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Abstract
Detecting the features of significant patterns from their
own historical data is crucial in getting an optimal
performance especially in time series forecasting. Wavelet
analysis which processes information effectively at
different scales can be very useful in accomplishing this.

One of the most critical issues to be solved in the
application of the wavelet analysis is to choose the correct
Silter types and the filter parameters. If the threshold is too
small or too large, the wavelet shrinkage estimator will
tend to overfit or underfit the data. The threshold is often
selected arbitrarily or by adopting certain theoretical or
statistical criteria. Recently, new and versatile techniques
have been introduced to solve that problem.

In this study, we propose an integrated thresholding
design of the optimal wavelet transform by genetic
algorithms (GAs) to represent a significant signal most
suitable in neural network models especially for use in
chaotic financial markets. The results show that a hybrid
system using GAs has better performance than any other
method.

1. Introduction

Detecting the features of significant patterns from their
own historical data is crucial in getting optimal
performance, especially in time series forccasting. The
methods used for time series analysis are conventionally
and heavily bascd on the concepts of stationarity and
linearity.

Recently, there has been a renewal of interest in linear
expansions of signals, particularly using wavelets and
some of their generalization (Daubechies [15], Mallat [30],
Rioul and Vetterli [43]). A new data filtering method (or
multi-signal decomposition) namely, wavelet analysis is
considered more useful for handling the time-series that
contain strong quasi-cyclical components than other
methods. Wavelet analysis theoretically presents much
more clear local information according to different time
intervals from the filtered data.

In this study, we suggest a new model architecture of
the neural networks supported by a wavelet analysis as
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multi-signal decomposition to detect the features of
significant patterns. We apply the hybrid modecl archi-
tecture to forecasting one day ahead Korean Won / U.S.
Dollar currency market as a case study. A strategy is
devised using wavelet transform to construct a filter that is
significantly matched to the frequency of the time-series
within the combined model.

From our experimental results we analyze the effects of
several wavelet filtering (i.e. thresholding) criteria to
support the neural network learning optimization at
present. We also suggest a new general optimal filtering
criterion of multi-signal decomposition methods from our
experimental learning and validation results of the neural
nctworks. That is, we propose a new extended neural
network model which is four-layered neural network
architecture having a multi-scale extraction layer before
arriving at the input layer. The model learning is supported
by gencetic algorithms (GAs) and a hill climbing algorithm
(HC). Through their hybrid leaming we tried to solve
efficiently the present threshold problems about the
optimal filter design in exiracting the significant
information from the original data.

The rest of this paper is organized as follows. In the
next scction, we briefly review fractal structure of
financial markets. The third section introduces a
multiresolution approach to wavelet and then wavelet
transformation methodology about optimal decomposition
from the original time series. The fourth section suggests a
new methodology for hybrid system using GAs and shows
the experimental rcsults in the fifth scction. The final
section contains concluding remarks.

2. Fractal Structure of Chaotic Financial
Markets

Fractional Brownian Motion (fBm) has long been
considered a plausible model for financial markets. A
fractal structure of the market, indicating the presence of
correlations across time, hints at the possibility of some
predictability. Recent advances in time-frequency
localized transforms by the applied mathematics and
electrical engineering communities provide us with new
methods for the analysis of this type of process. In fact, it
has been proven by Womell [56], [57] that the wavelet



transform with a Daubechies basis is an optimal transform
for fBm processes.

The structure of the market also has the feature of
market heterogeneity. Market heterogeneity suggests that
the different intentions among market participants result in
sensitivity by the market to several different time-scales.
Different types of traders view the market with different
time resolutions, for example, hourly, daily, weekly, and so
on. Short-term traders cvaluate the market at high
frequency and have a short memory. Small movements
in the exchange rate mean a great meal to the short-term
trader. The long-term trader evaluates lower frequency
data with a much longer memory of past data. He is only
interested in large movements in the price. These
different types of traders create the multiscale dynamics of
the time series.

