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ABSTRACT This study proposes a unit module-based acceleration method for 2-D topology optimization.
For the purpose, the first-stage topology optimization is performed until the predefined iteration. After a
whole design domain is divided into a set of unit modules, information on the spatiotemporal characteristics
of intermediate designs and a filtering radius is used to separately predict a near-optimal design of each
unit module through a trained long short-term memory (convLSTM) network. Then, in the second-stage
topology optimization, a combined near-optimal design of a whole design domain is used as an initial design
to determine the optimized design in a more efficient way. To train a convLSTM network, a history of
intermediate designs is obtained under a randomly generated boundary condition of a unit module. The
filtering radius is also used as the training data to reflect the geometric features affected by a filtering process.
For four examples with different design domains and boundary conditions, the proposedmethod successfully
provides the accelerated convergence up to 6.09 with a negligible loss of accuracy less than 1.12% error.
These numerical results also demonstrate that the proposed unit module-based approach achieves a scalable
convergence acceleration at a design domain of an arbitrary size (or resolution).

INDEX TERMS Convergence acceleration, deep learning, finite element method, structural topology
optimization.

I. INTRODUCTION
Topology optimization [1] is a design method that determines
the optimal layout of a structure under a given boundary con-
dition. It offers a conceptual design by iteratively updating a
material distribution to extremize an objective function while
satisfying the constraint functions. Because each iteration
typically requires finite element (FE) analysis and design
sensitivity calculation, the computing cost of topology opti-
mization increases according to the number of finite elements
and/or iterations. Thus, it is significantly important to reduce
the computational cost of topology optimization for practical
use.

Numerous researchers have attempted to solve this com-
puting issue [2]. For instance, Jang and Kwak [3] proposed a
design space adjustment technique that enables a change of
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design domain during topology optimization. Kim et al. [4]
proposed an efficient convergence criterion to reduce the
computing cost by gradually excluding the design variables
that are determined to converge. Liao et al. [5] simultane-
ously implemented a multilevel mesh, an initial value-based
preconditioned conjugate gradient, and a local update strat-
egy to achieve faster convergence for large-scale problems.
Zheng et al. [6] reduced the degrees of freedom from the
FE equations, thereby accelerating the convergence. Another
representative approach for improving computational effi-
ciency is the multi-resolution topology optimization (MTOP)
proposed by Nguyen et al. [7], [8]. Yoo et al. [9] also
proposed an adaptive isosurface variable grouping (aIVG)
method to enhance the computational efficiency of the
MTOP.

Recent advances in machine learning (ML) techniques
have brought an increasing attention to their engineer-
ing applications [10]–[12], and [13]. Several authors have

149766
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4819-9341
https://orcid.org/0000-0003-2863-9650
https://orcid.org/0000-0002-5250-1208
https://orcid.org/0000-0001-7535-141X


Y. Joo et al.: Unit Module-Based Convergence Acceleration for Topology Optimization

applied ML techniques to reduce the computational cost of
topology optimization [14], [15]. Aulig and Olhofer [16]
developed a neuro-evolutionary topology optimization that
substitutes the analytic design sensitivity with an artificial
neural network. Liu et al. [17] applied an unsupervised
machine learning algorithm to the clustering procedure for
nonlinear multi-material topology optimization. Sosnovik
and Oseledets [18] implemented an autoencoder network
based on convolutional neural network (CNN) to predict a 0-1
binary image from an intermediate design during optimiza-
tion. This strategy outperformed the conventional thresh-
olding method where intermediate density values (neither
0 nor 1) are changed to 0 or 1 based on a predetermined
threshold value. Yu et al. [19] proposed a deep learning-based
method to predict a near-optimal topological design using a
CNN-based encoder-decoder network and generative adver-
sarial network. Instead of conducting finite element analysis,
Sasaki and Igarashi [20] applied a CNN-based model to
evaluate the performance of an intermediate design at each
iteration. Qian and Ye [21] utilized artificial neural networks
as surrogate models for sensitivity prediction.

