -1 ®.2)

When the forward and backward passes are pipelined, the required cycles for a single training pattern are denoted
by Equation (9):

Ciingte = (Crorward + Chackward) —NL + 1 ®

Equation (9) shows only the effects of the spatial parallelism and the forward/backward pipelining. The effects of

the forward/backward pipelining on performance is not great even though N, is much greater than 1. However it

makes the pipelining of multiple training patterns possible. When multiple patterns are pipelined, the required
cycles for leaming p training patterns are denoted by Equation (10):

Cp = Cﬂ'ugk +0- D (10)

The speedup, S,, by the pipelining of p training pattems is denoted by Equation (11). When p >> Gingte, the
speedup can be ;pproximated 10 Ciingse that is the depth of the pipelining and dependent only on the network size.

-Cy;, -C...
5= LS = _C—ﬁhuc e _ an

For updating the weights, the cycles that feeding of training patterns is stopped are denoted by Equation (12):

CW=22N.~—N1—N2+L+1 12)

2208

?)damtlwweigmttimdmingpresemaﬁonofp patierns, the total required cycles are denoted by

When we
Equation (13):
e {505 423 @

The performance of neurocomputers is measured in MCUPS (millions of connection updates per second). Let N
be the number of connections of the target neural network, then the MCUPS is calculated by Equation (14):

_ _total conmections calculated _ N x

MCUPS = total elapsed time in psec — X cycle time a4
lnlhisdesign,mebasicclockcycleﬁmeisdemninedasthcmaximmntimeamongmctimewgui:edbyonemm-
tiplication and one addition, the time for thresholding and activation function (table lookup), and the time required
to feed the input patterns continuously.
Speed measurements of several high neural network implementations have been performed for NET-
talk [Sejn87] as a benchmark , Kato90, Faur90]. Assuming we implement this design with 100 nsec of
cyck time for computation and 50 nsec for communication, 248 M can be obtained for for a single

training pattern, only by the spatial parallelism and the forward/backward pipelining, and for (128-128-128)
glzr:o-la 1?4 network [Sing90] with 64K training patterns pipelined, the performance that can be obtained is

§. Conclusions

In this paper, a systolic array for back-propagation neural network that executes the forward and backward passes
in parallel, and exploits the pipelining of multiple patterns in each pass has been presented. The estimated perfor-
mance of this design shows that the pipelining of multiple patterns is an important factor in VLSI implementations
of artificial neural networks. To implement a large network with this design, an efficient mapping method that
still allows the exploitation of the pipelining is required as a further study.

6. References

[Blay89] F. Blayo and P. Hurat, "A VLSI Systolic Array Dedicated to Hopfield Neural Network," VLSI for
Artificial Intelligence, Kluwer Academic Press, 1989, pp.255-264.

[Blay90] F. Blayo and C. Lehmann, "A Systolic Implementation of the Self Organization Algorithm,” Proc.
g'IMVC, Vol I, Paris, July, 1990.

[Chin90] . Chinn, et. al., "Systolic Array Implementations of Neural Nets on the MasPar MP-1 Massively
Parallel Processor,” Proc. of IJCNN, Vol.II, San Diego, California, June, 1990, pp.169-173.

{Faur90) B. Faure and G. Mazare, "Implementation of Back-Propagation on a VLSI Asynchronous Cellular
Architecture,” Proc. of INNC, Vol.Il, Paris, July, 1990, pp.631-634.

[Kato90] H. Kato, et. al., "A Parallel Neurocomputer Architecture Towards Billion Connection Updates Per
Second,” Proc. of IICNN, Vol.Il, Washington, D.C., January, 1990, pp.51-54.

[Kwan90] HK. Kwan and P.C. Tsang, "Systolic Implementation of Multi-Layer Feed-Forward Neural Net-
}vod: wit.}n&ack—hopawganon' Learning Scheme,” Proc. of the IJCNN, Vol.ll, Washington, D.C.,

anuary, , PP .

[Kung82] H.T. Kung, "Why Systolic Architectures?,” JEEE Computer, January 1982, pp.37-46.

[Kung88] S.Y. Kung and JN. Hwang, "Parallel Architectures for Artificial Ni Nets,” Proc. of ICNN,
Vol 11, San Diego, California, July 1988, pp.165-172.

(Mann90] R. Mann and S. Haykin, "A Parallel Implementation of Kohonen Feature Maps on the Warp Systolic

. Computer,” Proc. oé(l)JCNN, Vol.II, Washington, D.C., January, 1990, pp.84-87.

[Milig9] J.R. Millan and P. Bofill, "Leaning by Back-Propagation: A Systolic Algorithm and Its Transputer
Implementation,” Newral Networks, Vol.1, No.3, July 1989, pp.119-137.

[Pome88] D.A.Pomerlcan,e(.al.,'NcuralNetwokaimuhﬁoanmg Speed: How We Got 17 Million Con-
nections Per Second,” Proc. of ICNN, Vol I, San Diego, California, July 1988, pp.143-150.

{Rama90] }Ju.lRamaclmha a.;!llzj 5 ?gichwr. "Systolic Synthesis of Neural Networks,” Proc. of INNC, Vol.Il, Paris,

Y. 'y & o

[Rume86] D.E. Rum G.E. Hinton, and RJ. Williams, "Learning Internal Representations by Error Pro-

pagation,” Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol.1,

Foundations, MIT Press, 1986, pp.318-36i.

[Sejn87] T.J. Sejnowski and C.R. Rosenberg, "Parallel Networks that Learn to Pronounce English Text,"
Complex Systems, Vol.1, 1987, pp.145-168.

[Sing90] A. Singer, "Exploiting the Inherent Parallelism of Artificial Neural Networks to Achieve 1300 Mil-
lion Interconnects per Second,” Proc. of INNC, Vol.II, Paris, July, 1990, pp.656-660.

2209

