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Identification of Damage on a Substructure 
with Measured Frequency Response Functions 
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Recently the authors tried to find damage position only using measured frequency response 

functions. According to their work, it seems that the algorithm is very practical since it needs 

only measured frequency responses while other methods require exact analytic model. But when 

applying the method to a real structure, it requires lots of experiment. The authors, in this time, 

• propose a method to reduce its experimental load by detecting damage within a substructure. 

This method searches damages not within an entire structure but within substructures. In 

addition, damage severity was treated in this paper since it is worthy to know damage severity. 

Optimization technique is used to estimate damage level using measured responses and damage 

model. Two test examples, a plate and a jointed structure, are chosen to verify the suggesting 

method. 
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i .  I n t r o d u c t i o n  

Damage such as a crack in a structure makes it 

vulnerable to external load thus it is necessary to 

find it before the structure goes to failure. Re- 

cently a kind of non-destructive method based on 

vibration signal is getting more attention to detect 

damage within a structure (Doebling et al., 1997 ; 

Marwala and Heyns, 1998 ; Choi and Lee, 2003). 

The reason for people paying attention to this 

vibration signal analysis method is that many 

related fields to structural dynamics such as 

structure modification are already well developed 
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and vibration measurement is not difficult any 

more. Understanding that damage changes the 

dynamic characteristics of a structure, it is cer- 

tain structural dynamics modification is closely 

related to damage detection algorithm. Actually, 

damage in a structure can be understood as losing 

stiffness thus potential energy of a structure is 

generally reduced as damage goes to process. 

Though many methods have been developed 

to detect damage using vibration theory, most 

of the methods can be divided into two groups, 

reference based method and experiment based 

method (Park, 2003). As the name says, reference 

based method requires a reliable model to detect 

damage successfully and it is known that a good 

reliable model is very difficult to construct. On 

the other hand, experiment based method does 

not need any reference model but requires only 

experimental data. But as we know, experimental 

work accompanies many kinds of difficulties and 

its applicability is very limited. 
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Force balance method is one of the most 

well known reference based methods. In force 

balance method, the multiplication of reference 

model and measured motion vector gives useful 

information of damage position. In real situation, 

but, the force balance method can not be used 

frequently because there are some problems in 

both model reliability and coordinate mismatch 

between model and measurement points. 

Recently improved force balance method has 

been suggested by the authors to overcome the 

problems (Park, 2003). According to the work, 

the force balance method can be processed with 

only measured frequency responses. The method 

utilized frequency weighting function to filter out 

the unwanted frequency data to ease ill-condi- 

tioning process. Though the improved force bal- 

ance method does not need analytical model 

anymore, it needs a lot of effort to do experi- 

ments. 

The prime interest in damage detection is to 

know damage location but the equivalent impor- 

tance lies in identifying its level. Zimmerman 

(Kaouk and Zimmerman, 1994) tried to estimate 

damage extent using MRPT (Minimum Rank 

Perturbation Theory), and static test data are 

used to assess level of damage with optimization 

process (Sanayei and Onipede, 1991). 

This work is to suggest further improved dam- 

age detection method based on force balance 

method. The suggesting method can relieve ex- 

perimental toad significantly and also damage 

extent can be estimated from measured data. Sub- 

structure damage detection is the key of the paper 

and is based on substructure modification (Maia 

and Silva, 1998). 

2. Background Theory (Park, 2003) 

Considering a dynamic system having n de- 

grees of freedom (dofs), the response vector 

{X}n×l can be divided into two parts, m dofs 

measured responses {Xm},~×~ and the remain un- 

measured responses {X~,}(,-ml×l. If the external 

forces acting on the unmeasured dofs are zero, 

the incompletely measured frequency response 

matrix can be written as 

[H,,,,.],.,,,.=([D,,,,,,]-[D,,,,,] [b,,.,]-'[D,,,.])7,,k,,, ( I )  

where [19] is dynamic stiffness matrix. -a?[m] + 
i~[C] + [K], which is composed of mass. stireness 
and damping matrix, The subscript 'm '  means 

measured, and ' u '  unmeasured. 