Throughout our study, we focus on this concept. This
reasoning reinforces that a multiresolution embedding
using a wavelet analysis is very useful for discovering
whether some time-scales are more predictable than others.

3. Multiresolution Approach to Wavelets

The wavelet analysis is a robust tool that may be used to
obtain qualitative information for highly nonstationary
time series - specifically, it may be used to detect a small-
amplitude harmonic forcing term even when the dynamics
are chaotic and even for short total times. (Permann and
Hamilton [40])

For present purposes, we focus on the multi-resolution
structure of curves or spectra. We intuitively view high
frequency noise differently from broad, low frequency
components due to e.g. bascline effects.

By employing the multi-resolution view, we can build
and dismantle curves according to resolution level, so the
wavelet functions are constructed to focus on different
resolution details in the signal at different positions. This
feature is possible because of the special structure of the
wavelet basis functions.

The coverage of the time-frequency plane for the
wavelet analysis is shown in Figure 1(b). Even though the
windowed Fourier transform (WFT) including the discrete
Fourier transform (DFT) wsually displays the coverage as
shown in Figure 1(a), it has their own limitation compared
to the wavelet transform. For example, the DFT spreads
frequency information over all time and, thus, the loss of
frequency characteristics of a time series in the time
domain. The transform process is said to be non-local in
the time domain. We can partially compensate for this lack
of localization by applying either the WFT or the short-
time Fourier transform (STFT) to introduce time
dependency. But, the WFT filters are evenly spaced in the
frequency domain.

Figure 2 shows'an example of multi-resolution of a
DWT filter, i.e. Daubechies with order 4 using daily
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Korean won / US dollar returns.
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Figure 2. An example of two dimensional (Time-
frequency) resolution of a discrete wavelet transform
(Daubechies with order 4) using the daily Korean Wor/US
Dollar returns

3.1. Discrete Wavelet Transform (DWT) and
Wavelet Packet Transform (WPT)

A DWT is cxpressed as a pyramid or tree algorithm
(Mallat [30]). In the pyramid algorithm the detail branches
are not used for further calculations; only the approxi-
mations at each level of resolution are treated to yield
approximation and detail obtained at level m+1. But,
application of the transform to both the detail and the
approximation coefficients results in an expansion of the
structure of the wavelet transform tree algorithm to the full



binary tree (Coifman and Wickerhauer [11], Coifman et al.
[12]). It is called a wavelet packet transform (WPT). This
is a more general transform than the DWT. The main
difference is that, while in the DWT the detail coefficients
are kept and the approximation coefficients are further
analyzed at each step, in the WPT both the approximation
signal and the detail signal are analyzed at each step. This
results in redundant information, as each level of the
transform retains n samples.

Therefore, the WPT produces an arbitrary frequency
split, which can be adapted to the signal. While wavelet
packets create arbitrary binary slicing of frequencies (with
associated time resolution), they do not change over time.
Often a signal is first arbitrarily segmented, and then, the
wavelet packet decomposition is performed on each
segment in an independent manner.

There exist simple and efficient algorithms for both
wavelet packet decomposition and optimal decomposition
selection. ~ We can then produce adaptive filtering
algorithms with direct applications in optimal signals.

3.2. Highpass, Lowpass, and Bandpass Filters

The subspaces created by the wavelet transform roughly
correspond to the frequency subbands partitioning the
frequency bandwidth of the data set. These subspaces then
form a disjoint cover of the frequency space of the original
data set. In other words, the subspaces have no elements in
common and the union of the frequency subbands spans
the frequency span of the original data set.

Any set of subspaces which are a disjoint cover of the
original data set is understood on an orthonormal basis.
The wavelet transform basis is then but one of a family of
orthonormal bases with different subband intervals.

According to the frequency-response characteristics, the
frequency subbands or subspaces are again categorized
into the four basic filter types, i.e. lowpass, highpass,
bandpass, and bandstop filter.

