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Background and Purpose  It is challenging to detect Parkinson’s disease (PD) in its early 
stages, which has prompted researchers to develop techniques based on machine learning meth-
ods for detecting PD. However, previous studies did not fully incorporate the slow progression 
of PD over a long period of time nor consider that its symptoms occur in a time-sequential 
manner. Contributing to the literature on PD, which has relied heavily on cross-sectional data, 
this study aimed to develop a method for detecting PD early that can process time-series in-
formation using the long short-term memory (LSTM) algorithm.
Methods  We sampled 926 patients with PD and 9,260 subjects without PD using medical-
claims data. The LSTM algorithm was tested using diagnostic histories, which contained the 
diagnostic codes and their respective time information. We compared the prediction power of 
the 12-month diagnostic codes under two different settings over the 4 years prior to the first 
PD diagnosis.
Results  The model that was trained using the most-recent 12-month diagnostic codes had 
the best performance, with an accuracy of 94.25%, a sensitivity of 82.91%, and a specificity of 
95.26%. The other three models (12-month codes from 2, 3, and 4 years prior) were found to 
have comparable performances, with accuracies of 92.27%, 91.86%, and 91.81%, respectively. 
The areas under the curve from our data settings ranged from 0.839 to 0.923.
Conclusions  We explored the possibility that PD specialists could benefit from our proposed 
machine learning method as an early detection method for PD.
Keywords  ‌�Parkinson’s disease; deep learning; long short-term memory; medical-claims data; 

diagnostic code.

Long Short-Term Memory-Based Deep Learning Models 
for Screening Parkinson’s Disease 
Using Sequential Diagnostic Codes 

INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative disorder that is clinically charac-
terized by progressive motor dysfunctions including bradykinesia, resting tremor, rigidity, 
and postural instability.1 Early detection of PD is challenging because many patients with 
PD—prior to showing such cardinal motor symptoms—could also have various prodro-
mal nonmotor symptoms such as constipation, hyposmia, sleep disturbance (including REM 
sleep behavior disorder [RBD]), and depression. However, nonmotor features except for 
RBD are not so specific to PD.2 Mild parkinsonism may also be missed in early PD because 
of its ambiguity. Hence, experts such as movement-disorder specialists find it difficult to de-
tect PD in its early stage.3,4

Researchers have attempted to resolve this issue by making further developments in big-
data processing and computer technology, with machine learning in particular being widely 
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used. While researchers have adopted machine learning meth-
ods for PD detection using various data sources, most studies 
focused on a specific measure related to motor symptoms, 
nonmotor symptoms, or other biomarkers, such as voice sig-
nals,5-8 cardiovascular oscillations,9 smell identification,10 and 
motion signals.11-14 Moreover, studies have used multiple mea-
sures of nonmotor symptoms (e.g., RBD and olfactory dysfunc-
tion) and biomarkers (e.g., cerebrospinal fluid measurements 
and SPECT imaging markers) in one model.15,16 Deep learning 
with a convolutional neural network (CNN) structure has re-
cently been widely adopted for detecting PD by processing im-
age data, such as those from MRI, PET, and SPECT.17-20

Nevertheless, previous studies on PD detection using mo-
tor or nonmotor symptoms have barely accounted for the time-
series information associated with PD progression in patients. 
PD symptoms occur in a time-sequential manner over a long 
period of time.1,2,4 Generally, constipation appears first in the 
body-first type, and RBD, depression, dopaminergic PET/
SPECT findings, and subtle parkinsonism tend sequentially 
follow.2,21 Although the symptoms occur in a different sequence 
in the brain-first type, both subtypes have a common feature 
in that their symptoms progress sequentially. It can therefore 
be valuable to utilize the time-series information in the early 
detection of PD. However, most studies that we were aware of 
that explored the methods for PD detection typically relied 
on cross-sectional data without sufficiently reflecting time-de-
pendent information. For comparison purposes, we have in-
cluded Table 1, which summarizes the previous literature that 

adopted machine learning methods for PD detection.
To explore the extent to which a machine learning approach 

can help PD detection by processing time-series information, 
we investigated the performance of the long short-term mem-
ory (LSTM) model with a recurrent neural network (RNN) 
architecture for incorporating PD symptoms that occurred in 
a time-sequential manner over a long period of time. More 
specifically, we used sequential information from medical-
claims data, which contained diagnostic codes from the visit 
of each patient.

