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A B S T R A C T   

One of the challenges of Unmanned Aircraft System (UAS) operations is to operate an unmanned aircraft with 
minimal risk to people on the ground. The purpose of this study is to define and measure such risks as population 
risk, by incorporating spatiotemporal changes in population density. Unlike previous studies, we use high- 
resolution de facto population data instead of residential population data to reflect the spatiotemporal charac-
teristics of population distribution. Furthermore, we analyze the impact of mitigation measures based on pop-
ulation risk in the context of airspace management. We set a restricted airspace by using population risk and an 
acceptable level of safety. Scenario analysis of the study area in Seoul, South Korea provides a richer set of 
findings regarding spatiotemporal differences in restricted airspace. During the daytime, there are many 
restricted airspaces around commercial areas, but few around residential areas. Additionally, we observe the 
difference between restricting airspace based on population risk derived from the residential population and 
from the de facto population. These findings confirm the importance of accurately considering population 
density when assessing and mitigating the population risk associated with UAS operations. Sensitivity analysis 
also reveals the need to precisely estimate population density when estimating population risk with combinations 
of multiple parameter values. The proposed approach captures spatiotemporal characteristics of population 
distribution when assessing the population risk associated with UAS.   

Introduction 

The demand for Unmanned Aircraft Systems (UAS) will grow with 
various applications such as medical aid, food delivery, and package 
delivery (Doole et al., 2020; Kellermann et al., 2020; Rajendran et al. 
2021). The expected growth in UAS demand has raised safety concerns 
associated with its use (Washington et al., 2017). One of the most serious 
concerns is the risk of collision between an Unmanned Aircraft (UA) and 
people on the ground (Clothier et al., 2018). Under this circumstance, 
there are several countries where UAS operations are prohibited over 
people. In Australia and Japan, UA should be at least 30 m away from 
other people (CASA, 2022; MLIT, 2022). In South Korea, UA cannot fly 
over people (MOLIT, 2022). Such conservative approach to limiting UAS 
use is preferred at the current stage, since airworthiness certification 
process as well as risk assessment are still under development to ensure a 
level of reliability that could allow UA flying over people. The Federal 
Aviation Administration relaxed such restrictions in December 2020, 
allowing UA to fly over people. The FAA regulation requires the remote 
pilot to do a safety risk-based approach to ensure that the UA will not 

pose an undue danger to other people if it loses control of the aircraft for 
any reason (FAA, 2022). In response, there has been a worldwide effort 
to assess the risk, but there is no clear consensus as to which safety risk- 
based approach should be adopted. 

To address the potential risk associated with UA flying over people, 
one simple but effective measure is to issue a temporary flight restriction 
(TFR) over a high-risk area, making the airspace inoperable for a certain 
period (Oh et al., 2020). Because such TFR renders portions of airspace 
inoperable, the designation of airspace as TFR could have a significant 
impact on airspace operability (Cho and Yoon, 2018; Vascik et al., 
2020). Therefore, it is of utmost importance to determine the reasonable 
extent and duration of TFR area based on quantitative metrics such as 
casualty risk associated with UAS operations. A number of studies have 
attempted to measure the casualty risk, but have primarily focused on 
the dynamics of individual UA, such as descent trajectory and impact 
area (Clothier et al., 2018; Primatesta et al., 2020). They had limited 
consideration of the environments exposed to UAS operations, including 
people exposed to UAS operations. For example, the aforementioned 
studies calculated the casualty risk based on residential population 
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density. The limitation of this approach is that it does not consider 
people who are actually at risk of UAS operations. If TFR is designated 
solely based on residential population, areas with high residential 
population but low daytime population can be an example of inefficient 
restriction of airspace, and commercial districts with high daytime 
population but low residential population may not provide sufficient 
risk mitigation as intended. It is also important to note that, even though 
the casualty risk of individual UA flying on a specific route was calcu-
lated, the analysis about implementing mitigation measures based on 
the calculated risk was insufficient. 

In this study, we define the casualty risk associated with UAS oper-
ations to people on the ground as population risk, incorporating spatio-
temporal changes in population density. Using high-resolution de-facto 
population data, we measured population risk for each time of day. In 
doing so, we calculated the casualty risk that reflects the spatiotemporal 
characteristics of population distribution rather than those derived from 
the residential population data. We then analyzed the impact of 
population risk on airspace operability for airspace analysis. We define 
the airspace in which population risk exceeds a certain threshold as the 
restricted airspace. We examined changes in the volume and shape of 
the restricted airspace during the day, considering the spatiotemporal 
characteristics of population distribution. We also investigated the effect 
of population density on the risk values for combinations of multiple 
parameter values through sensitivity analysis. 

