An OLED Display Driver IC Embedding -63dB CMR, 80mV/nA Sensitivity, 390pA Detectable, and Column-Parallel Pixel Current Readout for Real-Time Non-Uniformity Compensation

Gyu-Wan Lim¹, Gyeong-Gu Kang¹, Seunghwa Shin¹, Kihyun Kim¹, Yousung Park¹, Won Kim², Young-Bok Kim², Hyun-Kyu Jeon², Hyun-Sik Kim¹ ¹KAIST, Daejeon, Korea; ²LX Semicon, Seoul, Korea. E-mail: hyunskim@kaist.ac.kr

ABSTRACT

This paper presents a display driver IC that embeds column-parallel 11b pixel-current readouts to compensate for display non-uniformity. Leveraging the source-driven TFT pixel, the proposed techniques facilitate real-time current sensing, even while the display is active. Fabricated in 180nm, the chip achieves a -63dB rejection to common noise, a 390pA/LSB resolution, and an 80mV/nA sensitivity. Demonstrations with real LEDs effectively validated the pixel current sensing.

INTRODUCTION

Despite the rising prominence of OLED displays, the issue of nonuniformity, due to variations in the thin-film transistors (TFTs), remains a challenge (left of Fig. 1). In contrast to the current-mode drive [1] and the in-pixel compensation [2], external compensation [3-5], which directly measures the TFT pixel current (I_{pixel}) , is proving particularly effective in OLED TVs for its superior capability to correct non-uniformities. However, Ipixel-sensing schemes still face challenges. Large common-mode noise (I_{CMn}) , induced by supply ripples (V_{CMn}) , hinders the accurate I_{pixel} -sense. This challenge intensities in larger OLED panels due to increased parasitic capacitance (C_P) , leading to higher I_{CMn} (right of Fig. 1). Although [4] and [5] employ differential analog front-ends (AFEs) to reject I_{CMn} , this approach results in doubled I_{pixel}-sensing time. Also, their common-mode rejection (CMR) to ICMn remains insufficient for detecting sub-µA Ipixel. The non-real-time nature of their sensing, separated from display timing, may cause unwanted OLED emissions and user discomfort. Integrating AFEs into drive-column channels also demands a larger die area for the display driver IC. The channel size in [5] is too large, even without in-channel ADCs. In addition, the sensitivity of [5] is insufficient, increasing the burden on external ADCs. Although [4] occupies less space than [5] despite in-channel ADC, its resolution is limited to 39nA/LSB.

This paper presents an OLED driver IC that embeds column-parallel real-time I_{pixel} readouts, featuring high CMR and high sensitivity.

PROPOSED READOUT AND SOURCE-DRIVER IC (RSIC) Source-Driven TFT Pixel (Fig. 2): In typical gate-driven pixels [3-5], a test voltage (V_{test}) is applied to the TFT gate, and I_{pixel} is measured via the drain when the OLED is deactivated. As a result, I_{pixel} differs from I_{OLED} , which directly determines the actual OLED luminance, thus making real-time sensing unfeasible. Beyond the data-lines, extra sensing-lines are required in the active-matrix. Moreover, apart from the gate-drive time, the gate-driven pixel must wait an extra duration for I_{pixel} identical to I_{OLED} flows via the data-line when the actual display data (V_{data}) is programmed. This arrangement allows for real-time I_{pixel} -sensing even while the display is being driven. Fast I_{pixel} sensing is also achievable, facilitated by the voltage-driven merits.

RSIC Channel (Fig. 3): For display operation, V_{data} is driven to the OLED pixel by an AFE-combined amplifier (ACA) following the D/A conversion for the 10-bit data (D_{DAC}). While V_{data} settles, the ACA concurrently detects the current (I_{AFE}) flowing via the data-line. The I_{AFE} is then fed into a common-mode rejection filter (CMRF) to suppress I_{CMn} . The resulting filtered current (I_{filt}), which accurately represents I_{pixel} , is converted into an 11-bit digital output (D_{out}) through a folding-integrator (FI) and a residual SAR ADC. In the voltage-driving, a sample-and-hold (S/H) is utilized, enabling the R-DAC to be reused during the SAR A/D conversion, thereby saving channel area. BW-Transitional ACA (Fig. 4): The ACA design employs a class-AB amplifier at its core, featuring two output stages. The primary output stage is dedicated to drive V_{data} , while the corresponding replica stage concurrently replicates the data-line current into I_{AFE} . The dual functionality, in driving V_{data} and sensing I_{AFE} , necessitates meticulous optimization of the ACA's bandwidth (BW). A wider BW allows for rapid stabilization of V_{data} and I_{AFE} at the expense of decreased noisefiltering effect. Conversely, a narrower BW enhances noise filtration at I_{AFE} but results in slower driving and sensing speeds. To navigate this trade-off, the proposed ACA incorporates a BW-transitional design, enabled by a BW-control circuit (BCC). The BCC adaptively

adjusts the ACA's transconductance ($G_{\rm mi}$) in response to the amplifier's input difference, $|V_{\rm INp} - V_{\rm INn}|$. Initially, the BCC boosts the BW to expedite the settling of $V_{\rm data}$ and $I_{\rm AFE}$. As $|V_{\rm INp} - V_{\rm INn}|$ approaches 0, it reduces the BW to bolster noise suppression. This strategy allows the ACA to obtain both rapid sensing and effective noise reduction.