METHODS

This study was conducted in accordance with the Declara-
tion of Helsinki. The analysis was performed retrospectively, 
and all subjects were anonymized and deidentified. Written 
informed consent for accessing the clinical records was not 
required because of the guaranteed anonymity and deidenti-
fication. The study protocol was approved by the Institutional 
Review Board of Korea Advanced Institute of Science and 
Technology (No.18-056).

Data and subjects
We used the National Sample Cohort data from the National 
Health Insurance Service of Korea (NHIS-NSC) for the time 
period of 2002–2013. These cohort data include information 
on demographics, medical histories, medications, medical 
claims, and regular health checkup data.22 The NHIS-NSC is 

Table 1. Comparison of previous machine learning approaches for PD detection

Study Methods of PD detection Data type
Time-series 
information

Karapinar Senturk (2020)6 CART, ANN, and SVM Voice signals X

Almeida et al. (2019)5 KNN, MLP, optimum-path forest, and SVM Voice signals X

Lahmiri and Shmuel (2019)7 SVM and Bayesian optimization technique Voice signals X

Valenza et al. (2016)9 SVM Spontaneous cardiovascular oscillations X

Silveira-Moriyama et al. (2009)10 Logistic regression Smell identification data X

El Maachi et al. (2020)13 CNN Gait signals X

Abdulhay et al. (2018)11 Medium tree and medium Gaussian SVM Gait impairments and tremor occurrences X

Zeng et al. (2016)14 Radial basis function neural networks Gait patterns X

Prashanth et al. (2016)15 SVM, naïve Bayes, boosted trees, and RF Nonmotor symptoms and biomarkers (PPMI) X

Wang et al. (2020)16 Three deep learning models that were all 
  feed-forward neural networks with two hidden layers

Nonmotor symptoms and biomarkers (PPMI) X

Chakraborty et al. (2020)17 CNN 3-T T1-weighted MRI scans (PPMI) X

Shinde et al. (2019)19 CNN NMS-MRI X

Searles Nielsen et al. (2017)35 Logistic regression and elastic net algorithm Medical-claims data X

Current study LSTM Medical-claims data (diagnostic codes) O

ANN, artificial neural network; CART, classification and regression trees; CNN, convolutional neural network; KNN, K-nearest neighbors; LSTM, long 
short-term memory; MLP, multilayer perceptron; NMS, neuromelanin sensitive; PD, Parkinson’s disease; PPMI, Parkinson’s Progression Markers Initia-
tive; RF, random forest; SVM, support vector machine.
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a population-based sample cohort that contains information 
on 1,025,340 participants, which is equivalent to 2.2% of the 
total population of Korea, and the sample was randomly se-
lected from the Korean National Health Insurance database. 
Among the cohort data, we used diagnosis database, con-
structed based on the medical claims. The data include infor-
mation on patient ID, diagnosis date, diagnosis code, and code 
of the department where the diagnosis was performed. The di-
agnostic codes in the NHIS-NSC data followed the criteria 
from the International Classification of Diseases-10 (ICD-10) 
provided by the World Health Organization. The diagnostic 
codes contain information about disease categories and sub-
categories.

