2312

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

The Art, Science,

and Engineering

of Fuzzing: A Survey

Valentin J.M. Manes

, HyungSeok Han, Choongwoo Han, Sang Kil Cha™,
Manuel Egele, Member, IEEE, Edward J. Schwartz

, and Maverick Woo

Abstract—Among the many software testing techniques available today, fuzzing has remained highly popular due to its conceptual
simplicity, its low barrier to deployment, and its vast amount of empirical evidence in discovering real-world software vulnerabilities. At a
high level, fuzzing refers to a process of repeatedly running a program with generated inputs that may be syntactically or semantically
malformed. While researchers and practitioners alike have invested a large and diverse effort towards improving fuzzing in recent
years, this surge of work has also made it difficult to gain a comprehensive and coherent view of fuzzing. To help preserve and bring
coherence to the vast literature of fuzzing, this paper presents a unified, general-purpose model of fuzzing together with a taxonomy of
the current fuzzing literature. We methodically explore the design decisions at every stage of our model fuzzer by surveying the related
literature and innovations in the art, science, and engineering that make modern-day fuzzers effective.

Index Terms—Software security, automated software testing, fuzzing, fuzz testing

1 INTRODUCTION

EVER since its introduction in the early 1990s [157], fuzz-
ing has remained one of the most widely-deployed
techniques to test software correctness and reliability. At
a high level, fuzzing refers to a process of repeatedly
running a program with generated inputs that may be
syntactically or semantically malformed. In practice,
malicious attackers routinely deploy fuzzing in scenarios
such as exploit generation and penetration testing [24],
[113]; several teams in the 2016 DARPA Cyber Grand
Challenge (CGC) also employed fuzzing in their cyber
reasoning systems [11], [40], [96], [209]. Fueled by these
activities, defenders have started to use fuzzing in an
attempt to discover vulnerabilities before attackers do.
For example, prominent vendors such as Adobe [1],
Cisco [2], Google [7], [18], [64], and Microsoft [10], [41]
all employ fuzzing as part of their secure development
practices. More recently, security auditors [247] and
open-source developers [6] have also started to use
fuzzing to gauge the security of commodity software

e V.]. M. Manes is with the KAIST Cyber Security Research Center,
Daejeon, Korea. E-mail: valentin.manes@kaist.ac.kr.

e H.Hanand S. K. Cha are with KAIST, Daejeon, Korea.
E-mail: {hyungseok.han, sangkilc/@kaist.ac.kr.

e C. Han is with Naver Corp., Daejeon, Korea.
E-mail: cwhan.tunz@navercorp.com.

e M. Egele is with Boston University, Boston, MA 02215 USA.
E-mail: megele@bu.edu.

o E.J. Schwartz is with the Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213 USA. E-mail: edmcman@cmu.edu.

o M. Woo is with Carnegie Mellon University, Pittsburgh, PA 15213 USA.
E-mail: pooh@cmu.edu.

Manuscript received 7 Apr. 2019; revised 19 Sept. 2019; accepted 30 Sept.
2019. Date of publication 11 Oct. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Sang Kil Cha.)

Recommended for acceptance by W. Visser.

Digital Object Identifier no. 10.1109/TSE.2019.2946563

packages and provide some suitable forms of assurance
to end-users.

The fuzzing community is extremely vibrant. As of this
writing, GitHub alone hosts over a thousand public reposi-
tories related to fuzzing [89]. And as we will demonstrate,
the literature also contains a large number of fuzzers (see
Fig. 1 on p. 5) and an increasing number of fuzzing studies
appear at major security conferences (e.g., [40], [55], [86],
[183], [235], [249]). In addition, the blogosphere is filled with
many success stories of fuzzing, some of which also contain
what we consider to be gems that warrant a permanent
place in the literature.

