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ABSTRACT 

This paper presents a display driver IC that embeds column-parallel 
11b pixel-current readouts to compensate for display non-uniformity. 
Leveraging the source-driven TFT pixel, the proposed techniques fa-
cilitate real-time current sensing, even while the display is active. Fab-
ricated in 180nm, the chip achieves a -63dB rejection to common 
noise, a 390pA/LSB resolution, and an 80mV/nA sensitivity. Demon-
strations with real LEDs effectively validated the pixel current sensing. 

INTRODUCTION 
Despite the rising prominence of OLED displays, the issue of non-

uniformity, due to variations in the thin-film transistors (TFTs), re-
mains a challenge (left of Fig. 1). In contrast to the current-mode drive 
[1] and the in-pixel compensation [2], external compensation [3-5], 
which directly measures the TFT pixel current (Ipixel), is proving par-
ticularly effective in OLED TVs for its superior capability to correct 
non-uniformities. However, Ipixel-sensing schemes still face challenges. 
Large common-mode noise (ICMn), induced by supply ripples (VCMn), 
hinders the accurate Ipixel-sense. This challenge intensifies in larger 
OLED panels due to increased parasitic capacitance (CP), leading to 
higher ICMn (right of Fig. 1). Although [4] and [5] employ differential 
analog front-ends (AFEs) to reject ICMn, this approach results in dou-
bled Ipixel-sensing time. Also, their common-mode rejection (CMR) to 
ICMn remains insufficient for detecting sub-μA Ipixel. The non-real-time 
nature of their sensing, separated from display timing, may cause un-
wanted OLED emissions and user discomfort. Integrating AFEs into 
drive-column channels also demands a larger die area for the display 
driver IC. The channel size in [5] is too large, even without in-channel 
ADCs. In addition, the sensitivity of [5] is insufficient, increasing the 
burden on external ADCs. Although [4] occupies less space than [5] 
despite in-channel ADC, its resolution is limited to 39nA/LSB. 

This paper presents an OLED driver IC that embeds column-paral-
lel real-time Ipixel readouts, featuring high CMR and high sensitivity.  

PROPOSED READOUT AND SOURCE-DRIVER IC (RSIC) 
Source-Driven TFT Pixel (Fig. 2): In typical gate-driven pixels [3-
5], a test voltage (Vtest) is applied to the TFT gate, and Ipixel is measured 
via the drain when the OLED is deactivated. As a result, Ipixel differs 
from IOLED, which directly determines the actual OLED luminance, 
thus making real-time sensing unfeasible. Beyond the data-lines, extra 
sensing-lines are required in the active-matrix. Moreover, apart from 
the gate-drive time, the gate-driven pixel must wait an extra duration 
for Ipixel to be delivered to the AFE. In the proposed source-driven 
pixel, Ipixel identical to IOLED flows via the data-line when the actual 
display data (Vdata) is programmed. This arrangement allows for real-
time Ipixel-sensing even while the display is being driven. Fast Ipixel-
sensing is also achievable, facilitated by the voltage-driven merits.  
RSIC Channel (Fig. 3): For display operation, Vdata is driven to the 
OLED pixel by an AFE-combined amplifier (ACA) following the 
D/A conversion for the 10-bit data (DDAC). While Vdata settles, the 
ACA concurrently detects the current (IAFE) flowing via the data-line. 
The IAFE is then fed into a common-mode rejection filter (CMRF) to 
suppress ICMn. The resulting filtered current (Ifilt), which accurately 
represents Ipixel, is converted into an 11-bit digital output (Dout) through 
a folding-integrator (FI) and a residual SAR ADC. In the voltage-driv-
ing, a sample-and-hold (S/H) is utilized, enabling the R-DAC to be 
reused during the SAR A/D conversion, thereby saving channel area. 
BW-Transitional ACA (Fig. 4): The ACA design employs a class-
AB amplifier at its core, featuring two output stages. The primary out-
put stage is dedicated to drive Vdata, while the corresponding replica 
stage concurrently replicates the data-line current into IAFE. The dual 
functionality, in driving Vdata and sensing IAFE, necessitates meticulous 
optimization of the ACA’s bandwidth (BW). A wider BW allows for 
rapid stabilization of Vdata and IAFE at the expense of decreased noise-
filtering effect. Conversely, a narrower BW enhances noise filtration 
at IAFE but results in slower driving and sensing speeds. To navigate 
this trade-off, the proposed ACA incorporates a BW-transitional de-
sign, enabled by a BW-control circuit (BCC). The BCC adaptively 