Among the sample cohort data, we first selected patients 
with PD and their counterparts (subjects without PD) based 
on the age and sex distribution of the patients. We defined pa-
tients with PD as those diagnosed using the diagnostic code 
G20 by the Neurology Department, and who had never been 
diagnosed with another parkinsonism-related disease (code 
G11.0–G11.9, G21.0–G21.9, G23.0–G23.9, or G31.8) before 
or after the PD diagnosis. We monitored at least 4 years of 
diagnostic history after the first code-G20 diagnosis for every 
patient with PD to determine whether they were misdiagnosed. 
We included patients with PD older than 50 years who have 
visited outpatient clinics more than once and were diagnosed 
with PD for the first time during 2006–2009. We chose age- 
and sex-matched subjects without PD, including those who 
had not been diagnosed with PD or other parkinsonism-re-
lated diseases during the data period (PD:non-PD=1:10).

Model
We considered LSTM with an RNN architecture so as to in-
corporate PD symptoms that occur in a time-sequential man-
ner over a long period of time.23 More specifically, we employed 
one hidden-layer bidirectional LSTM (bi-LSTM) trained on 
two-class (i.e., PD or non-PD) classifications. An RNN-based 
model processes entire data sequences (e.g., sentences, speech-
es, or videos) instead of single data points (e.g., images) and 
returns its sequential output. Consequently, researchers have 
applied RNN-based models to areas where time-series infor-
mation is more important than cross-sectional information, 
such as natural language processing, speech recognition, or 
anomaly detection in network traffic.24-26 Details on the mech-
anism and logic of LSTM are presented in the Supplementary 
Material (in the online-only Data Supplement).

The input for our proposed model was a sequence of diag-
nostic codes for each patient. For example, the input vector 
of patient i, who was diagnosed T times at their outpatient 
clinic during the data period, was presented as Xi=[xi1, xi2, …, 
xiT]. Each diagnosis was converted to a diagnosis embedding 

of dimension 128. The interactions of input xit in both the 
previous and next input period (xi(t-1) and xi(t+1)) were included 
by using bi-LSTM, which comprised forward and backward 
processing. The size of the hidden layer in bi-LSTM is 128. Af-
ter the LSTM layer, a fully connected layer specified the two 
classes (i.e., PD and non-PD) and the softmax layer calculated 
the probability of each class as an output. The focal loss was 
calculated in the output layer. This loss function is often used in 
a classification problem with imbalanced classes.27 A flowchart 
of our model and detailed examples are shown in Fig. 1A.

Data setup
We tested the model performance using 4 different data-pe-
riod settings. Clinical diagnoses that were strongly related to 
PD tended to occur in the periods closer to the time of the PD 
diagnosis. First, we used sequential 12-month data on diag-
nostic codes from 1 year prior to the first PD diagnosis (year 
-1 to year 0; diagnosis of PD in year 0). To determine the per-
formance of the model in early PD detection, we used settings 
for 12-month data from the 2, 3, and 4 years prior to the first 
PD diagnosis (year -2 to year -1, year -3 to year -2, and year 
-4 to year -3, respectively). We defined these data periods as 
Periods 1, 2, 3, and 4, as presented in Fig. 1B.

Our diagnostic codes comprised three to five letters. The 
first three letters contained relatively broad diagnostic infor-
mation, and the fourth and fifth letters indicated more spe-
cific subdivisions of the disease. In our study, we only used 
the first three letters of diagnostic codes to prevent an exces-
sive amount of inputs, thereby avoiding overfitting and achiev-
ing greater applicability for the model. We trained our model 
using two different diagnostic-code settings by modifying 
the input set of diagnostic codes. Using three-letter diagnos-
tic codes, the number of unique diagnostic codes were 1,032, 
1,014, 987, and 1,014 for Periods 1, 2, 3, and 4, respectively. 
Setting 1, as a baseline model, covered every three-letter di-
agnostic code as inputs. Because Setting 1 used every diag-
nostic code, the data inputs involved relatively rare symptoms 
and the amount of data required for model training was quite 
large. We therefore only used diagnostic codes that corre-
sponded to the top 100 frequencies in the model for Setting 2.