Eq. (l) says that the incompletely measured 

frequency response function matrix [H~m(co)] is 

equal to the inverse of reduced dynamic system 

matrix which can be derived from an exact an- 

alytic model. When some damages occur in struc- 

ture, the reduced dynamic system matrix is some- 

what changed. Thus the force balance equation 

can be written as 

(D,,~,D~,~D,,m) ]{ I~)s [D,.,,- 
={I}~-[AD..-&E]{II}j (2) 

where {/}j  is an unit vector which has the 

value of one only in the j - t h  position and zeros 

elsewhere. [ADam] and [AEI is the variation 

of [Dra~] and [DmuD~Dum] respectively due to 

damage, and { / I} j  is the j - t h  column of the 

measured frequency response of damaged struc- 

ture. The left hand side of Eq.(2) can be deter- 

mined from the reduced dynamic stiffness matrix 

of undamaged structure and measured frequency 

responses from damaged structure, and both are 

already known. On the other hand, the right 

hand side of the equation contains an unknown 

term [ADmm-AE]{.H}j, which comes from dam- 

age and it measures the deviation from {I}~. 

Thus the change of unit vector {I}j  due to dam- 

age can be treated as an index to indicate dam- 

age locations. Introducing a vector {e}, the de- 

viation of the unit vector {/}j  can be defined as 

{ ~e}= [H.,m]-'{/7}~-{ l } j  (3) 

The right-hand side of Eq. (3) can be determined 

from only experimental data. Thus exact theo- 

retical model is no longer t~ecessary. 

Although the proposed method does not re- 

quire any analytic model, it does not work well 

to identify damage through all the frequency 

ranges. That is because experimental model is 

a kind of reduced model, it contains numerical 

errors generated in inverse processes. Thus an 

additional process to examine the quality of each 

frequency is needed. A new vector { r]}, which 
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Table 1 Some remarks on the proposed damage detection method 
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previous force balance method proposed method 

reliability dependent on model quality dependent on experimental results 
D.O.F. mismatch reduction or expansion is required any reduction or expansion is not required 

difficulty difficult to build an accurate model heavy experimental burden 

is the summation of weighted damage detection 

vector {$(f)} through interesting frequency rang- 

es, is defined as equation (4) 

q r 

{~?}=~=~=tW(fs,){$(fs, ,)} (4) 

where {~(fs,,)} is defined in Eq.(3), and I s ,  is 

j - t h  frequency of i - th  set of  the selected fre- 

quency region. When computing { 77}, if we use 

some frequencies where W ( f )  has a high value, 

then the damage identification result becomes 

more reliable. For  the cases of  having multiple 

damages it is recommendable to select several 

frequency sets because natural frequency sensitiv- 

ity differs with damage locations. It is also rea- 

sonable to avoid the frequencies where its condi- 

tion number is very high. A guide to determine 

weighting function, W ( f ) ,  is introduced in the 

previous work (Park, 2003), and some remarks 

on the proposed method is listed in Table 1. 

It is interesting to note that the characteristics 

of  dynamically reduced model have a direct rela- 

t ionship with those of  unmeasured whole model. 

In fact, determinant of  the measured frequency 

response functions can be written as 

det(EH.~]) = d e t ( [ D ~ ] )  (5) 
a c t ( [ D ] )  

And it is easily noticed that the solution of  

det([H=~])  = 0  satisfies the other form of  char- 

acteristic equation de t  ( [D~] )  =0.  Specifically 

the frequencies at which det([H.=])=O are 

known as transmission zeros. Since the reduced 

dynamic system is i l l -posed at the transmission 

zeros, those frequencies should be avoided when 

computing its inverse. 

3. Damage Detection Based 
on Substructure Diagnosis 

Generally it is well known that a system has 

a large condition number at its natural fre- 

quencies and transmission zeros because the sys- 

tem is i l l-posed at those frequencies. And these 

frequencies are easiIy found from measured fre- 

quency response functions. Actually, as wilt be 

shown in Eq. (6), this work assumes that the 

Frobenious norm of  [D,,ra] is greater than the 

norm of [DmuD~tuDum]. If not, we cannot expect 

a reliable damage detection result as can be seen 

in Eq, (2). This paper, thus, implicitly assumes 

that 

II [D..] I1>11 [D.~D;2D~.] II (6) 

Although the relationship between I] [O,.~,] ]l and 

li[D,,=D=2D~m]II cannot be derived without an 

exact model, it is right that this inequality is not 

true at the frequencies which satisfy d e t ( [ D ~ )  = 

0. Judged from some numerical and experiment- 

al tests, it is expected that the proposed damage 

detection algorithm leads to a confident result at 

the frequencies where the condition number of the 

measured frequency response function [Ham] is 

relatively low. If the inequality relation is satis- 

fied in a substructure domain, it will be very 

helpful to relieve experimental load. This sec- 

tion shows that the effect of II[D,,uD~Du-]I] in 

a subdomain can be ignored as like that of entire 

domain, thus the proposed algorithm can be ap- 

plied. 