The lowpass, highpass, and bandpass filters pre-
dominantly used in this study are characterized by two
parameters, i.e. frequency and width. These parameters are
difficult to specify. There is no simple calculation to
provide the correct value.

3.3. The Optimal Multi-Resolution of Time Series

Based on the organization of the wavelet packet library,
it is natural to count the decompositions issued from a
given orthogonal wavclet. As a result, a signal of length N
= 27 can be expanded out at most 2N different ways, the
number of binary subtrees-of a complete binary subtree of
depth p. As this number may be very large, and since
explicit enumeration is generally unmanageable, it is
interesting to find an optimal decomposition with respect
to a convenient criterion, computable by an efficient
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algorithm. We search for a minimum of the criterion.

For this purpose, we try to suggest a new criterion of
choosing the optimal decomposed sub-series from original
series by discrete wavelet transforms in the following
research model architecture.

4. Research Model Architecture

In general, for a one-dimensional discrete-time signal,
the high frequencies influence the details of the filter
levels, while the low frequencics influence the deepest
levels and the associated approximations.

The original signal can be expressed as an additive
combination of the wavelet coefficients at the different
resolution levels.

In this section, we suggest our research framework and

a new hybrid time series forecasting model architecture as
shown in Figure 3 and 4. Our research framework consists
of 4 phascs. The first phase decomposes the financial time
series into different decomposed series components using
a discrete wavelet transform. In the second phase, we
extract the refined highpass, lowpass, and bandpass filters
from the decomposcd time serics, which is based on the
feedback from the next phase. Figure 4 shows our hybrid
neural network model as extended neural network
architecture in comparison to prior models. We extract a
significant scale component generation automatically from
the original data within our model. This function achieves
a multi-scale extraction layer of our model. The third
phase uses a ncuro-genetic approach to learn neural
network models with GAs and then the fifth phase
includes additional weight Icarning process by HC
algorithms to reinforce a generalization of learning
parameters or weights generated in the previous phase.
For this purpose, the fourth phase is compared with the
third phase in terms of the forecasting accuracy.
The resolution of time series can be adjusted to local
parameters to detect its present' features including
promising features in close time areas with more
sensitivity. Using multiple scales of resolution, the time
series forecasting can be refined in areas. Feature based
segmentation tcchniques detect local features (such as
transitions, lines, curves, in general referred to as edges)
based on values of appropriate local operators.

To improve local prediction, a signal parameter such as
the refined lowpass filters, highpass filters, and bandpass
filters is proposed to control multiple scales of resolution
within our research framework. For example, each of the
10 scales was then multiplied by a weighting factor (0-1)
and the weighted transform inverted back to a time-series
when our time serics is decomposed into 10 scales (Figure
5). :

Among the various cost measures that one can choose for
finding adaptive time-frequency decompositions, we select
an evolutionary data driven criteria. -The benefits of this



are as follows. Since our model uses a final model
performance measure within a unified model framework
as wavelet thresholding cost measure, the performance
measure can solve the combining problems to detect the
optimal signal decomposition criteria relevant to a neural
network model and also the generalization problems of our
hybrid model.

Phasc Decompose the Financial Time Series into
1 Different Time and Frequency Components
Using the Discrele Wavelet Transform

Phase Extract Optimally the Refined Highpass,

Lowpass, and Bandpass Filters
From Decomposed Time Series

“feedback"]

(-

Phase First Order Learning of
m Neural Network Models
by Genetic Algorithms
Phasc Sccond Order Learning of
v Neural Network Modeis
by Hill Climbing Algorithm

Figure 3. Proposed research framework
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Figure 4. A hybrid neural network model architecture
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where
Yi= Actual output of ik case of population at (t+1)zh day,
Y= Neural network output of ith case of population at (t+1)rk
day,

f(*) = Neural network model,

IWT, = The ith casc of refined wavelet filtered inputs of
population at ()4 day,

X, = The ith input case of population at (t)th day,

DS(j) = The jih automatically decomposed time series by
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Daubechies wavelet transform of ith case of population at (t)th
day,

N = The population size,

k = The maximum length of decomposition levels of pyramid or
tree algorithms,

A, = The cut-off level of lowpass filter on condition of A, = k),
A, = The cut-off level of highpass filter on condition of =D
except that both A and A, are the cut-off levels of bandpass filter
on condition of (IS A <A, <k).