With 4 different data periods (i.e., Periods 1, 2, 3, and 4) 
and 2 different diagnostic-code settings (i.e., settings with 
all and with the top 100 diagnostic codes), 8 data settings 
were trained and tested by the model. We divided each set-
ting of the data set into the training (70%) and testing (30%) 
sets. We partitioned the patients using stratified sampling; 
that is, both sets had the same proportion of patients with PD 
and subjects without PD in each input. For each setting, we re-
peated the process 100 times by randomly splitting the sample 
data into training and testing data. The model was trained us-
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Period 4

Year -4 Year -3 Year -2 Year -1 Year 0

Time

(First diagnosis of PD)

Period 3 Period 2 Period 1

A  

B  

ing the training data, and patients in the testing data were pre-
dicted to be PD or non-PD using the trained model. We com-
puted the accuracy, sensitivity, specificity, and areas under the 
receiver operating characteristic (ROC) curves (AUCs) for 
the testing data.

We compared the diagnostic-code distributions of the PD 
and non-PD groups to determine which diagnostic codes 
appeared frequently in the PD group. The diagnostic-code 
distribution was summarized for each data-period setting. 
We first summarized the top 20 diagnostic codes, which fre-
quently occurred in patients with PD during the period, and 
we presented the corresponding ranks of diagnostic codes 
for subjects without PD.

RESULTS

We obtained summary statistics for 926 patients with PD and 
9,260 subjects without PD sampled in this study. The female-
to-male ratio of our sample was 0.625, and the age at diagno-
sis was 69.05±8.41 years (mean±standard deviation) in both 
the PD and non-PD groups. The total numbers of diagnoses 
in our sample over the course of 4 years from the first PD di-
agnosis were 238,735 and 1,733,398 cases in the PD and non-
PD groups, respectively. The patients with PD and subjects 

without PD in our sample visited clinics 85.9 and 62.4 times on 
average per year, respectively. Also, the patients with PD (28.9 
times/year) visited clinics more frequently than the subjects 
without PD (23.4 times/year). The prevalence and incidence 
rates of PD in our study are listed in Table 2.

Model performance
Table 3 lists the model performance measured on the testing 
data for each setting. The performance—quantified as the 
accuracy, sensitivity, and specificity—for Setting 1 according 
to period were 94.25%, 82.91%, and 95.26%, respectively, for 
Period 1; 92.27%, 77.68%, and 93.61% for Period 2; 91.86%, 
75.38%, and 93.42% for Period 3; and 91.81%, 75.65%, and 
93.28% for Period 4. The settings that covered Period 1 dem-
onstrated better performance than those that covered Periods 
2, 3, and 4. Among the settings for each data period, Setting 
1 (all 3-letter diagnostic codes) demonstrated better perfor-
mance than Setting 2 (only the top 100 diagnostic codes). 

Fig. 1. Summary of model and data setup. A: Flowchart of the model. B: Data setup with four different periods. LSTM, long short-term memory; PD, 
Parkinson’s disease.

Table 2. Prevalence and incidence of PD in this study

2006 2007 2008 2009
Prevalence 545 670 806 932
Incidence 188 223 258 257

Data are presented as n.
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Fig. 2. Receiver operating characteristic (ROC) plots for all settings. AUC, area under the ROC curve.

The AUCs of Setting 1 were 0.923, 0.890, 0.870, and 0.870 for 
Periods 1, 2, 3, and 4, respectively. Fig. 2 presents the ROC 
plot for one testing data set in each setting.

Distribution of diagnostic codes
Comparisons of the diagnostic-code distributions of the PD 
and non-PD groups are listed in Table 4. The top 20 diagnos-
tic codes that frequently occurred in patients with PD during 
the period were summarized in descending order in the Table 
4. We also report the corresponding ranks for subjects with-
out PD. Fig. 3 presents the diagnostic codes with ranks that were 
at least ten times higher in the PD group than in the non-PD 
group.