Reduced substructure model can be defined as 

Eq. (7) 

[D,~,, D D - t D  7 i - r L r l - 1  -- m~ uu ~ , j s ~ L ~ j s  (7) 

where superscript T with subscript 'S' means 

i - th  substructure. Since Eq. (7) is identical to 

Eq. ( I ) ,  the damage detection method suggested 

in this work can be applied to substructures too. 

The advantage of using substructures is that the 

inspection space is dramatically reduced. 
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Considering a finite element structure which 
can simulate exact dynamics of  a structure, it is 

obvious that the experimental reference model is 
directly related to the number of  measurement. 
Therefore, at a given frequency, an experimental 
model can be thought as a function of the num- 
ber of measurement 'm' ,  then it leads to Eq. (8) 

II [ D~,,, (~o) ] sU,o,oo=f (m) (8) 

where II [D,~  (co) s] II is the norm of dynamic stiff- 
ness of a substructure. Let us examine a symmetric 
dynamic system with m + u  dots like Eq. (9), 

- / = /  D,<.-.) D~  D,~ (9) 

where ' e '  means the number of  reduced measure- 
ment points. From the definition of  Frobenious 
norm, Eq. (10) can be derived from Eq. (9). 

II i-O,~,~] IL 2=11 [D. , - .~ . - . , ]  IP+ 2111D(,,,-.,.] II ~ (10) 
+ II [D~.] IP 

Thus when the subsystem with reduced measure- 
ment points, [ D ~ I  s, is set to [D(~-~-e)],  Eqs. 
(8) and (10) comes to 

f2(m) =11 [D~,~] IIZ-2A,-A3 ( l l )  

where At, A3 is the square norm of [D(m e)~] 
and [Dee], respectively. Eq. (I 1) means that mea- 
surement points diminishment causes norm re- 
duction of the measured set. The coupled system 
I[[D~,~D~3D~.]~II also satisfies the following ine- 

quality that is 

- 1  II [D~,A)o~D.,.] sll II [D,~] ~IPIL [D~] ~11 
c ( [D~,~] s)II [D~, ]  ~11 ~ (12) 

IIEO~]~ll 

where c([D~]s) is condition number of [D~u]s. 
I f  g~ (m) and g~(m) represents the norm of II[D~ol AI 
and IIfD~.]~II respectively, their relation can be 
summarized as Eqs. (13) and (14). 

~(m)  =IIED,~]IP÷A,--A2 (13) 

g~=ll [D,~]II~+2A~+A~ (14) 

Where Az is the square norm of [Deu]. If the 

number of  measurement points decrease, surely 
g2(rn) will increase. Using Eqs. (13) and (14), 

Eq. (12) becomes to 

- 1  II [D,~,,D~,,,D,.,,] s[] 
gz ( ,n) 

c([D,,~,]s) (II[D~,.] [P +A,-A~) (i5) 

,/II[D~]II2+2Z,2+A3 

Assuming smoothly varying condition number, 
c ( [ D ~ ] s ) ,  the upper bound of Eq.(15) will 

decrease as the number of measurement points 
decrease. Except several extraordinary frequencies 
having relatively large condition number, it is 

numerically verified that [I [D,,]sl l  is larger than 
- 1  11 [D,~,D~,oD,,m] sll. 

Consequently, it is moderate to divide the en- 
tire domain of  a structure into several subdo- 
mains to relieve experimental load, and each 
subdomain will be examined carefully through 
the suggested damage detection algorithm. Also 
the idea to select proper frequencies (Park, 2003) 
can be directly applied to damage detection in 
subdomains. 

4. E s t i m a t i o n  o f  D a m a g e  S e v e r i t y  

4.1 Sensitivity analysis and consideration of 
degrees of freedom mismatch 

Though the prime interest for damage detec- 
tion is to identify damage location, it is also im- 

portant to estimate the level of  damage. Severity 
of damage cannot be known only with frequency 

response functions. Therefore some damage co- 
efficients which link the severity with measured 

responses must be considered. 
Ignoring damping, eigenvalue equation of  a 

system before damage can be expressed as 

[K]{ ¢ }=A[M]{ ¢} (16) 

where /l is an eigenvalue and {~b} is its mo- 

deshape vector. If damage is engaged in a struc- 
ture and assuming the damage affects on stiffness 
only, the above equation can be changed to 