adjusts the ACA’s transconductance (Gmi) in response to the ampli-
fier’s input difference, |VINp – VINn|. Initially, the BCC boosts the BW 
to expedite the settling of Vdata and IAFE. As |VINp – VINn| approaches 0, 
it reduces the BW to bolster noise suppression. This strategy allows 
the ACA to obtain both rapid sensing and effective noise reduction. 
Channel-Shared CMRF (Fig. 5): This aims to filter out ICMn (AC 
noise common to adjacent N channels) while allowing Ipixel (a unique 
DC readout signal) to be delivered to the Ifilt output. To maximize the 
ICMn rejection, the channel-sharing (CS) method is proposed, which 
involves aggregating the capacitive AC currents (IAFi = N∙ICF) from the 
adjacent N channels and feeding them back to the CMRF input (IFB). 
This approach virtually boosts the filtering capacitance to N∙CF, thus 
saving die area by obviating the need for large capacitance. Besides, 
the high-pass amplifier (HPA), working with a low-voltage supply, 
further amplifies the feedback signal as IAFo = AF(s)∙IAFi, where AF(s) 
includes a zero at ωz. This not only enhances the CMRF’s feedback 
loop-gain but also elevates the order of the low-pass filtering for ICMn. 
The combination of CS and HPA with N = 8 offers up to -63dB rejec-
tion within the supply-ripple frequency (fCMn) range of 1.5 to 2MHz. 
Folding Integrator & ADC (Fig. 6): An integrator is utilized to con-
vert the sensed current into a voltage-domain signal (Vint). To alleviate 
the burden on the ADC, high sensitivity (mV/nA) is essential. How-
ever, Vint is at risk of saturation, imposed by the supply voltage (VDD) 
constraint. This work proposes a folding integrator (FI) able to drasti-
cally expand the dynamic range (DR) while achieving high sensitivity. 

The proposed FI integrates Ifilt and converts it into a digital output, 
as follows: When Vint reaches Vref during integration with C1 (or C2), a 
comparator detects it, and Vint is folded back to VCM by substitution 
with the empty C2 (or C1). Note that |Vref – VCM| is half of the full-scale 
range (HFS). Whenever the folding occurs, the MSB 5-bit DFOLD in-
crements by +1. After the integration (Tint), a residue of Vint is then 
A/D converted to an LSB 7-bit DSAR using the SAR ADC, which re-
uses R-DAC employed for the voltage driver. The final 11-bit output 
(Dout) is constructed by summing DFOLD and DSAR, with a 1-bit overlap. 
The FI offers 16× DR, as well as a high sensitivity of 80mV/nA. 

This work also presents a novel technique to correct the FI’s error 
(Ve) induced by the comparator’s nonidealities. As shown at the bot-
tom of Fig. 6, C1 and C2 swap roles during operation. Throughout this 
process, they compensate for Ve by transferring it between themselves 
each time they exchange roles. Thus, the residue of Vint is free from Ve. 

MEASUREMENT RESULTS 
The RSIC was fabricated in a 180nm CMOS (Fig. 7). Fig. 8 shows 

the measured Vdata for display inputs (Din) and the current-sensing 
waveforms of Vint for Ipixel = 0 and 600nA, demonstrating up-folds for 
Ipixel > 400nA (Ibias) and down-folds for Ipixel < Ibias. The driver can sup-
port 60Hz 4K displays, but the real-time readout adaptively conforms 
to the variable refresh rate (VRR). The left of Fig. 9 shows the fre-
quency response of CS-HPA CMRF, indicating -25dB improvement 
in AC common-noise suppression. The effectiveness of CMRF is re-
confirmed in the mid-bottom of Fig. 9. The mid-top of Fig. 9 verifies 
the error correction within the FI, showing a deliberate Ve of ±150mV 
is canceled out. The right of Fig. 9 shows the Ipixel vs. Dout curve. Fig. 
10 details the Ipixel-readout linearities (INL/DNL) and the SNR. Fig. 
11 showcases a real demonstration using LEDs, clearly observing that 
the sensed Ipixel (Dout) correlates well with the actual LED luminance, 
thereby verifying the RSIC’s efficacy in compensating for display 
non-uniformities. Fig. 12 tabulates the performance summary. This 
work outperforms prior works in terms of common-noise coverage 
(3.57μApp), resolution (390pA/LSB), SNR (60.3dB at CP = 100pF), 
sensitivity (80mV/nA), and real-time functionality. Despite fully col-
umn-parallel, this work also achieves the smallest size per channel. 
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Fig. 12: Performance summary in comparison with prior works.

Fig. 1: Non-uniformity (left) and common-mode noise (right) in OLED display panel.

Fig. 2: Proposed source-driven TFT pixel for real-time OLED-current sensing.

Fig. 3: Channel structure of the proposed readout and source-driver IC (RSIC).

Fig. 6: Folding integrator (FI), A/D conversion, and error correction in FI.
Fig. 4: BW-transitional AFE-combined amplifier (ACA) with BCC.

Fig. 8: Measured operational waveforms.

Fig. 7: Die photo and 1-ch layout.

Fig. 10: Linearity and noise.

Fig. 9: CMRF performance, error cancellation in FI, and readout I/O curve.

Fig. 11: Real demonstration: LED luminance vs. readout pixel current (Dout).

Fig. 5: Channel-shared common-mode noise rejection filter (CS-CMRF). 
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