As aforementioned, deep learning-based approaches typ-
ically uses a method of inferring a near-optimal solution to
reduce the number of iterations during topology optimiza-
tion. Therefore, they provide only an approximate solution
rather than an exact solution. To tackle this issue, Kallio-
ras et al. [22] recently applied an ML-based acceleration
method that infers a near-optimal design from the opti-
mization results obtained from previous iterations and then
resumes the topology optimization from the inferred design.
Although a local density variable is spatially influenced by
neighboring density variables through the filtering process,
only an iterative variation of each density variable was con-
sidered as time-series data. To fully investigate an iterative
change of intermediate designs in topology optimization,
both the spatial and time-series (i.e., spatiotemporal) char-
acteristics of intermediate designs should be considered in
a more rigorous way. For example, the convolutional long
short-term memory (convLSTM) is a representative network
to handle the spatiotemporal data [23]. This network incor-
porates the features of the CNN [24] and the long short-
term memory (LSTM) [25]. The CNN and LSTM parts
of the network capture the spatial and time-series char-
acteristics, respectively, of data. The convLSTM has been
actively used in the field where sequential image data are pro-
cessed. Pfeuffer and Dietmayer [26] utilized the convLSTM
for fast video segmentation required for self-driving cars
which need to process a large amount of video frame data.
Arbellel and Raviv [27] proposed microscopy cell segmen-
tation method using the convLSTM. They successfully cap-
tured complicated spatial and temporal behaviors from live
cell microscopy sequences. Because intermediate designs
during topology optimization can be regarded as sequential
image data like video frames (simply, the iteration number
can be considered as time), it is possible to implement the
convLSTM to investigate a design history during topology

FIGURE 1. Design domain and boundary conditions of a unit module
used in this study.

optimization and thereby predict a density distribution at a
near optimum.

To accelerate the overall convergence in topology opti-
mization, this study proposes a spatiotemporal deep learn-
ing model (convLSTM-based network) that can consider the
history of density distribution at each iteration as a type of
video frame data. This acceleration model was applied to
the conventional solid isotropic material with penalization
(SIMP) method, in which a 64 × 64 resolution unit module
was considered. Note that a design domain of any arbitrary
resolution can be divided into a set of unit modules. To train a
deep learning network, intermediate designs of a unit module
were obtained under randomly generated boundary condi-
tions. The radius of sensitivity filteringwas also considered as
the training data to cope with the geometric features of inter-
mediate designs affected by the filtering process. Then, the
proposed method was verified by performing an additional
200 cases of topology optimization which were not included
in the training data set. Finally, the proposed method was
applied to well-known 2-D topology optimization examples
to evaluate the scalability and mesh independence of the
proposed method.

II. METHOD
A. PROBLEM DEFINITION
As the first step towards topology optimization through
convergence acceleration, this study considered only 2-D
compliance minimization among various types of topology
optimization problems. To achieve a scalable convergence
acceleration at a domain with an arbitrary resolution (or the
number of finite elements), this study defines a unit module
of 64 × 64 finite elements. Figure 1 shows an example of
the optimized design of a unit module with its own boundary
condition. A fixed boundary condition is imposed on one of
the four sides, randomly selected. Two concentrated loads
of magnitude 1 are applied at random points on the bound-
ary except for the fixed side. The direction of these loads
was randomly chosen between 0–360◦. All random samples
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FIGURE 2. Conceptual diagram of (a) constructing training data from each optimization case (swindow = 3, nstart = 1, and nwindow = 2)
and (b) training a deep neural network.

were selected from a uniform distribution. Ideally, a random
concentrated load can be considered at every node on the

boundary of a unit module to include general designs that are
encountered in topology optimization. This is conceptually
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FIGURE 3. Proposed concept of accelerating topology optimization incorporated with deep learning for the case of swindow = 3,
nstart = 1, and nwindow = 1.

similar with the substructuring technique in the finite element
analysis [28].

In this study, the 88-lineMATLAB code [29] was modified
to handle randomly generated boundary conditions and to
obtain a history of design changes through the iterations.
The detailed optimization formulation and the corresponding
parameter setting are described in the reference [29]. The
radius of sensitivity filtering was randomly selected between
1.0–8.0 (normalized distance metric divided by an element
size) to reflect the effect of filtering radius on predicting a
near-optimal design in the deep neural network. The volume
fraction was also randomly selected between 0.1–0.5. The
penalization exponent was set to 3.0.