The remainder of this paper is organized as follows. In Section 2, the 
relevant literature is summarized. Section 3 describes risk assessment 
and the data used in this study. In Section 4, scenario analysis results for 
actual urban environments are presented and discussed. Section 5 pre-
sents the results of the sensitivity analysis. Finally, conclusions are 
presented in Section 6. 

1. Related studies 

UAS risk assessment models have been developed to estimate the 
probability of a casualty occurring per flight hour (Blom et al., 2021; 
Poissant et al., 2020; Primatesta et al., 2020; Washington et al., 2017). 
The casualty risk of UAS operations was modeled based on probabilistic 
risk assessment, which is a process of assessing a system’s risk and 
reliability to improve it safety. Generally, it is adopted when there is 
insufficient data for an event with a low probability and high conse-
quence. It consists of the likelihood of an event and its consequences 
(Washington et al., 2017). According to Washington et al. (2017), many 
studies have focused on modeling the likelihood, which can be evaluated 
by considering the probability of an accident, can be evaluated by 
considering the probability of an accident, the probability density to hit 
a location, the size of the impact area, and the probability of fatality. In 
contrast, only a few studies have focused on modeling the consequence, 
which can be evaluated by considering sheltering effect and population 
density. For a detailed review of the UAS risk assessment model, it would 
be helpful to refer to Washington et al. (2017). Recent studies have also 
focused on the development of UAS safety risk metrics that extend to 
individual risk and collective risk. Using relevant metrics, they sug-
gested that safety regulations for UAS operation need to be evaluated. A 
follow-up study elaborated UAS safety risk metrics, including individual 
risk, FN-curve, and collective ground risk (Blom et al., 2021). For more 
details, please refer to Blom et al. (2021). 

The aforementioned studies have used a variety of sub-models to 
develop UAS risk assessment models and risk metrics. The following 
sections describe how each element is modeled in the relevant literature. 

2.1. Probability of accident 

There are several possible causes of a UA falling to the ground, 
including malfunctions and collisions with other aircrafts. However, 
estimating the probability of an accident by considering numerous 
possible causes is difficult. A major reason for this difficulty is that there 

are few real cases of UAS operations. Consequently, most studies have 
assumed a malfunctioning UA, irrespective of the event type (Ford et al., 
2010; Petritoli et al., 2018; Stevenson et al., 2015). 

A precise estimate of the probability of an accident caused by a 
malfunction may have been provided by the UA manufacturer, but not 
to the public. Because of this situation, relevant studies have assumed 
the probability based on expert opinions. Ford and McEntee (2010) 
assumed that the probability of a catastrophic accident is 10− 5 per flight 
hour, and the probability of a hazardous accident is 10− 4 per flight hour. 
A catastrophic accident is an event in which the UA cannot be 
controlled, whereas a dangerous accident can be controlled to a certain 
extent. Stevenson et al. (2015) assumed different probabilities for ac-
cidents based on the areas where the UA flies. The probability was 
assumed 10− 5 per flight hour in suburban areas and 10− 4 per flight hour 
in urban areas. Unlike the aforementioned studies, Petritoli et al. (2018) 
estimated probability based on actual data, rather than expert opinions. 

2.2. Probability density to hit a location 

Numerous researchers have studied the probability density of a UA 
descent trajectory hitting a specific location (Burke et al., 2011; Guglieri 
et al., 2014; La Cour-Harbo, 2019; La Cour-Harbo, 2020; Lum and 
Waggoner, 2011). Several factors influence the trajectory, including the 
initial state at the time of failure (e.g., position, velocity, and altitude), 
type of UA (e.g., fixed-wing, multi-rotor), mode of descent path (e.g., 
ballistic descent, uncontrolled glide descent, parachute descent), and 
environmental factors (e.g., wind). 

Lum and Waggoner (2011) estimated the impact location based on 
the failure location and glide angle of the UA. The glide angle is the 
angle between the flight path and the horizontal plane as a flight de-
scends to land. Because the glide angle affects the drag force of the UA, 
they assumed that it would glide to the ground with a maximum lift-to- 
drag ratio. Burke et al. (2011) assumed that the UA descended vertically 
such that the impact location was at the same location as the UA failed. 
Guglieri et al. (2014) adopted an uncontrolled glide descent model. The 
glide angle was set to 45◦ for the fixed-wing UA and 90◦ for the multi-
rotor UA. La Cour-Harbo (2019) adopted a parachute descent model that 
assumes a vertical drop. Under the influence of wind, UA that has 
parachutes falls to the ground more slowly than UA that does not have 
one. La Cour-Harbo (2020) further considered that UA descended into a 
ballistic trajectory in a follow-up study. During ballistic descent, gravity 
and drag influence trajectory. 