( [ K ] -  ~P , , [KI  , -AIM]  ) { X } = { 0 }  (17) 
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where L is the number of damage, 2 and {X}  
mean varied eigenvalue and eigenvector caused 

by damage. Also the parameter, p~, determines 
severity of damage and has a value in the range 

L 

o r  0 to  1. If we express the damage, i~_lp,.[K].= ~, as 

[ K ( p ) ]  and rearranging the equation, it leads to 

([I]-[H(a(]3))][K(~)]){X}={o) (18) 

where [1] is identity matrix and u means circu- 

lar natural frequency of modified system. And 
[ H ( p ( p ) ) ]  is frequency response function be- 
fore damage. Eq, (19) which is the determinant 
equation of Eq. (18) provides natural frequencies 
(Tsuei and Yee, 1989). 

d e t ( [ I ] - [ H ( i z ( ~ ) ) ] [ K ( ~ ) ] )  = 0  (19) 

It is also interesting to note that if both fre- 

quency response functions and damage model 
are known, modified system's eigenvalue can be 
found. If  we define { Y} as a left eigenvector of  
the system Eq. (18), then it satisfies another form 
of eigenvalue equation as 

{ YJT([I ]- [H(~([~))] [K(~)])={oJr (20) 

Eq. (19) and (20) say that eigenvalues are a func- 
tion of damage parameter /~. Thus it is possible 
to assign appropriate eigenvalues by controlling 
damage parameters. Natural frequency sensitivity, 
therefore, acts an important role in identifying 

damage severity. Differentiating both sides of 
Eq. (18) about p, one obtains the following equa- 
tion 

d[K<~)] 

=([I]-[H(a(~))][K(~)]) d{X} (21) 
db 

Further applying chain rule, and multiplying 
left eigenvector { Y} to Eq.(21), and combining 
with Eq.(20), natural frequency sensitivity with 

respect to a parameter can be derived 

- - _  d [ K ( ~ ) ]  d z _ _ {  y } r [ H ( z ) ]  {X} 
db dp 

(22) 
({ Y} r 3[H(/~)]  [ K ( ~ ) ] { X } )  -I 

8p 

Actually Eq.(22) is not useful, because Eq.(22) 

requires completely measured frequency response 
functions to match with degrees of freedom of 
damaged substructure model [ K ( p ) ] ,  while this 
work is based on partially measured frequency 
response functions. If damage model dofs is m, 
Eq. (19) can be rewritten as 

d e t ( [ I . . ]  - [ H . = ( ~ ( ~ ) ) ]  [Ka(.3)]) - 0  (23) 

Thus if a well defined damage model [Ka(P) ]  

is provided, natural frequency change can be 
predicted using incompletely measured frequency 
response functions. 

Still there is another problem to be solved; 
how can we define damage element which is sui- 
table for measured frequency responses. It is 

natural to consider dynamically reduced damage 
model, actually it is equivalent to that of static 
reduction because damage is assumed only in 
stiffness. Thus desired damage model, [Ka(p) ] ,  

can be written as 

[Ka (a3) ] = [Kd] mm -- [Kd] =~ [Ka] ;ut [Ka] um (24) 

Therefore the provided damage model has the 
same size of incompletely measured frequency 
response functions. 

4.2 Design optimization problem 
Estimation of damage extent can be understood 

as a design optimization problem. In this case, 

the objective function to be minimized is the 
summation of natural frequency differences be- 

tween before and after damage occurrence. The 
optimization problem can be defined as 

m i n / A  (~) rA(~)  

subject to 

O<pi<  1 

(25) 

where f i ~ R  L and A ~ R  N. The residual function 

A : R L- - ,  R ~ is nonlinear in p, and means dif- 
ference vector between target and current natural 

frequencies. L is the number of most probable 
damage candidates and N is the number of target 
natural frequency after damage. 

The optimization problem needs a solution 
technique for nonlinear optimization problem, 
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and generally iteration is indispensable. The so- 

lution of Eq. (25) is obtained wifllom dilq'icuhy 

by applying Gauss Newton 's  method iterafively, 

and usually the solution of each iteration is 

{ oh.. ,={ D}, - (/(1/;}," ']qP},~)-7 ({ ~},:' './1 ({/,},) (26) 

where f means Jacobian,  naturaI fi'equency sensi- 

tivity vector. Since the Jucobian of Eq. (26) is 

not always well condit ioned,  it is also well known 

Fact that Gauss -Newton ' s  method does not glob- 

ally convergent.  Thus nlany modified Newtoi~.'s 

methods are developed, and till.', work 1tied to 

find an optinltim solution by applying Leven- 

berg Marquardl  method (Dennis tnld Schnabel.  