Unfortunately, this surge of work in fuzzing by research-
ers and practitioners alike also bears a warning sign of
impeded progress. For example, the description of some fuz-
zers do not go much beyond their source code and manual
page. As such, it is easy to lose track of the design decisions
and potentially important tweaks in these fuzzers over time.
Furthermore, there has been an observable fragmentation in
the terminology used by various fuzzers. For example,
whereas AFL [241] uses the term “test case minimization” to
refer to a technique that reduces the size of a crashing input,
the same technique is called “test case reduction” in fun-
fuzz [194]. At the same time, while BFF [52] includes a simi-
lar-sounding technique called “crash minimization”, which
is a technique that seeks to minimize the number of bits that
differ between a crashing input and its original seed file and
is not related to reducing input size. We believe such frag-
mentation makes it difficult to discover and disseminate
fuzzing knowledge and this may severely hinder the prog-
ress in fuzzing research in the long run.

Due to the above reasons, we believe it is prime time to
consolidate and distill the large amount of progress in fuzz-
ing, many of which happened after the three trade-books on
the subject were published in 2007-2008 [82], [212], [214].

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2932-5568
https://orcid.org/0000-0002-2932-5568
https://orcid.org/0000-0002-2932-5568
https://orcid.org/0000-0002-2932-5568
https://orcid.org/0000-0002-2932-5568
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0002-6012-7228
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0002-0237-444X
https://orcid.org/0000-0002-0237-444X
https://orcid.org/0000-0002-0237-444X
https://orcid.org/0000-0002-0237-444X
https://orcid.org/0000-0002-0237-444X
mailto:valentin.manes@kaist.ac.kr
mailto:hyungseok.han@kaist.ac.kr
mailto:sangkilc@kaist.ac.kr
mailto:cwhan.tunz@navercorp.com
mailto:megele@bu.edu
mailto:edmcman@cmu.edu
mailto:pooh@cmu.edu

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

As we attempt to unify the field, we will start by
using Section 2 to present our fuzzing terminology and a
unified model of fuzzing. Staying true to the purpose of
this paper, our terminology is chosen to closely reflect
the current predominant usages, and our model fuzzer
(Algorithm 1, p. 3) is designed to suit a large number of
fuzzing tasks as classified in a taxonomy of the current
fuzzing literature (Fig. 1, p. 14). With this setup, we will
then explore every stage of our model fuzzer in Sections 3,
4,5, 6, and 7 and present a detailed overview of major fuz-
zers in Table 1 (p. 6). At each stage, we will survey the rele-
vant literature to explain the design choices, discuss
important trade-offs, and highlight many marvelous engi-
neering efforts that help make modern-day fuzzers effective
at their task.

2 SYSTEMIZATION, TAXONOMY, AND TEST
PROGRAMS

The term “fuzz” was originally coined by Miller et al. in
1990 to refer to a program that “generates a stream of ran-
dom characters to be consumed by a target program” [157,
p- 4l. Since then, the concept of fuzz as well as its action—
“fuzzing”—has appeared in a wide variety of contexts,
including dynamic symbolic execution [93], [236], gram-
mar-based test case generation [91], [109], [223], permission
testing [27], [83], behavioral testing [126], [182], [234], com-
plexity testing [140], [232], kernel testing [193], [204], [226],
representation dependence testing [125], function detec-
tion [237], robustness evaluation [233], exploit develop-
ment [115], GUI testing [206], signature generation [75],
penetration testing [84], [162], embedded devices [161],
and neural network testing [98], [176]. To systematize the
knowledge from the vast literature of fuzzing, let us
first present a terminology of fuzzing extracted from
modern uses.

2.1 Fuzzing & Fuzz Testing

Intuitively, fuzzing is the action of running a Program
Under Test (PUT) with “fuzz inputs”. Honoring Miller
et al., we consider a fuzz input to be an input that the PUT
may not be expecting, i.e., an input that the PUT may process
incorrectly and trigger a behavior that was unintended by
the developer of the PUT. To capture this idea, we define
the term fuzzing as follows.

Definition 1 (Fuzzing). Fuzzing is the execution of the PUT
using input(s) sampled from an input space (the “fuzz input
space”) that protrudes the expected input space of the PUT.