2.3. Size of impact area 

Several factors determine the impact area, including the UA size and 
weight. Weibel and Hansman (2006) set the size of the impact area using 
the planform area of the UA. The area was set to 0.26ft2 for micro UA 
weighing 0.14 lb, and 14ft2 for mini UA weighing 9.6 lb. Clothier et al. 
(2007) estimated the size of the impact area based on the gliding area. 
The gliding area was determined using the equation of 
2
(
rp +rd

)
hp/tan(θ) + π(rp + rd)

2, where rp and hp are the average radius 
and height of a person, respectively, rd is the radius of the vehicle, and θ 
is the impact angle on the ground. Burke et al. (2011) set the size of the 
impact area using the weight and wingspan of UA. Melnyk et al. (2014) 
estimated the size of the impact area based on the UA weight. They 
adopted the equation of − 2475.666ft2 + 1.001w, where w is the weight 
of the UA in pounds. The size of the impact area depends on the type, 
size, and weight of UA. 

2.4. Probability of fatality 

When a UA collides with a person on the ground, the UA transfers 
kinetic energy (KE) to the person. Because KE is a function of many 
factors (e.g. materials of the UA, initial altitude, and angle of impact), it 
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is difficult to estimate. Accordingly, several studies selected KE based on 
a simple assumption (Burke et al., 2011; Clothier et al., 2007; Lum and 
Waggoner, 2011; Melnyk et al., 2014). Based on expert interviews, 
Clothier et al. (2007) assumed that the probability of a fatality was 100 
%. Melnyk et al. (2014) and Burke et al. (2011) assumed that the fatality 
rate was 100 % when the KE exceeded 80 J and 92 J, respectively, based 
on historical accident and literature data. Lum and Waggoner (2011) 
adopted the probability of fatality based on the type of UA. The prob-
ability of fatality was set to 100 % for Predator B weighing more than 
300 kg, and 50 % for ScanEagle weighing 20 kg. In contrast to the 
aforementioned studies, Koh et al. (2018) calculated the impact energy 
on a dummy head when a UA was dropped from various heights using 
extensive simulations and experiments. Impact energy was then con-
verted into the Abbreviated Injury Scale (AIS) to classify the injuries. 

2.5. Sheltering effect 

The sheltering effect determines the extent to which people in a 
given area are protected from collisions by the presence of trees or 
buildings. The sheltering effect has been considered in several studies 
(Blom et al., 2021; Melnyk et al., 2014; Stevenson et al., 2015; Weibel 
and Hansman, 2006). Weibel and Hansman (2006) assumed that the 
sheltering effect varies with the UA weight. The sheltering effect was set 
to 5 % for micro UA weighing 0.14 lb and 10 % for mini UA weighing 
9.6 lb. Melnyk et al. (2014) estimated the sheltering effect from not only 
the KE but also roof material absorption data. Residential buildings are 
considered capable of protecting persons when the KE values are less 
than 2,700 J, and commercial buildings are considered capable of pro-
tecting persons when the KE values are less than 13,500 J. Stevenson 
et al. (2015) assumed that the sheltering effect was dependent on the 
terrain. They selected a value of 75 % for urban areas and 25 % for 
wilderness terrain. Blom et al. (2021) assumed that 10 % of the people 
are unprotected in urban areas. However, few studies have reflected the 
complex distribution of buildings in urban environments using high- 
resolution building data. 

2.6. Population density 

Most studies used census data to determine population density 
(Burke et al., 2011; Clothier et al., 2007; Ford and McEntee, 2010; Lum 
and Waggoner, 2011). Clothier et al. (2007) used census data to calcu-
late population density; however, the spatial resolution was low because 
of the size of the census area. Using census data, Burke et al. (2011) 
accounted for the population density. Assuming the same population 
density values for each category, they classified the districts as 
unpopulated, sparsely populated, densely populated, or open-air as-
semblies. Ford and McEntee (2010) calculated population density based 
on building density assuming that building density correlated with 

population density. Lum and Waggoner (2011) assumed that the pop-
ulation density varies with regional characteristics. They set the value of 
population density as 5 per building in town areas, 20 per square kilo-
meter in the field, and 10 per square kilometer in the forest. Based on 
this assumption, census data and satellite imagery were used to estimate 
the population density. However, there are limitations associated with 
the use of census data because they have a low spatial resolution and 
limited temporal information. 