In Period 1, depressive episode had the largest rank differ-
ence, sequentially followed by cerebral infarction, vestibular 
function disorder, other anxiety disorders, light headedness, 
angina pectoris, gastric ulcer, and shoulder lesions. In Peri-
od 2, depressive episode and cerebral infarction presented 
the largest rank difference. While vestibular function disor-

Table 3. Model performance comparisons across data settings

Data 
period

Data 
setting

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Period 1 Setting 1 94.25±0.53 82.91±2.53 95.26±0.61
Setting 2 93.36±0.52 79.35±2.77 94.62±0.57

Period 2 Setting 1 92.27±0.52 77.68±2.92 93.61±0.62
Setting 2 91.73±0.76 75.09±2.92 93.26±0.85

Period 3 Setting 1 91.86±0.56 75.38±8.28 93.42±0.93
Setting 2 91.59±0.67 73.93±8.04 93.25±1.03

Period 4 Setting 1 91.81±0.68 75.65±2.90 93.28±0.77
Setting 2 91.49±0.72 70.91±7.82 93.36±1.04

Data are presented as mean±standard deviation.
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der, gastric ulcer, and shoulder lesions disappeared, irritable 
colon first presented in this period. In Period 3, at least ten 
rank differences were observed in cerebral infarction, other 
anxiety disorders, and other functional intestinal disorders. 
In Period 4, cerebral infarction, other anxiety disorders, an-
gina pectoris, and irritable colon were observed.

DISCUSSION

Every model setting for each data period demonstrated good 
prediction performance, with AUCs value higher than 0.839 
(0.870 when only considering Setting 1), and the model with 
Period 1 presented the best performance. This was a predict-
able result, because more PD-specific symptoms are likely to 
develop around the time of a PD diagnosis, and those symp-
toms provide key information when detecting PD. Meanwhile, 
it is worth noting that the models set up with Periods 2, 3, 
and 4 showed comparable prediction performances. Given 

that Periods 2, 3, and 4 covered the time farther past from 
the diagnosis of PD, we can claim that our proposed model 
detects PD with symptoms less specific to PD.

To provide supplementary information for clinicians, we 
compared the annual number of visits and diagnoses of both 
groups. We found that patients with PD visited clinics more 
frequently and had more diagnoses, meaning that people with 
PD have more complaints from the prodromal phase. To iden-
tify which diagnoses were linked to prodromal PD, we inves-
tigated the diagnostic codes that were prevalent in the PD 
group for each data period. The diagnostic codes, which were 
only highlighted in Period 1, were H81 (vestibular function 
disorder), K25 (gastric ulcer), and M75 (shoulder lesions). 
Codes H81 and M75 may reflect subtle parkinsonism, includ-
ing postural instability and rigidity-related shoulder problems 
in the prediagnostic period. Code K25 may be related to de-
creased gastrointestinal motility, which is a nonmotor symp-
tom of PD. Code F32 (depressive episode), which was the most 