B. TRAINING DATA GENERATION
The proposed acceleration model predicts a near-optimal
design based on the spatiotemporal characteristics of inter-
mediate designs at an early stage of topology optimization.
In this study, the training data were generated by capturing
a series of density distributions at each iteration and the
corresponding optimized result. Figure 2 shows a conceptual
diagram of constructing the training data from the optimiza-
tion history. Under a randomly selected boundary condition,
an intermediate density distribution was determined at each
iteration. Then, a series of density distributions (red solid and
dotted boxes in Fig. 2(a)) were captured as an input data
set. A random filtering radius (rmin) was also provided as
an input data set. The optimized result at the final iteration
was used as the output dataset. To construct the training data,
three parameters were defined in this study: window size
(swindow), starting iteration number (nstart ), and number of
windows (nwindow). In each optimization case, the window
size determines the number of consecutive iterations that
are considered for training and prediction. For example, the

window size (swindow) was set to 3 in Fig. 2(a). The starting
iteration number (nstart ) is the lowest iteration number that is
captured for use as the training data. If the starting iteration
number is set to 5, intermediate designs until the fourth iter-
ation are not used for training and prediction. The number of
windows (nwindow) indicates the number of training datasets
generated in each optimization case. In Fig. 2(a), when the
nwindow is set to 2, the first three consecutive iterations (red
solid boxes) and the next three consecutive iterations (red
dotted boxes) are used to form the training data. As shown
in Fig. 2(b), each captured history, that can be expressed
as a tensor of swindow × 64 × 64, and the corresponding
filtering radius form the input dataset. The corresponding
optimized results becomes the output dataset. Common data
augmentation techniques were used to create more training
data from the existing dataset.

C. PROPOSED DEEP LEARNING-BASED FRAMEWORK OF
ACCELERATING TOPOLOGY OPTIMIZATION
Figure 3 depicts a procedure of accelerating the topology
optimization incorporated with deep learning. For a given
problem, topology optimization is first performed until the
predefined iteration (i.e., nstart+ nwindow− 1). After a whole
design domain is divided into a set of unit modules, the input
dataset obtained from topology optimization (i.e., iteration
history and filtering radius) is used to separately predict a
near-optimal design of each unit module through a trained
network. Then, a combined near-optimal design of a whole
design domain is used as a new initial design to perform
the second-stage topology optimization. In this study, the
final design of the proposed framework is considered as the
optimized design. This result will be compared with the solu-
tion of conventional topology optimization in the subsequent
sections.
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As already explained, the proposed model handles a
design domain of 64 × 64 finite elements (or resolution
in images) as a unit module. Note that any larger design
domain can be decomposed into a set of unit modules,
each of which can deliver its own near-optimal design. Such
domain decomposition enables the proposed method to be
scalable to any arbitrary domain size (or resolution). The
numbers of unit modules along the x and y-directions are
defined as nmodule,x and nmodule,y, respectively. Then, the
entire domain is divided into total nmodule,x× nmodule,y unit
modules. If a target design domain has nelx and nely finite
elements in the x- and y-directions, respectively, nmodule,x and
nmodule,y can be determined by rounding the values of 2 ×
(nelx / 64) – 1 and 2 × (nely / 64) – 1. Figure 4 shows
the concept of dividing a target design domain into a set
of unit modules and integrating them to predict a near-
optimal design. For example, a design domain of 128 ×
128 elements can be divided into nine unit modules (i.e.,
nmodule,x = nmodule, y = 3) with overlapped areas between
the modules. Because each module has its own design history
(i.e., spatiotemporal characteristics of intermediate designs),
the proposed acceleration model can predict a near-optimal
design for each module. Each near-optimal design is then
integrated into an entire design of 128× 128 elements. In the
overlapped area, a higher density value is selected between
two density values at the same position. Thus, the proposed
acceleration model is applicable for a design domain of any
arbitrary size.

D. DEEP NEURAL NETWORK FOR SPATIOTEMPORAL DATA
USING CONVOLUTIONAL LONG SHORT-TERM MEMORY
LAYERS
Using the information on iterative design changes, the pro-
posed model infers a direction of shape change, which is
conceptually similar to the design velocity in shape opti-
mization [30]. These iterative design changes can also be
regarded as video frames that change over time, as shown
in Fig. 5. To effectively handle such a specific type of spa-
tiotemporal data, this study implemented the convolutional
long short-term memory (convLSTM) [23]. The convLSTM
network, which is a representative recurrent neural network,
incorporates the features of the CNN [24] and LSTM [25]
and has been widely used for weather predictions [31]. In this
network, the CNN contributes to capturing the spatial features
of the time-series image data such as video frames, and the
LSTMcontributes to capturing the temporal variation of these
time-series image data. For example, the convLSTMcan infer
the futuremovement of awalking person by training the video
frame data shown in Fig. 5. The detailed architecture of the
convLSTM is suggested in [23]. In this study, considering the
iteration number as time, the convLSTM was used to predict
the density distribution at a future iteration.