4.1. Phase I: Decomposing The Financial Time
Series Using DWT

A scalogram (Rioul and Flandrin [42]) is defined as
wavelet periodogram referring to the absolute value of the
wavelet coefficients at cach scale. The scalogram usually
is plotted logarithmically as a function of both the scale
and location indices. Inspection of the scalogram (or of the
wavelet coefficients themselves) is useful when one needs
to view frequency/scale and location information at the
same time. In the same manner as the periodogram
produces an ANOVA decomposition of energy of a signal
to different Fourier frequencies, the scalogram
decomposes the energy to level components (See Table 1).

Table 1. Scalogram of daily Korean Won/US Dollar
returns (InX, - InX, )

Decomp. Frequency Energy (power)
Series (DS)
DS| 1-4 762.3629045
DS2 5-8 2722633141
Ds3 9-16 65.28630562
DS4 17-32 37.19868193
DSS 33-64 16.77289267
DS6 65-128 6.330477868
DS7 129-256 2.911816767
DS8 257-512 2.363012764
DS9 513-1024 1.593836382
DS10 1025-2048 0.91605887

The scalogram of the discrete wavelet transform of a
time series is the key tool used to decompose the series
into cycles of different frequencies. However, it is mostly
difficult for model experts to extract the multi-cyclic
structure  from the original data by analyzing the
distribution shape of scalogram.

From Figure 5 we can extract lowpass filter, highpass filter,
and bandpass filter from a decomposed band series (ie.
Band 1-10). For example, Band 1 corresponds to the
highest frequency component in the data. These
components indicate signals with very short periods. In
addition, we can cffectively extract a bandpass filter to the
data by eliminating the highest and lowest bands from the
total bands.

Therefore, we combine decomposed band series (Band1-
10) by the DWT into generating 3 separate bands, ie.



refined lowpass, highpass, and bandpass filters to extract
the optimally or near optimally refined wavelet filters in
the following phase II.

Figure 5. Pyramid or tree algorithm using daily Korean
Won / US Dollar returns [X: original series, a: approximation
components, d: detailed components, band | (the highest
highpass filter) — band10 (the lowest lowpass filter)].

4.2. Phase II: Extracting Optimally The Refined
Wavelet Filters (i.e. Highpass, Lowpass, and
Bandpass Filters)

Since the scales of the WT may be viewed as a filter
bank, the degrec to which any single scale reflects the
probability distribution of the frequency characteristics of
the time series can be calculated (ie. a measure of
relevance).  The relevance of each scale to all the time
series can then be translated into a weighting factor.

A measure of the cumulative relevance of cach scale
over all the examples was calculated in the following way.
The WT for each example used to train the neural network
is calculated. Some scales arc weighted exactly 1 (index
scale), while all other scales of the transform are set to 0,
and the transform is inverted back into a time series.

Various techniques for optimal bandwidth selection
have been studied in the following studies (Brillinger [5],
Jenkins and Watts [26), Moulin et al. [36], Priestley [41],
Wahba [50], Wahba and Wold (51]). They produce
estimates that have a good overall bias variance tradeoff.
However, the bias versus variance tradeoff is generally not
optimal locally.