1983). 

Solution or design parameter denoted ./) will 

be designed to minimize the ci ter .  The number of  

design parameters cam be selected on the criterion 

that comes fiIom damage location index, qhose  

parameters may ]lot indicate exact danwge loca- 

tion, since there should be some identilqcatlon 

crier .  Th~_:s, throttgl~ the procedure o1 severity 

estimation, one can not only deduce appropria~-e 

damage level but Mso recheck actually dam~tged 

region. 

5. Test Examples 

5.1 P la te  s tructure  

A test structure is freely sttspended on wires as 

shown in Fig~ 1, and 30 points are set for mea- 

surement, The steel plate has 1.6ram thickness 

a[Icl saw cut witll length o f  35 mm to make at 

damage near measurement points 19, 20, 24 and 

25. 

The total number o r e x p e r i m e n t  [o build an 

experimental model is 900 if the emire domain is 

considered. BLIt t h a t  i$ t o o  Ill;.l~ly ~0 d o  experiment 

and thus Ihc structure is divided into two parts. 

One part is composed a t  20 poi~lts !lrmn poim 1 

to point 20). the olher part is composed of  15 

points  ( f i om po in t  16 to point  30). So the number 

o f  t l / e a S k l l  ement 10 COI1StI'LICI .":.tlbsl] L lC l t t r e  n]odel 
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can be reduced to 400 and 225 respectively. 

Condition number of each case is delineated in 

Fig. 2, and it seems that there is n o  abrupt dif- 

ference in these two figures except near 410 Hz. It 

is thought that this frequency is a transmission 

zero of the second substructure. The weighting 

functions for these two substructures are shown 

in Fig. 3. From these weighting functions two 

frequency ranges, 220~250 Hz and 420~450 Hz, 

are selected for inspection and some frequencies 

with higher noise tevel than 0.05 or with higher 

condition number than 300 are discarded to avoid 

ill-pose. Since the actual measurement error is 

not known, this work assumed normalized ran- 

dom error using coherence function (Bendat and 

Piersol, [9931. 

Using Eq. (4), damage location indices of the 

two substructures are found in Fig. 4. True dam- 

age exists in the second substructure, and it is 

easily found in Fig. 4(b).  Though there exists 

no damage in the first substructure, Fig. 4(a) 

indicates that it might have damaged zones, The 

suspicious damage zone shown in Fig. 4(a) is 

resulted from the effect of the true damage in the 

second substructure, because the indices with high 

value are distributed around the true damage 

region. 

The first step, to identify damage level, is to 

build a reliable analytic structure model. For  

hnproving reJiability of  the damage model, 4 

global design parameters, Young's modulus, den- 

sity, Poisson's ratio, and thickness, were chosen. 

> 

t -  

Fig. 3 

'hr 8.G J,;.e ,'~c y~ ~ y l  

J 

,J? . . . , ' ,  
,1. , 1 1 ¢  . ~ i "  

3 w 
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f t ,L~ tj,~'f"lC y ( '~1 ,," p 

b 

Weighting function of each substructure. (a) Weighting function of the first substructure. (b) Weighting 
function of the second substructure 
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Fig. 4 

15 17 18 1~) 20 21 22 23. 24 25 2'6 27 2S 29 30 

node number node number 

(a) (b) 

Damage location indices using two sets of frequency 220--250 Hz, 420--450 Hz, (a) Damage location 
index of lhe first subslructure. (b) Damage location index of the second substructure 
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Table 2 Natural frequency of a plate example 

experimental 
result (1-Iz) 

47.6l 
55.91 
111.22 
118.90 
142.57 
166,30 

before update 

frequency (Hz) 

46.21 
51,96 
108.87 
110.81 
I35.84 
157,43 

after update 

relative error(,~) frequency(Hz) relative error(%) 

2.93 
7.05 
2.L1 
6.80 
4.72 
5,33 

48.06 
54.04 
113.22 
115.24 
141.28 
163.73 

0,95 
3.33 
1,80 
3.07 
0.90 
1.54 

a h 

Fig. 5 MAC value of plate. (a) Before update. (b) After update 
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iteration 

Relative design parameter change ratio. 
Young's modulus (relative to 200X JOPpa) ; 
---e- Poisson's ratio (relative to 0.33) ; --e- 

density (relative to 7860kg/m a) ; ~ thick- 
ness (relative to 0.0016 m) 

The objective function, the error of the first six 

natural frequencies is minimized by adjusting 

these four parameters. The result is shown in 

Fig. 5 and Table 2. It can be seen that the updated 

model is reliable enough to identify" damage level. 