In summary, as presented in Table 1, relevant studies have assessed 
the risk that UAS operations pose to people by utilizing various impact 
area calculation methods and a fixed set of flight failure, fatality prob-
ability, and sheltering effect probabilities. In terms of population den-
sity, the number of people who at risk of UAS operations was derived 
from the residential population density. However, the residential pop-
ulation may not adequately account for people who are actually at risk 
of UAS operations during the daytime. There may be a minimum resi-
dential population in business districts while the number of people 
actually exposed to UAS operations can be maximized during the day-
time. Therefore, the spatiotemporal characteristics of population dis-
tribution cannot be fully explained. Considering that, populated regions 
can appear from time to time and place to place, it is necessary to utilize 
de facto population data to the fullest extent and establish a reasonable 
flight restriction boundary that minimizes UAS operational risks. To this 
end, this study attempts to estimate reasonable casualty risk values for 
UAS operations by considering spatiotemporal characteristics of popu-
lation distribution. 

2. Methodology 

The goal of risk assessment is to minimize the expected operational 
risk by implementing mitigation measures (Melnyk et al., 2014; Poissant 
et al., 2020; Stevenson et al., 2015). One mitigation measure to address 
the potential risks associated with UA flying over people is to issue 
temporary flight restrictions over high-risk areas, making the airspace 
inoperable for a certain period (Oh et al., 2020). In the context of UAS 
traffic management, such restricted airspace can be considered a dy-
namic obstacle, and the formation of such obstacles can adversely 
impact airspace operability (Cho and Yoon, 2018; Vascik et al., 2020). 

In this study, we define and measure the risk associated with UAS 
operations to people on the ground as population risk to establish a 
reasonable containment boundary for a restricted airspace. We then set a 
restricted airspace based on population risk with an acceptable level of 
safety, and the airspace was considered to be blocked by a dynamic 
obstacle. A dynamic obstacle represents the volume of stationary 
containment that is blocked over critical areas for a specific period of 
time. For example, the airspace above stadiums and densely populated 
areas may be temporarily restricted owing to population risk and, 
therefore, may be regarded as dynamic obstacles in the air. We use a 

Table 1 
Summary of relevant sub-models on the risk of UAS operations to people on the ground.  

Literature Probability of 
accident 

Probability density to hit a 
location 

Size of impact area Probability of fatality Sheltering effect Population density 

Weibel and Hansman 
(2006) 

constant failure rate vertical descent planform area KE-based probability type-based probability residential 
population 

Clothier et al. (2007) constant failure rate – gliding area 100 % – residential 
population 

Burke et al. (2011) constant failure rate – swept area KE-based probability KE-based probability residential 
population 

Lum and Waggoner 
(2011) 

constant failure rate uncontrolled glide descent gliding area mission-based 
probability 

– estimated 
population 

Melnyk et al. (2014) constant failure rate – weight-based 
equation 

KE-based probability material-based 
probability 

estimated 
population 

Primatesta et al. (2020) constant failure rate uncontrolled glide descent gliding area KE-based probability terrain-based 
probability 

residential 
population 

Blom et al. (2021) constant failure rate ballistic descent gliding area KE-based probability location-based 
probability 

residential 
population  
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hexagonal cell as the spatial unit of airspace, which enables us UA to 
flight without acute and right angle turns (Yousefi and Donohue, 2004). 

3.1. Data description 

This study utilized de facto population data obtained from the Seoul 
Metropolitan Government Big Data Campus (Seoul Open Data Plaza, 
2020). The data represent the number of people who are physically 
present in each neighborhood district of Seoul during each 1-hour in-
terval. In contrast to residential population data, de facto population 
data can account for the daytime populations, and therefore can be used 
to analyze the population density during each 1-hour interval. Fig. 1 
shows the difference between population density derived from resi-
dential and de facto population. We also used the height and shape in-
formation of buildings collected from the Ministry of Land, 
Infrastructure and Transport (MOLIT) of the Republic of Korea (National 
Spatial Data Infrastructure Portal, 2020). 

3.2. Generic metric of population risk 

As mentioned in section 2, the risk of UAS operations to people on the 
ground is estimated in terms of the probability of causing a casualty per 
flight hour, which consists of the likelihood of an event and its conse-
quences. Several efforts have been made to develop submodels to esti-
mate the risk of UAS operations. Such developed submodels are adopted 
in accordance with the study’s objectives. 

In terms of the likelihood, related studies take into account the 

probability of an accident, the probability density to hit a location, the 
size of impact area, and the probability of fatality. The probability of an 
accident was assumed to be a constant failure rate, and the probability of 
fatality was calculated using the KE. The impact area is determined 
using the probability density to hit a location and the size of impact area. 
It is important to note that a UA can fly in any direction, provided it does 
not assume the UA’s origin–destination. This allows it falls into any 
space, resulting in an approximately uniform distribution. Primatesta 
et al. (2020) assumed that the direction of UA was equally distributed. 
This approach results in a uniform distribution of the impact area. This 
enables us to estimate the likelihood before obtaining realistic UA traffic 
data. 