Figure 6 shows the overall structure of the proposed
acceleration model which consists of the convLSTM
layers. As explained in Sections 2.2 and 2.3, this model
was designed to receive information on the total swindow

FIGURE 4. Concept of predicting a near-optimal design of an arbitrary
domain size, based on a unit module (swindow = 3, nmodule,x = 2,
nmodule,y = 2).

FIGURE 5. Comparison between video frame data [33] and iterative
design changes in topology optimization.

intermediate designs with a 64 × 64 resolution and a filter-
ing radius (rmin) as the input dataset and to return a single
near-optimal design with a 64 × 64 resolution as the output
dataset. A single value of rmin was expanded into the reso-
lution of the convolutional filter through a fully connected
layer. The overall structure of the model is based on the
U-Net [32], in which the input data converge into the latent
space (encoder) and then diverges to its original resolution
(decoder). Another prominent feature of the proposed model
is the direct connection between the layers with the same
image resolution. These directly connected layers contribute
to preserving the original geometric features and achieving
better prediction performances. The number of convolutional
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FIGURE 6. Architecture of the proposed deep neural network for
accelerating topology optimization.

FIGURE 7. Design domains with a randomly selected fixed boundary and
two-load conditions for model test: (a) a 64 × 64 domain with a single
unit module and (b) a 128 × 64 domain with three unit modules (red
solid, long-dashed, and short-dashed boxes).

filters (nfilter) was set to 32, and the recurrent activation
function for the convLSTM layer was set to ‘‘hard sigmoid.’’

E. MODEL TRAINING AND VALIDATION
A total of 5,000 optimization cases were used for model
training: 80% of them were used as the training data and
the remaining as the validation data. The proposed acceler-
ation model was trained by varying three hyperparameters
(nstart, nwindow, and swindow), which are related to training data
generation and the model structure. The number of trainable
parameters of the deep learning model is determined using
swindow. For example, when swindow is set to 5, approximately
3,700,000 trainable parameters are used. For model training,
the Adam optimizer [34] was used with a loss function of the
mean absolute error between the target and predicted design.
By performing a maximum of 500 epochs, the training pro-
cess stopped when the validation loss did not decrease for the
last 50 epochs.

For model test, topology optimization was performed with
the trained network for an additional 200 optimization cases,
as shown in Fig. 7. The conventional topology optimization
was performed with the 88-line MATLAB code [29], and
the proposed method was performed using the trained net-
work with the 88-line MATLAB code. The design domain
in Fig. 7(a) has the same resolution as that of a unit module,
whereas the design domain in Fig. 7(b) has a 128× 64 resolu-
tion to investigate the scalability of the proposedmodel. Fixed
boundary and two-load conditions were randomly generated,

FIGURE 8. Distribution of iteration number ratio and compliance ratio in
the test cases of (a) 64 × 64 resolution and (b) 128 × 64 resolution.

as described in Section 2.1. The filtering radius (rmin) was
randomly determined between 1.0–6.0.

Table 1 shows the results of the model training with var-
ious combinations of hyperparameters (nstart, nwindow, and
swindow). The test values for the hyperparameters were deter-
mined so that possible combinations of hyperparameters
could be examined in the range where the iteration number
before the acceleration model do not exceed 30. A total of
42 sets were determined by considering 3 cases for nwindow for
each of the 14 cases obtained by the combination of nstart and
swindow. To evaluate the performance of the proposed model,
the failure rate and iteration reduction ratio were defined in
this study. The failure rate was defined as the ratio of cases
in which a difference in compliance between the proposed
and conventional topology optimization is larger than 5%.
The iteration reduction ratio was defined as the ratio of the
total iteration number of conventional topology optimization
(norigin) to that of the proposed method (nacc). The higher the
iteration reduction ratio, the better the acceleration perfor-
mance. On average, the proposed method shows a 1.66 iter-
ation reduction ratio with a failure rate of 1.34%. To provide
a reliable result with a reasonably boosted efficiency, this
study selected the hyperparameters of Set 37 in Table 1 (i.e.,
nstart = 1, nwindow = 1, and swindow = 20). These hyperpa-
rameters will be used in the forthcoming numerical examples.

It is interesting to note that, with relatively small nstart
and swindow values, the proposed acceleration model can use
only a limited number of designs at an early stage to predict
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FIGURE 9. Representative design histories of conventional and proposed topology optimization of a 64 × 64 design domain.

a near-optimal design, thereby resulting in a higher failure
rate. However, (nstart+ swindow) > 15 leads to a failure rate
less than 1%. Note that (nstart+ swindow – 1) is the iteration
number at which the proposed acceleration model is applied.
Thus, the delayed application of the proposedmodel is advan-
tageous in enhancing the accuracy, while disadvantageous

in reducing the total number of iterations. This trend shows
a trade-off between the model accuracy and computational
efficiency.