Channel-Shared CMRF (Fig. 5): This aims to filter out ICMn (AC noise common to adjacent N channels) while allowing Ipixel (a unique DC readout signal) to be delivered to the I_{filt} output. To maximize the $I_{\rm CMn}$ rejection, the channel-sharing (CS) method is proposed, which involves aggregating the capacitive AC currents $(I_{AFi} = \hat{N} \cdot I_{CF})$ from the adjacent N channels and feeding them back to the CMRF input ($I_{\rm FB}$). This approach virtually boosts the filtering capacitance to $N \cdot C_{\rm F}$, thus saving die area by obviating the need for large capacitance. Besides, the high-pass amplifier (HPA), working with a low-voltage supply, further amplifies the feedback signal as $I_{AFo} = A_F(s) \cdot I_{AFi}$, where $A_F(s)$ includes a zero at ω_z . This not only enhances the CMRF's feedback loop-gain but also elevates the order of the low-pass filtering for ICMn. The combination of CS and HPA with N = 8 offers up to -63dB rejection within the supply-ripple frequency (f_{CMn}) range of 1.5 to 2MHz. Folding Integrator & ADC (Fig. 6): An integrator is utilized to convert the sensed current into a voltage-domain signal (V_{int}) . To alleviate the burden on the ADC, high sensitivity (mV/nA) is essential. However, V_{int} is at risk of saturation, imposed by the supply voltage (V_{DD}) constraint. This work proposes a folding integrator (FI) able to drastically expand the dynamic range (DR) while achieving high sensitivity.

The proposed FI integrates I_{filt} and converts it into a digital output, as follows: When V_{int} reaches V_{ref} during integration with C_1 (or C_2), a comparator detects it, and V_{int} is folded back to V_{CM} by substitution with the empty C_2 (or C_1). Note that $|V_{\text{ref}} - V_{\text{CM}}|$ is half of the full-scale range (HFS). Whenever the folding occurs, the MSB 5-bit D_{FOLD} increments by +1. After the integration (T_{int}), a residue of V_{int} is then A/D converted to an LSB 7-bit D_{SAR} using the SAR ADC, which reuses R-DAC employed for the voltage driver. The final 11-bit output (D_{out}) is constructed by summing D_{FOLD} and D_{SAR} , with a 1-bit overlap. The FI offers 16× DR, as well as a high sensitivity of 80mV/nA.

This work also presents a novel technique to correct the FI's error (V_e) induced by the comparator's nonidealities. As shown at the bottom of Fig. 6, C_1 and C_2 swap roles during operation. Throughout this process, they compensate for V_e by transferring it between themselves each time they exchange roles. Thus, the residue of V_{int} is free from V_e .

MEASUREMENT RESULTS

The RSIC was fabricated in a 180nm CMOS (Fig. 7). Fig. 8 shows the measured V_{data} for display inputs (D_{in}) and the current-sensing waveforms of V_{int} for $I_{\text{pixel}} = 0$ and 600nA, demonstrating up-folds for $I_{\text{pixel}} > 400 \text{nA}$ (I_{bias}) and down-folds for $I_{\text{pixel}} < I_{\text{bias}}$. The driver can support 60Hz 4K displays, but the real-time readout adaptively conforms to the variable refresh rate (VRR). The left of Fig. 9 shows the frequency response of CS-HPA CMRF, indicating -25dB improvement in AC common-noise suppression. The effectiveness of CMRF is reconfirmed in the mid-bottom of Fig. 9. The mid-top of Fig. 9 verifies the error correction within the FI, showing a deliberate V_e of ± 150 mV is canceled out. The right of Fig. 9 shows the Ipixel vs. Dout curve. Fig. 10 details the Ipixel-readout linearities (INL/DNL) and the SNR. Fig. 11 showcases a real demonstration using LEDs, clearly observing that the sensed I_{pixel} (D_{out}) correlates well with the actual LED luminance, thereby verifying the RSIC's efficacy in compensating for display non-uniformities. Fig. 12 tabulates the performance summary. This work outperforms prior works in terms of common-noise coverage $(3.57\mu A_{pp})$, resolution (390pA/LSB), SNR (60.3dB at $C_P = 100 pF$), sensitivity (80mV/nA), and real-time functionality. Despite fully column-parallel, this work also achieves the smallest size per channel. ACKNOWLEDGEMENT: this work was supported by LX Semicon.

REFERENCES

[1] YJ. Jeon <i>et al.</i> , JSSC 2010	[2] CL. Lin et al., JSSC 2019
[3] S. Takasugi <i>et al.</i> , JSID 2016	[4] JS. Bang <i>et al.</i> , JSSC 2016
[5] K. Park et al., TCAS-I 2023	[6] C. Lotto et al., Springer 2011

2024 IEEE Symposium on VLsI Technology and Circuits (VLSI Technology and Circuits) | 979-8-3503-6146-9/24/\$31.00 ©2024 IEEE | DOI: 10.1109/VLSITECHNOLOGYANDCIR46783.2024.10631431

Fig. 9: CMRF performance, error cancellation in FI, and readout I/O curve.