Table 4. Frequency ranking of diagnostic codes for each data period

Period 1 Period 2 Period 3 Period 4

Diagnostic 
code

Frequency 
ranking Rank 

difference
Diagnostic 

code

Frequency 
ranking Rank 

difference
Diagnostic 

code

Frequency 
ranking Rank 

difference
Diagnostic 

code

Frequency 
ranking Rank 

difference
PD

non-
PD

PD
non-
PD

PD
non-
PD

PD
non-
PD 

I10   1st   1st 0 I10 1st   1st 0 I10   1st   1st 0 I10   1st   1st 0

K29   2nd   2nd 0 K29 2nd   2nd 0 K29   2nd   2nd 0 K29   2nd   2nd 0

E11   3rd   4th -1 E11 3rd   3rd 0 E11   3rd   3rd 0 E11   3rd   3rd 0

E78   4th   6th -2 M54 4th   5th -1 M17   4th   4th 0 M54   4th   5th -1

M17   5th   3rd 2 E78 5th   6th -1 M54   5th   5th 0 M17   5th   4th 1

M54   6th   5th 1 M17 6th   4th 2 E78   6th   6th 0 E78   6th   6th 0

I63*   7th 37th -30 K59 7th 14th -7 J20   7th   7th 0 I63*   7th 40th -33

F32*   8th 47th -39 I63* 8th 38th -30 K59*   8th 19th -11 K59   8th 16th -8

K59   9th 12th -3 J20 9th   7th 2 I63*   9th 40th -31 J20   9th   7th 2

F41* 10th 34th -24 J30 10th   8th 2 J30 10th   8th 2 K25 10th 15th -5

K25* 11th 23rd -12 M81 11th   9th 2 M81 11th   9th 2 J30 11th   8th 3

K21 12th 20th -8 F41* 12th 35th -23 K25 12th 14th -2 H10 12th 14th -2

J30 13th   7th 6 H04 13th 12th 1 H10 13th 12th 1 F41* 13th 34th -21

M75* 14th 25th -11 K25 14th 18th -4 H25 14th 17th -3 I20* 14th 24th -10

J20 15th   8th 7 F32* 15th 46th -31 J45 15th 18th -3 K58* 15th 25th -10

I20* 16th 30th -14 I20* 16th 28th -12 N40 16th 23th -7 K30 16th 10th 6

R42* 17th 38th -21 H25 17th 15th 2 M13 17th 10th 7 M13 17th   9th 8

H04 18th 13th 5 K58* 18th 30th -12 F41* 18th 36th -18 M81 18th 11th 7

N40 19th 24th -5 R42* 19th 36th -17 H04 19th 13th 6 M75 19th 26th -7

H81* 20th 50th -30 N40 20th 25th -5 I20 20th 27th -7 J45 20th 23rd -3

*Denotes diagnostic code (disease) with a ranking difference between the PD and non-PD groups of at least.
E11, type 2 diabetes mellitus; E78, disorders of lipoprotein metabolism and other lipidemias; F32, depressive episode; F41, other anxiety disorders; 
H04, lacrimal system disorders; H10, conjunctivitis; H25, senile cataract; H81, vestibular function disorders; I10, high blood pressure; I20, angina pec-
toris; I63, cerebral infarction; J20, acute bronchitis; J30, spasmodic rhinorrhea; J45, asthma; K21, gastro-oesophageal reflux disease; K25, gastric ulcer; 
K29, gastritis and duodenitis; K30, indigestion; K58, irritable colon; K59, other functional intestinal disorders; M13, other arthritis; M17, gonarthrosis 
(arthrosis of the knee); M54, dorsalgia; M75, shoulder lesions; M81, osteoporosis without pathological fracture; N40, prostate hyperplasia; R42, light 
headedness; PD, Parkinson’s disease.
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common in Periods 1 and 2, is a common prodromal non-
motor symptom in PD.1,2 In Periods 3 and 4, codes I63 (cere-
bral infarction), F41 (other anxiety disorders), K58 (irritable 
colon), K59 (other functional intestinal disorders), and I20 
(angina pectoris) occurred the most frequently in patients 
with PD. Constipation and anxiety are common symptoms in 
the prodromal stage of PD,1,2 which could explain the high 
frequency of intestinal symptoms and anxiety disorders during 
this stage. Codes reflecting motor symptoms (i.e., R42, H81, 
and M75) did not appear in Periods 3 and 4. This was consis-
tent with the previous studies finding that nonmotor symp-
toms such as anxiety and intestinal problems preceded motor 
symptoms.1,2

Diagnostic code I63 (cerebral infarction) was observed 
frequently regardless of the data period. There have been sev-
eral reports of an association between cerebral infarction and 
PD.28-30 Although the pathogenesis on how ischemic stroke 
causes PD is still unclear, the inflammatory process after neuro-
nal ischemia may play a role in developing a PD-like patholo-
gy.31 It should also be considered that a minor or incidental si-
lent infarction could mimic the motor symptoms of PD.