Figure 8 shows the detailed distribution of the itera-
tion reduction ratio and the compliance ratio for additional
200 optimization cases with the selected hyperparameters:
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FIGURE 10. Representative design histories of conventional and proposed topology optimization of a 128 × 64 domain.

nstart = 1, nwindow = 1, and swindow = 20. Here, com-
pliance ratio was defined as the ratio of compliance of the
conventional topology optimization to that of the accelerated
topology optimization. In both design domains for model
test, the compliance ratios were well distributed (i.e., close
to 1.0).

Figures 9 and 10 show the representative design histories of
the conventional and proposed topology optimization among
the additional 200 optimization cases: four cases with a 64×
64 resolution (Fig. 9) and another four cases with 128 ×
64 resolution (Fig. 10). In the proposed topology optimiza-
tion, the first three designs show the last three input data from
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TABLE 1. Results of model test according to various hyper parameters.

the swindow, which were used to predict a near-optimal design,
and the next three designs show the optimization history after
re-performing the topology optimization from the predicted
near-optimal design. The last three designs show the final
design changes at convergence.

Particularly, Figures 9(a)–(c) show optimization cases
where blurry geometries (or gray zone) disappeared just
after the application of the proposed acceleration model.
In Fig. 9(d), even a clear local geometry disappeared by
predicting a near-optimal design. It should be noted that,
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FIGURE 11. Design domain with five unit modules (red solid and dashed
boxes) and optimization results for the MBB beam.

only after a limited number of iterations (20 iterations in
this study), the proposed model successfully predicted a
topologically optimal design, whereas conventional topology
optimization failed to achieve it. These results show that the
proposed acceleration model can capture a spatiotemporal
design change that may be less visible (or even invisible)
at the early stage of topology optimization. Such a drastic
change to a near-optimal design can boost the overall con-
vergence in topology optimization.

The overall features of the optimization results in a larger
design domain (Fig. 10) are similar to those shown in Fig. 9.
In the cases of Figs. 10(a), (b), and (d), a abrupt disappearance
of blurry geometries boosted the overall convergence of the
topology optimization. In Fig. 10(c), a clear local geometry
disappeared after the application of the proposed acceleration
model. Table 2 lists the iteration reduction ratios and compli-
ance errors for model test.

III. NUMERICAL EXAMPLES
In this section, the proposed acceleration model will be
applied to well-known examples such as the MBB beam and
Michell truss. Although the proposed model was trained only
under two-load and single side-fixed boundary condition ran-
domly generated in a unit module, each numerical example
has a design domain of a different size (no 64 × 64 res-
olution) under a different boundary condition (no two-load
and single side-fixed condition) to check the applicability
of the proposed method to general problems. Each example

FIGURE 12. Design domain with six unit modules (red solid and dashed
boxes) and optimization results for the cantilever example.

investigates a different combination of resolutions and filter-
ing radii: Case (a) with the original resolution and filtering
radius, Case (b) with the same resolution and a half rmin, and
Case (c) with a doubled resolution and the same radius. Note
that Cases (b) and (c) should have the same optimized results
to guarantee mesh independence. For the proposed method,
the hyperparameters of Set 37 in Table 1 were used for the
trained neural network. The detailed network structure is the
same as that suggested in Fig. 6. For each case, CPU time
required for the iterative computation was measured using a
PC with Intel Core i5 CPU.

A. MBB BEAM
Figure 11 shows the design domain and the corresponding
optimization results for the MBB beam example. This study
used the same conditions as those described in the 88-lines
topology optimization code [29]. Table 3 presents the number
of iterations, CPU time, and compliance values of the con-
ventional and proposed topology optimization. In Case (a),
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TABLE 2. Comparison of iterations and compliance values between the conventional and proposed topology optimization techniques shown in
Fig. 9 and 10.

TABLE 3. Comparison of iterations and compliance values between the conventional and proposed topology optimization for the MBB beam.