With regard to the consequence, the sheltering effect and population 
density can be considered. High-resolution building data can be used to 
estimate sheltering effect by calculating the percentage of an area 
covered by buildings at a specific location. De facto population data can 
be used to fully investigate the spatiotemporal characteristics of popu-
lation distribution, extending the population perspective by adding 
temporal parameters derived from the de facto population data. 

Based on the aforementioned discussion, we propose a generic metric 
of population risk to measure the risk of UAS operations posed to people 
on the ground. Population risk rt

i (d, h) is defined as “the probability to 
cause a casualty per flight hour at location i and time t with respect to a 
crash of UA weighing d falling from altitude h”. It satisfies: rt

i (d, h) =
nt

i(1 − Si)Pfatal(d, h)Pfailure where nt
i is the number of people at location i 

at time t, Si is the percentage of area sheltered by the building at location 
i, Pfatal(d, h) is the probability of fatality that a crash of UA weighing d 

Fig. 1. Distribution of population density in the Jung district. (a) Residential population density; (b) De facto population density (13:00–14:00).  

Fig. 2. Distribution of land use. (a) Jung district; (b) Mapo district.  

S. Oh and Y. Yoon                                                                                                                                                                                                                             



Transportation Research Interdisciplinary Perspectives 16 (2022) 100732

5

falling from altitude h is fatal for an unprotected average person, and 
Pfailure is the probability that UA loses control with an uncontrolled 
descent with a crash on the ground. This allows the proposed metric to 
evaluate risk by assuming simultaneous continuous flight rather than 
mission-specific individual flight. Consequently, it can be used effec-
tively for airspace management. 

3. Scenario analysis 

Population risk can be assessed based on various scenarios of UAS 
operations. Appropriate settings are required to create each scenario, 
such as the UA specifications, mission altitude, failure probability, and 
fatality probability. This section demonstrates a methodology for 
assessing population risk using hypothetical scenarios of UAS operations 
in Seoul. We selected the Jung and Mapo districts for our case studies. 
Jung district is a major commercial area with a densely built environ-
ment, and Mapo district is one of the major residential areas, as shown in 
Fig. 2. 

4.1. Scenario generation 

The hypothetical scenarios are based on a multicopter UA weighing 
1.1 kg, operating at a height of 20 m. A detailed description of the 
scenario settings is provided below. 

We assumed that there would occur 30.23 system failures per million 
flight hours over a location y, in accordance with Petritoli et al. (2018). 
Using actual data, they reported the system failure rate of the UAS op-
erations per flight hour. The probability of fatality was calculated using 
the KE. When the UA collides with a person on the ground, the KE is 
transferred from the UA to the person. Although the impact energy of a 
collision depends on many factors, several studies have attempted to 
estimate it. In this study, we adopted the findings of a notable study by 

Koh et al. (2018). Using UA-free drop modeling, they calculated the 
impact energy on a dummy head when falling from various heights. The 
energy was then converted into AIS scores to classify the injury levels. 
The fatality rate for a UA weighing 1.1 kg when falling from 20 m was 
8–10 %. As a measure of the sheltering effect, we calculated the per-
centage of sheltered area within location y using building data. Lastly, 
we used de facto population data to calculate the population density of 
location y at time t. 

Using these calculated risk values, we classified each district’s 
airspace to identify restricted airspaces. Several thresholds can be 
applied to that safety risk analysis. A threshold of 10− 6 fatal injuries on 
the ground per UA flight hour has been proposed by JARUS (2017). Kim 
(2020) adopted the target level of safety of 10− 7 casualties per flight 
hour. The target level of safety is based on the FAA’s threshold for 
hazardous events on manned aircraft. The safety level for UA per flight 
hour was set at 10− 8 casualties by Weibel and Hansman (2004). Among 
them, we adopted a threshold value of 10− 7 per flight hour. Each dis-
trict’s airspace is regarded as “restricted” when the risk exceeds a 
threshold value of 10− 7. This is one of the airworthiness certification 
standards for UA to prevent catastrophic accidents (King et al., 2005). 

4.2. Empirical results and discussions 

In this section, we present population risk maps and restricted 
airspace maps to explore the risk trends over time and geographical 
variations. When population risk exceeds an acceptable level, airspace is 
restricted. This study adopted an acceptable level of safety of 10− 7. 