Among the significant prodromal symptoms for PD, RBD 
and hyposmia were not detected in the current analysis. In par-
ticular, RBD is the strongest diagnostic marker for prodromal 
PD.2 RBD was not captured because the ICD-10 system does 
not contain an appropriate code representing RBD. Hyposmia 

seems to have been ignored by patients without olfactory func-
tion tests, perhaps because they perceived the symptoms as be-
ing less serious than other prodromal symptoms.32 Although 
RBD and hyposmia did not contribute directly, the current 
LSTM model based on prediagnostic medical-claims data per-
formed well, which could be attributable to its ability to in-
corporate sequential information for these diagnostic codes.

The amount of data used for the model training was large 
in Setting 1 (all 3-letter diagnostic codes), in which there were 
approximately 1,000 unique diagnostic codes. Concerning the 
data size required for model training, Setting 2 reduced the 
number of unique diagnostic codes to 100 by only using the 
top 100 codes in terms of frequency. The results confirmed 
that the model demonstrated decent performance, even under 
the condition in which the data input only covered 100 ma-
jor diagnostic codes.

Table 5 summarizes the prediction performances from the 
previous literature on PD detection. Previous studies that 
used gait or voice signals showed relatively high accuracy com-
pared with our study.5,7,11,13,14 The studies that included non-
motor symptoms and biomarkers of PPMI also performed 
well in detecting PD.15,16 The studies that used MRI, PET/CT, 
or SPECT images in a CNN model demonstrated good per-
formances.17-19 However, these studies used fine-motor fea-
tures or well-refined data that are relatively inaccessible. Most 
of the studies generated their own customized data with spe-

Period 4

Year -4 Year -3

I63
I63

I63 I63
F32

F32

F41
F41

F41

F41

I20
I20

R42

R42

M75

H81

Depressive episode
Other anxiety disorders
Gastric ulcer
Irritable colon
Other functional intestinal disorders
Shoulder lesions
Light headedness
Disorders of vestibular function
Cerebral infarction
Angina pectoris
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F41
K25
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M75
R42
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Time
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Rank difference 
(more frequently in PD)

Period 3 Period 2 Period 1

40
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Fig. 3. Diagnostic codes that presented more frequently in the Parkinson’s disease (PD) group than in the non-PD group.
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cific study ideas. To use the prediction method as an early de-
tection tool for patients with PD, the data must be easy to 
access, and hence the primary data used in previous studies 
is of little use in the development of PD detection tools.

In contrast, considering that our model used medical-claims 
data, the performance of the model indicated that it would 
work reasonably well as a preliminary screening tool, such as 
helping to detect at-risk patients in the early stage and develop-
ing health policies for them. Medical-claims data are secondary 
data related to the health information of patients that is com-
municated with insurance providers. Although records in 
medical-claims data may not always represent the exact state 
of a patient, the cost of accessing the data is low, and the data 
cover a wide range of patients. Moreover, more countries (e.g., 
the United States, Finland, and the United Kingdom) are now 
providing open access to such data (e.g., the United States Na-
tional Institutes of Health, Findata of Finland, and the National 
Health Service of the United Kingdom). Researchers have 

used medical-claims data to predict the onset of diseases such 
as heart failure, diabetes, and cancer.33,34 Searles Nielsen et al.35 
demonstrated that analyzing medical-claims data from Medi-
care using logistic regression and an elastic net algorithm was 
effective at detecting PD (Table 5).

This study may have had limitations. First, we cannot fully 
exclude the possibility that other factors affected the devel-
opment of PD. Although we revealed the distribution of di-
agnostic codes for PD and non-PD groups in each data peri-
od (Table 4), this could only be a descriptive explanation for 
the results of the model. The factors that affected the model—
to predict a patient as PD or non-PD—could be precisely in-
vestigated using artificial intelligence methods as an option in 
the deep learning area, which we left to future research. Sec-
ond, not all patients with PD followed specific time-sequen-
tial progression, such as the Braak stages or body-first sub-
type.4,36 There were many cases of clinical heterogeneity that 
did not show prodromal nonmotor symptoms before motor 

Table 5. Performance predictions of the previous literature on PD detection

Study Methods of PD detection Data type
Performance (%)