4.3. Phase III: The First Order Learning of
Neural Network Model by GAs

In this study, the basic model we experiment with is
Backpropagation neural network (BPN) model (Rumelhart
et al.[44]) which has a parsimonious 4 input nodes, 4
hidden nodes and 1 output node with one type of wavelet
filters, i.e. highpass, lowpass or bandpass filters within the
network structure. The other model we experiment with is
BPN model which has 8 input nodes, 8 hidden nodes and 1
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output node with two types of filters, i.e. both highpass
and lowpass filters or has 12 input nodes, 12 hidden nodes
and 1 output node with three types of filters, i.e. highpass,
lowpass and bandpass filters. Each filter as an input node
also consists of its own 4 daily delayed inputs.

GAs are also used to search the weight space without
use of any gradient information (Whitley and Hanson [55),
Montana and Davis [34]). For example the fitness could be
given by the value of the cost function for that set of
weights.  Starting with a random population of such
strings, successive generations are constructed using
genetic operators such as mutation and crossover to
construct new strings out of old ones, with some form of
survival of the fittest; fitter strings are more likely to
survive and to participate in mating (crossover) operations.

In this study, GAs arc basically used to automatically
determine both the wavelet thresholding  cut-off
parameters and the learning parameters of neural networks.
The wavelet thresholding parameters are adjusted to
optimize the performance of the financial forecasting over
the entire samples (i.e. training samples).

For this use with the GA, every weight in the neural
networks has been coded by real number with values in a
limited range, [-4, 4]. In addition, our suggested multi-
scale extraction layer's weights, i.e. the cut-off levels (A,
A,) of the wavelet filters with the range from ! to A, A, to
A (st 1S M€ A, < ki k = the maximum length of
resolution levels by wavelet transformation) and A, to k
are added to the present neural network model by being
connected with the input layer.

In the current study we use a population size of 50 and
the same GA adjusted parameters are maintained over the
entire study in order to estimate the average performance
of the NN models for different learning methods. The
crossover rate ranges 0.5 - 0.8 and the mutation rate ranges
0.01- 0.06 for our expcriment. As a stopping condition, we
use 5,000 trials.

4.4. Phase IV: The Second Order Learning of
Neural Network Model by Hill Climbing
Algorithm

In the previous phase we used GAs to learn neural
networks, but one problem with GAs is their inefficiency
in fine-tuned local search, thus the scalability of these
methods are in question (Yao [58]).

To solve this learning problem, Kitano [27] presents a
method that combines GAs with HC. He does this by
using the GA to determine the starting weights for a
network, which is then refined by HC.

According to this learning strategy, we tried to solve the
limitation of learning by GAs in Phase I1T with the second
order learning, i.e. HC learning of neural networks in this
phase. ’ '



5. Experimental Results

In this section, we evaluate our framework using a case
of the daily Korean Won / U.S. Dollar exchange rates
which are transformed to the returns using the logarithm
through standardization from January 10, 1990 to June 25,
1997. That is, the returns are defined as the logarithm of
today’s exchange rate divided by the logarithm of
yesterday’s exchange rate. The learning phase involved
observations from January 10, 1990 to August 4, 1995,
while the testing phase ran from August 7, 1995 to June 25,
1997. We transform the daily returns into the decomposed
series such as an approximation part and a detail part by
Daubechies wavelet transform with 4 coefficients
(DAUBA) for neural network forecasting models.

The experimental results of our hybrid neural network
architecture are showed in Table 2. First, our hybrid
system has better performance than random walks and NN
by HC or GA with original signals as inputs,

Secondly, we compare two learning methods within the
hybrid system. Our hybrid model is trained using two
learning methods, i.e. only a GA method and a combined
learning method by GA and HC (GA-HC). After that, they
are compared with other models in terms of the
performance of wavelet thresholding  algorithms. As

shown in Table 2, a combined GA-HC method gets better
performance than one GA method.

Thirdly, the performance is also different according to
filter type. The model using highpass, lowpass, and
bandpass filters at once demonstrates better performance
than models using partial filters. However, lowpass and
bandpass filters have the same cut-off range result. This
result indicates that bandpass filters rarely impact on our
model ‘performance applied to daily Korean won / US
dollar market.