Fig. 3 presents the empirical results of a case study conducted in Jung 
district, a commercial area. When the risk is derived from the residential 
population, high-risk areas are scattered across multiple areas (Fig. 3 
(a)). Consequently, the corresponding airspaces are restricted, occu-
pying 2.58 % of the region of interest, as shown in Fig. 3(d). High-risk 

Fig. 3. Distribution of population risk and restricted airspace in the Jung district. (a) Residential population-derived population risk map; (b) de facto population- 
derived population risk map (03:00–04:00); (c) de facto population-derived risk map (13:00–14:00); (d) residential population-derived restricted airspace map; (e) de 
facto population-derived restricted airspace map (03:00–04:00); (f) de facto population-derived restricted airspace map (13:00–14:00). 
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areas can vary by time of day if the risk is derived from the de facto 
population data. From 03:00 to 04:00, high-risk areas were scattered 
across several areas, resulting in restricted airspace (Fig. 3(b)). The 
restricted airspaces are similar to the results derived from the residential 
population data. This may be because most people spend their nights in 
residential areas. In contrast, from 13:00 to 14:00, noticeable high-risk 
areas and restricted airspaces were observed, as shown in Fig. 3(c) 
and Fig. 3(f). It is apparent that the restricted airspaces are clustered 
around the center of the map compared to the other restricted maps. 
This may be due to the characteristics of the region, which is a major 
commercial area. In commercial areas, the population density tends to 
be higher during the day than at night. Moreover, the restricted airspace 
accounted for 2.32 % from 03:00 to 04:00 and 36.07 % from 13:00 to 
14:00. In comparison with the results of restricted airspace based on 
residential population, the restricted airspace results from 03:00 to 
04:00 and 13:00 to 14:00 show a difference of − 0.26 % and 33.50 %, 
respectively. Over time, there is a change between restricting airspace 

based on the risk derived from the residential population and restricting 
airspace based on the risk derived from the de facto population. 

Fig. 4 presents the empirical results from a case study conducted in 
Mapo district, one of the residential areas. When the risk was derived 
from the residential population, high-risk areas were observed mainly in 
the residential areas (Fig. 4(a)). Accordingly, 14.15 % of the airspaces 
are restricted. High-risk areas were also observed in residential areas 
when the risk was derived from de facto population data from 03:00 to 
04:00 (Fig. 4(b)). During the night, people are mostly concentrated in 
residential areas. The spatial distribution of high-risk areas was similar 
regardless of time. Fig. 4(c) shows the high-risk areas observed in resi-
dential areas when the risk was derived from the de facto population 
from 13:00 to 14:00. Rather, there was a slight decrease in high-risk 
areas compared with the results from 03:00 to 04:00. This seems to be 
because people move to work during the day. When the risk was derived 
from the de facto population from 03:00 to 04:00 and 13:00 to 14:00, the 
restricted airspace accounted for 15.38 % and 12.33 %, respectively. 

Fig. 4. Distribution of population risk and restricted airspace in the Mapo district. (a) Residential population-derived population risk map; (b) de facto population- 
derived population risk map (03:00–04:00); (c) de facto population-derived risk map (13:00–14:00); (d) residential population-derived restricted airspace map; (e) de 
facto population-derived restricted airspace map (03:00–04:00); (f) de facto population-derived restricted airspace map (13:00–14:00). 

Fig. 5. Hourly restricted airspace profile using residential and de facto population data. (a) Jung district; (b) Mapo district.  
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Compared with the results of the restricted airspace based on the resi-
dential population, the results of the restricted airspace from 03:00 to 
04:00 and 13:00 to 14:00 show a difference of 1.23 % and − 1.81 %, 
respectively. Some people may move to commercial work areas. 

Fig. 5 shows the percentage of restricted airspace observed during 
the day in the Jung and Mapo districts. The percentage was calculated as 
the ratio of the restricted airspace to the entire airspace. 

In the Jung district, the restricted airspace ratio is highest from 14:00 
to 15:00 and lowest from 7:00 to 8:00. The highest percentage was 
36.61 %, whereas the lowest was 2.02 %. These results may be related to 
the characteristics of commercial districts, where the population density 
is higher during the daytime than at night. The restricted airspace ratio 
changed with the time of day. In the daytime, the percentage of 
restricted airspace tends to increase, whereas at night, it tends to 
decrease. The results suggest that it is necessary to consider the time of 
day when restricting airspace based on population risk. In comparison 
with restricting airspace based on the risk derived from the residential 
population, there was a significant difference during the daytime and a 
small difference during the nighttime. Restricting airspace based on the 
risk derived from the residential population may distort the effect of 
population density. 