TABLE 4. Comparison of iterations and compliance values between the conventional and proposed topology optimization for the cantilever example.

the proposedmethod determined the optimized design, which
is identical to that of conventional topology optimization
in terms of topological layout and compliance (only 0.07%
compliance error). However, in Cases (b) and (c), the opti-
mized design was topologically different, albeit with a negli-
gible compliance error (maximum 1.12%). Furthermore, the
proposed method failed to achieve mesh independence in
some local areas. This is because the proposed acceleration
model causes a ‘‘bifurcation’’ in structural designs, which is
frequently observed during topology optimization. However,
the proposed method provided accelerated convergence up to
6.09 in Case (c). This means that only 16.4% of the original
computing time is required to determine the same design. It is

interesting to mention that a more significant convergence
acceleration was observed at a higher resolution.

B. CANTILEVER
Figure 12 shows the design domain and the optimization
results for the cantilever beam. Note that these design
domains of 128× 80 and 256× 160 cannot be constructed as
multiples of 64 (i.e., single side of a unit module). See Section
2.3 to check how to handle the overlapped areas between
the unit modules. Table 4 presents the number of iterations,
CPU time, and compliance values of the conventional and
proposed topology optimization. In all cases, the proposed
method successfully determined the optimized designs which
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FIGURE 13. Design domain with nine unit modules (red solid and dashed
boxes) and optimization results for Michell truss.

are identical to those of conventional topology optimization
in terms of topological layout and compliance (maximum
0.18% compliance error). Moreover, the proposed method
shows mesh independence in Cases (b) and (c), as would be
expected. The proposed method also provided an accelerated
convergence of up to 4.15. This means that only 24% of the
original computing time was required to determine the same
optimized design.

FIGURE 14. Design domain with nine unit modules (red solid and dashed
boxes) and optimization results for a multiple load case.

C. MICHELL TRUSS
Figure 13 shows the design domain and optimization results
for the Michell truss. Table 5 presents the number of iter-
ations, CPU time, and compliance values of the conven-
tional and proposed topology optimization. In similarity
with the cantilever example, the proposed method deter-
mined the same optimized designs which are topologi-
cally and structurally identical to those of conventional
topology optimization. The proposed method also shows
mesh independence in Cases (b) and (c). In this exam-
ple, the proposed method provided an accelerated con-
vergence up to 4.39, which means that only 23% of the
original computing time was required to obtain the optimized
design.
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TABLE 5. Comparison of iterations and compliance values between the conventional and proposed topology optimization techniques for Michell truss.

TABLE 6. Comparison of iterations and compliance values between the conventional and proposed topology optimization techniques for a multiple load
case.

D. MULTIPLE LOAD CASE
Figure 14 shows the design domain and optimization results
for the cantilever with multiple loads. This example is a
replication based on a multiple load case described in [29].
Table 6 presents the number of iterations, CPU time, and
compliance values of the conventional and proposed topology
optimization. In all cases, the proposed method determined
the same optimized designs, compared with those of conven-
tional topology optimization (maximum 0.20% compliance
error). The proposed method also shows mesh independence
in Cases (b) and (c). In this example, the proposed method
provided a relatively lower convergence acceleration: 1.16 in
Case (a), 1.56 in Case (b), and 2.48 in Case (c).

In summary, although the proposed accelerationmodel was
trained with a 64× 64 resolution unit module under two-load
and single side-fixed boundary condition, it could accelerate
the convergence of topology optimization at any arbitrary res-
olution under different boundary conditions. The acceleration
performance tended to increase at a higher resolution. The
proposed method shows mesh independence in most cases,
but cannot guarantee it in every case.

IV. CONCLUSION
In this study, a deep learning-based framework was pro-
posed to accelerate the 2-D structural topology optimiza-
tion for general problems. A convolutional LSTM network
was applied to the proposed acceleration model to effec-
tively investigate spatiotemporal characteristics in the design
history. The deep neural network was trained to predict a
near-optimal design from the intermediate density distribu-
tions at the early stage of topology optimization. To demon-
strate the performance and potential of the proposed model,

four numerical examples were investigated under various
boundary conditions in the design domains of various sizes.
Although the proposed model was trained only under two-
load and single side-fixed boundary condition in a unit
module, the proposed method successfully accelerated the
convergence of topology optimization while providing the
same (or nearly identical) optimized design in terms of
topological shape and compliance. However, the current
framework could not guarantee the mesh independence in all
optimization cases owing to limited training with two-load
and single side-fixed conditions. To overcome this issue,
it would be necessary to train a deep learning model by
considering a higher number of concentrated loads (ideally,
local loads at every node on the boundary) under a force
equilibrium condition. In further work, the proposed method
would be extended to cover more practical problems such as
nonlinear and/or 3D topology optimization cases.
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