Finally, we compare our model performance with the
performance of benchmark modcls, i.e. the models using
prior representative thresholding methods to evaluate our
hybrid forecasting system. The results show that our
hybrid model is better than any other model in terms of
forecasting performance (Table 3). In this cxperiment, we
use a few benchmark models to compare our model's
performance as follows. Namely, we use well known three
wavelet thresholding algorithms, i.e. best basis selection
(Daubechies [14], Coifman and Wickcrhauser [11], Mallat
and Zhang [31], Chen (6], Chen and Donoho [7], Chen et
al. [8], Donoho [17)), cross-validation (Nason [38], [39],
Jensen and Bultheel [25)), and best level tree (Coifman et
al. [9]) techniques in the literature. Table 3 shows that GA
method has significantly better performance than any other
wavelet thresholding Algorithm.

Table 2. The comparison of the BPN model performance using test samples

Filter Types Cut-off Range (A, A,) Learning Methods BPN® Structure Performance
(I-H-0)* (RMSE)’
- - RW¢ 2.939007
- - GA* (4-4-1) 1.780642
- - HC® (4-4-1) 1.754525
Highpass (1-2) GA (4-4-1) 1.629141
Lowpass (3-10) GA (4-4-1) 1.726126
Bandpass 2-4) GA (4-4-1) 1.750383
Combined® (1-5,2-10, 1-5) GA (12-12-1) 1.343301
Highpass (1-2) GA-HC' (4-4-1) 1.516126
Lowpass (3-10) GA-HC (4-4-1) 1.721580
Bandpass (2-4) GA-HC (4-4-1) 1.713277
Combined® (1-5,2-10, 1-5)* GA-HC (12-12-1) 1.119327

a: Highpass (1-5), Lowpass (2-10), Bandpass (1-5),
d: Genetic algorithms, e: Hill climbing algorithms,
8: Backpropagation neural network, h: (I: Input no

b: Highpass+Lowpass+Bandpass filters, c: Random walks,

f: Genetic algorithms + Hill climbing algorithms,

des , H: Hidden nodes, O: Output nodes), i: Root mean squared error.

Table 3. The BPN performance comparison between different wavelet filtering criteria using test samples

Wavelet Threshold Filier Types Learning Methods BPN Structure Performance
Algorithins (I-H-0)' (RMSEY
Best Basis® LP‘&HP’ HC' (8-8-1) 1.74329

Cross Validation® LP&HP HC (8-8-1) 1.676247
Best Level LP&HP HC (8-8-1) 1.746597

GA! LP&HP&BP: GA-HC (12-12-1) 1.119327

a: Coifman and Wickerhauser (1992), b: Nason (1994), c: (Coifman et al.,
e: Lowpass filter, f: Highpass filter, g: Bandpass fi
i: (I: Input nodes , H: Hidden nodes, O: Output no

1994), d: Genetic algorithms,

lter, h: Hill climbing algorithms,

des), j: Root mean squared error.
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6. Concluding Remarks

We have described a new framework for modeling and
analyzing signals at multiple scales in financial forecasting.

In conclusion, we illustrated a decision support to build
a hybrid forecasting system by using GAs throughout our
study. The decision support process is summarized as
follows. First, a multiple scale resolution of financial time
series 1s implemented easily by discrete wavelet transform
techniques. Once the financial time series has been
segmented into areas with relative homogeneous value
levels, i.e. filtered band series, the transformed information
is evaluated through a refining process of the band series.
That is, the desired multi-scale input structure in ncural
network models is optimally or near optimally extracted
by genctic algorithms, so the final input structure consists
of the refined highpass and lowpass filtered inputs in our
experiment. The experimental results showed the
enhanced filtering or signal multi-resolution power of
wavelet analysis to the performance of the ncural network
models. It also means that our wavelet thresholding
algorithm by GAs is better than other thresholding
algorithms in increasing forecasting performance.
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