In Mapo district, the restricted airspace ratio is the highest from 0:00 
to 1:00 (16.61 %) and the lowest from 10:00 to 11:00 (12.24 %). 
Compared to the results of Jung district, the difference over time is 
relatively small. There are changes in the restricted airspace with the 
time of day, but the ratio is higher at night than during the daytime. In 
the daytime, the percentage of restricted airspace tends to decrease, 
whereas at night, it tends to increase. Some people may move from 
residential areas to commercial areas during the daytime. Compared to 
restricting airspace based on the risk derived from the residential pop-
ulation, there is not much difference at any time of the day. The per-
centage of restricted airspace does not fluctuate abruptly but rather 
gradually over time. Similar values were observed at similar time in-
tervals. This suggests that a reasonable period can be helpful when 
issuing restrictions on airspace. 

4. Sensitivity analysis 

As mentioned in Section 2, population risk is estimated using infor-
mation gathered from existing datasets, published literature, and 
controlled experiments. In this approach, the input parameters are 
estimated with varying degrees of accuracy depending on the quality 
and availability of the data. However, there may be a lack of reliable 
empirical data for the input parameter values. In the presence of large 
degrees of uncertainty regarding input parameter estimates, inaccurate 
conclusions can be drawn. To interpret the importance of input pa-
rameters in determining outcome variability, it is critical to measure 
how variation propagates from the input parameters to the outcomes. As 

one of the methods to analyze how a variable’s input affects an outcome, 
sensitivity analysis provides information about the relative importance 
of each variable in determining outcome variability for combinations of 
multiple input parameters (Borgonovo and Plischke, 2016; Frey and 
Patil, 2002; Morris, 1991). Consequently, it provides insight into the 
input variables that can influence the outcomes and which input vari-
ables require precise estimation for accurate outcomes. 

In order to identify input variables that require precise estimation, 
we conducted sensitivity analysis using the Morris method and Risk 
Achievement Worth. The proposed metric is in the form of a product of 
factors. The Morris method was adopted to capture the impact of 
changes in input parameter values on outcomes. It measures the degree 
of risk change in relation to the change in input parameter value. On the 
other hand, the RAW, one of the reliability importance measures in 
probabilistic risk assessment, was used to evaluate how important a 
feature is to achieving the present risk. It measures the degree of change 
with and without input parameters in risk calculations. 

4.3. Morris method 

This study utilized the Morris method, a widely used technique for 
sensitivity analysis, which provides the effect of changes in input 
parameter values on outcomes (Morris, 1991). It can capture the 
outcome variation due to the movement of a sampled point to an adja-
cent point. To sample a set of points, the input parameter was discretized 
by transforming it into a p level interval variable. Based on the dis-
cretized input parameters, the magnitude of variation in the model 
output is calculated as follows until all possible input parameter values 
have been explored: (1) sample a set of initial values from a range of 
possible values for all inputs and calculate the corresponding output of 
the model; (2) change the value of one variable (all other features 
remain at their initial value) and calculate the changed output of the 
model compared to the first run; and (3) change the value of another 
variable (the previous feature remains at the changed value and all other 
features remain at their initial value) and calculate the changed output 
of the model compared to the second run. 

This variation due to the defined variation of one input parameter X 
is the elementary effect (EE): EEi = (Y(X + eiΔi) − Y(X))/Δi where ei is a 
vector of zeros, except for the i-th input parameter that equals ±1. To 
evaluate the elementary effects for many combinations n, a summary 
statistic on the simulated elementary effects can be calculated and 
interpreted as a sensitivity indicator. The mean of the elementary effects 
μi is defined as μi = 1/n

∑k
j=1EEj

i. This is interpreted as the average effect 
of the input variable i on the model output j variation. A high value of μi 
implies that input parameter i is an influential variable on the model 
output, and a low value of μi implies that input parameter i is a non- 
influential variable in the model output. The average absolute value of 
the elementary effects was defined as μ*

i = 1/n
∑k

j=1|EEj
i|. Compared 

with the mean μi, the absolute mean μ*
i is a more robust sensitivity in-

dicator that ensures robustness against non-monotonic models. Similar 
to μi, a high value of μ*

i implies that input parameter i is an influential 
variable on the model output, and a low value of μ*

i implies that input 
parameter i is a non-influential variable in the model output. 

4.4. Risk Achievement worth method 

To measure the importance of a feature in achieving the present risk, 
we adopted one of the PSA importance measures, Risk Achievement 
Worth (RAW). The RAW is defined as the increase in risk if the feature is 
assumed to fail at all times. Let R*

i be the increased risk level with feature 
i assumed to fail, and R0 is the present risk level. Thus on a ratio scale, 
RAW is Ai = R*

i /R0. RAW is calculated as follows: (1) sample a set of 
values within the possible values for all input variables and calculate the 
present risk level R0, (2) remove one feature (all other features 

Table 2 
Estimates of input parameters for sensitivity analysis.  