Accuracy Sensitivity Specificity
Karapinar Senturk (2020)6 CART, ANN, and SVM Voice signals 93.84 - -

Almeida et al. (2019)5 KNN, MLP, optimum-path forest, and SVM Voice signals 94.55 - -

Lahmiri and Shmuel (2019)7 SVM and Bayesian optimization technique Voice signals 92.13 82.79 95.27

Valenza et al. (2016)9 SVM Spontaneous cardiovascular 
oscillations

73.47 80.83 76.00

Silveira-Moriyama et al. 
(2009)10

Logistic regression Smell identification data - 90.40 85.50

El Maachi et al. (2020)13 CNN Gait signals 98.70 - -

Abdulhay et al. (2018)11 Medium tree and medium Gaussian SVM Gait impairments and tremor 
occurrences

92.70 - -

Zeng et al. (2016)14 Radial basis function neural networks Gait patterns 96.39 96.77 95.89

Prashanth et al. (2016)15 SVM, naïve Bayes, boosted trees, and RF Nonmotor symptoms and 
biomarkers (PPMI)

96.40 97.03 95.01

Wang et al. (2020)16 Three deep learning models that were all feed-
forward neural networks with two hidden layers

Nonmotor symptoms and 
biomarkers (PPMI)

96.45 - -

Kotsavasiloglou et al. (2017)37 Naïve Bayes, AdaBoost, logistic regression, SVM Handwriting 90.90 88.00 95.00

Gupta et al. (2020)38 SVM ranking method Handwriting 83.75 - -

Arroyo-Gallego et al. (2017)39 Logistic regression, SVM, AdaBoost Mobile touchscreen typing - 81.00 81.00

Chakraborty et al. (2020)17 CNN 3-T T1-weighted MRI scans 
(PPMI)

95.29 92.70 94.30

Shinde et al. (2019)19 CNN NMS-MRI 80.00 - -

Searles Nielsen et al. (2017)35 Logistic regression and elastic net algorithm Medical-claims data - 73.50 83.20

Current study LSTM Medical-claims data Period 1 94.25 82.91 95.26

  (diagnostic codes) Period 2 92.27 77.68 93.61

Period 3 91.86 75.38 93.42

Period 4 91.81 75.65 93.28

ANN, artificial neural network; CART, classification and regression trees; CNN, convolutional neural network; KNN, K-nearest neighbors; LSTM, long 
short-term memory; MLP, multilayer perceptron; NMS, neuromelanin sensitive; PD, Parkinson’s disease; PPMI, Parkinson’s Progression Markers Initia-
tive; RF, random forest; SVM, support vector machine.
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dysfunction onset. While our model could capture the preva-
lent sequential patterns of the diagnoses of patients with PD, 
it might fail to capture abnormal patterns. Third, the preva-
lence and incidence of PD in our study were differed slightly 
from those found by Lee et al.,22 who analyzed the same 
NHIS-NSC cohort data. During the diagnostic period (2006–
2009), we enrolled 926 cases with PD, whereas that previous 
study enrolled 1,106. This discrepancy in incidence was prob-
ably caused by the application of different diagnostic criteria. 
We narrowed down our sample by guaranteeing at least 4 years 
of monitoring to exclude other parkinsonian disorders, be-
cause our study had a case–control design. Finally, there may 
have been inaccuracies in the disease diagnoses in the medi-
cal-claims data. The diagnostic codes were recorded based on 
the decisions of physicians, and the codes in medical-claims 
data may therefore not represent the exact states of patients. 
Though we selected patients with PD using solid criteria to 
overcome such issues, there may still have been contaminat-
ed samples.

In conclusion, this study found that PD detection with time-
series information is feasible by using patient-level diagnostic 
codes. Given the possibility of early PD detection using pro-
dromal data obtained 2–4 years before the first diagnosis, we 
believe that our proposed method would be useful as a pre-
liminary screening program for people at risk of PD.
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