Updated design parameters are also shown in 

Fig. 6. 

Though, in this case, the damaged area is ex- 

actly detected, it is assumed that some other area 

is disguised as damage. Two damage parameters, 

thus, are selected and tested to locate damage 

positions. That is the true damage area composed 

of points 19, 20, 24 and 25 is set to the first 

candidate and the area, beneath the true damage 

area, COmposed of points 14, 15, 19 and 20 as the 

second candidate. First three natural frequency 

error between the damaged experiment model 

and updated model are set as objective function. 

Applying above damage level identification pro- 

cedure, Eq.(25), it can be said that true damage 

area is clearly found as shown in Fig. 7. 

5.2 Structure with joints 
The plate structure that was tested is severed 

into two parts as shown in Fig. 8. The two parts 
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Estimated plate damage level caused by saw 
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approximately 

Fig. 8 Previous plate structure was severed into two, 

the two plates are coupled with 4 bolts and 

nuts :  the number in the circle means mea- 

surement posi t ion 
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arc coupled with 4 bolts and nuts. The first jo in t  

from the left is released so as to simulate damage. 

7 measurement poJnts were selected and accelera- 

tion or 'each point  was measured. 

The total number  of  measurement  to construct 

experimental  model  is 49. Fig. 9 is a sample of  

fi-equency response Cunctions and its coherence. 

Condi t ion  numbers of  the f iequeney response ma- 

trix, before damage, is delineated in Fig. 10(a)+ 

The weighting func+ion of  the system is shown in 

Fig. t0 (b) .  From this weighting function, fle- 

quency band 210+290  Hz is selected for inspec- 

tion. Some I'requencies wi+h the level of  noise 

J}igher tl]an 0.05 or wJ~h condJtioq immber  higher 

than 800 are excluded. Based on Eq. (4), the cal+ 

culated damage location index with the weighting 

Itmction shows the damaged first joint  clearly as 

Fig. [ 1. 

Since four global  design parameters were de- 

termined already at the above example, only jo int  

stiffness is to be considered to construct a reli- 

able model for estiLnation of damage severity. It 

is assumed that joint  can be modeled as spring 

element thus 12 springs, one linear and two tor- 

sional springs for  each joint ,  will be used to im- 

prove model reliability, it is thought that the 

linear spring is relatively rigid compar ing to tor- 

sional springs, thus 4 linear springs are set to 

relatively rigid, 1.0× 10 l~ N/m.  

The objective function, the error of  the first 

three natural IYequencies, is minimized as varying 

the 8 torsional springs. Table  3 shows initial 

and modil]ed desigt~ parameters. Table  4 shows  

the updated model is reliable enough to identify 

damage level. 

The next step is to estimate damage level. In 

this case, it is natural to consider 3 spring con- 

stants in the released join~, as damage parameters. 

With the same procedure, the damage level can 

be identified as shown in Fig. 12, It is interesting 

to note that linear spring constant approaches 

100% damage level, since a released joint  is equi 

valent to decoupling of lateral motion,  

Fig. 11 Weighted damage location index: vertical 

bar means damage index normalized te the 
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Table 4 Natural frequency of a plate with joints 

expcriment~,l 
resuh (Hz) 

4•.3 
53.4 
104.3 

bet\~rc update / ~,ltc,- update 

l requcncy(Hz) relative e r ro r (~ )  frequency(Hz! relative error [%) 

49.5 0.9 40.8 I. I 
56.2 ! 5.2 54.0 . l.I 
109.8 5.3 , 104.5 0.02 
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Estimated joint damage level caused by 
loosed joint. + ,  kz ; ---~, krx ; "g , kry 

6. Conclusions 

In this paper, substructure damage identific- 
ation method and estimation of damage level is 
suggested. The previously proposed algorithm 
with measured frequency response functions is 
totally dependent upon experimental data, thus 
it takes much time and effort to acquire experi- 
ment data. To relieve experimental load, substruc- 
ture damage detection is suggested and this pro- 
cess helps to reduce experimental load effectively. 
Identification of damage level is also important 
and an optimization problem is defined to esti- 

mate damage level. The estimation process needs 

only measured frequency response function and 
statically reduced stiffness matrix. 

Two test examples are introduced to verify sug- 
gested method, and the results show that sug- 
gested method is confident. 
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