Parameter Data Source 

Probability of 
accident (%) 

10− 6 per flight hour (FH)1); 
10− 5 per FH2); 10− 4 per FH3); 
3.42 × 10− 4 per FH4); 30.23 ×

10− 6 per FH5) 

Clothier et al. (2007)2); Ford 
and McEntee (2010)3); Melnyk 
et al. (2014)4); Stevenson et al. 
(2015)1); Petritoli et al. 
(2018)5) 

Probability of 
fatality (%) 

0.016); 0.026,7); 0.056); 0.086); 
0.16); 0.56); 12,4,6) 

Clothier et al. (2007)2); Lum 
and Waggoner (2011)7);  
Melnyk et al. (2014)4); Koh 
et al. (2018)6) 

Sheltering 
effect (%) 

Building data National Spatial Data 
Infrastructure Portal (2020) 

Population 
density 
(ppl/m2) 

De facto population data 
Seoul Open Data Plaza (2020)  
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remaining at their values) and calculate the increased risk level with 
feature i assumed to fail (R*

i ), and (3) calculate RAW Ai = R*
i /R0. These 

steps are repeated until all RAW values of the input variables are ob-
tained. For many combinations n, a statistical measure for the evaluation 
of RAW can be calculated and interpreted as sensitivity: coefficient of 
variation CVi = σi/μi, where μi = (1/n)

∑k
j=1Aj

i and σi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1/n − 1)
∑k

j=1(A
j
i − μi)

2
√

. A high value of CVi implies that input 
parameter i is an important variable in the model output, and a low 
value of CVi implies that input parameter i is an unimportant variable in 
the model output. 

4.5. Results and discussions 

Using the Morris and RAW methods, sensitivity analyses were con-
ducted to identify the input variables that influenced population risk. 
Table 2 lists the input variables and parameter values used in this study. 
All possible parameter values were chosen within reasonable ranges 
based on data from existing datasets, published literature, and 
controlled experiments. 

The results of the sensitivity analysis, including the Morris method 
and RAW, are shown in Fig. 6. In the Morris method, a high μ*

i value 
indicates that the input variable has a greater effect on the model 
outcome. Population density and the sheltering effect had the greatest 
impact on population risk. The coefficient of variation (CVi) in the RAW 
results indicates the effect of the input variable on the outcome. A high 
value of CVi implies that input parameter i is an important variable in 
the model outcome. The probability of an accident and population 
density have the greatest impact on population risk. Both sensitivity 
analysis methods indicated that population density has a significant 
effect on the population risk associated with UAS operations. Overall, 
the ranking in Fig. 6, is consistent with findings from previous studies 
which identify UAS weight, population density, and vehicle failure rate 
as influential input variables for the risk of UAS operations (Melnyk 
et al., 2014). 

5. Conclusion 

In this study, we defined and measured a generic metric of popula-
tion risk that enables us to incorporate spatiotemporal changes in the 
number of people who are actually exposed to UAS operations. By uti-
lizing high-resolution de facto population data, we calculated the pop-
ulation risk of UAS operations at each time of day. Compared with the 
risk values derived from residential population data, our metric re-
flected spatiotemporal characteristics of population distribution when 
assessing the population risk associated with UAS operations. 

Moreover, we investigated changes in airspace operability 
throughout the day in terms of shape and volume by restricting the 
airspace areas in which the risk value exceeded the threshold. Based on 
the scenario analysis in Seoul, including the Jung and Mapo districts, we 
found that there is a difference in the restricted airspace ratios by the 
time of day. Especially during the daytime, restricted airspaces were 
clustered around the business areas. We also found a difference between 
restricting airspace based on residential population-derived risk and de 
facto population-derived risk. This is evidence of the importance of 
accurately estimating population density by time of day when assessing 
the population risk of UAS operations. Our sensitivity analysis also 
revealed the importance of accurately estimating the population density 
for multiple combinations of input parameter values. 

One limitation of our approach is that it does not consider the risk of 
falling due to collisions between UAs. In cases where UAs are operating 
simultaneously, restricting some airspace can increase the risk of colli-
sions between UAs since the remaining airspace will be occupied more. 
Future work may also consider the risk of falling due to collisions be-
tween UAs. Specifically, we can more reasonably define restricted 
airspace boundaries if we consider realistic traffic densities of UAS 
operations. 
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Fig. 6. The results of sensitivity analysis. (a) Morris method; (b) Risk achievement worth.  
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