Three remarks are in order. First, although it may be
common to see the fuzz input space to contain the expected
input space, this is not necessary—it suffices for the former
to contain an input not in the latter. Second, in practice fuzz-
ing almost surely runs for many iterations; thus writing
“repeated executions” above would still be largely accurate.
Third, the sampling process is not necessarily randomized,
as we will see in Section 5.

Fuzz testing is a form of software testing technique
that utilizes fuzzing. Historically, fuzz testing has been
used primarily for finding security-related bugs; how-
ever, nowadays it is also widely used in many non-

2313

security applications. In addition, we also define fuzzer
and fuzz campaign, both of which are common terms in
fuzz testing;:

Definition 2 (Fuzz Testing). Fuzz testing is the use of fuzzing
to test if a PUT violates a correctness policy.

Definition 3 (Fuzzer). A fuzzer is a program that performs
fuzz testing on a PUT.

Definition 4 (Fuzz Campaign). A fuzz campaign is a specific
execution of a fuzzer on a PUT with a specific correctness
policy.

The goal of running a PUT through a fuzz campaign is
to find bugs [29] that violate the specified correctness
policy. For example, a correctness policy employed by early
fuzzers tested only whether a generated input—the test
case—crashed the PUT. However, fuzz testing can actually
be used to test any policy observable from an execution, i.e.,
EM-enforceable [190]. The specific mechanism that decides
whether an execution violates the policy is called the
bug oracle.

Definition 5 (Bug Oracle). A bug oracle is a program,
perhaps as part of a fuzzer, that determines whether a
given execution of the PUT violates a specific correctness
policy.

Although fuzz testing is focused on finding policy
violations, the techniques it is based on can be diverted
towards other usages. Indeed, fuzzing-inspired approaches
have been employed in a broad range of applications.
For instance, PerfFuzz [140] looks for inputs that reveal per-
formance problems.

We refer to the algorithm implemented by a fuzzer
simply as its “fuzz algorithm”. Almost all fuzz algorithms
depend on some parameters beyond (the path to) the
PUT. Each concrete setting of the parameters is a fuzz
configuration:

Definition 6 (Fuzz Configuration). A fuzz configuration of a
fuzz algorithm comprises the parameter value(s) that control(s)
the fuzz algorithm.

Our definition of a fuzz configuration is intended to be
broad. Note that the type of values in a fuzz configuration
depend on the type of the fuzz algorithm. For example, a
fuzz algorithm that sends streams of random bytes to the
PUT [157] has a simple configuration space {(PUT)}. On
the other hand, sophisticated fuzzers contain algorithms
that accept a set of configurations and evolve the set over
time—this includes adding and removing configurations.
For example, CERT BFF [52] varies both the mutation
ratio and the seed over the course of a campaign,
and thus its configuration space is of the form
{(PUT, s1,71), (PUT, s3,72),...}. A seed is a (commonly
well-structured) input to the PUT, used to generate test
cases by modifying it. Fuzzers typically maintain a collec-
tion of seeds known as the seed pool and some fuzzers
evolve the pool as the fuzz campaign progresses. Finally,
a fuzzer is able to store some data within each configura-
tion. For instance, coverage-guided fuzzers may store the
attained coverage in each configuration.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2314

2.2 Paper Selection Criteria

To achieve a well-defined scope, we have chosen to include
all publications on fuzzing in the most-recent proceedings
of 4 major security conferences and 3 major software engi-
neering conferences from January 2008 to February 2019.
Alphabetically, the former includes (i) ACM Conference on
Computer and Communications Security (CCS), (ii) IEEE
Symposium on Security and Privacy (S&P), (iii) Network
and Distributed System Security Symposium (NDSS), and
(iv) USENIX Security Symposium (USEC); and the latter
includes (i) ACM International Symposium on the Founda-
tions of Software Engineering (FSE), (ii) IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE), and (iii) International Conference on Software Engi-
neering (ICSE). For writings that appear in other venues or
mediums, we include them based on our own judgment on
their relevance.

As mentioned in Section 2.1, fuzz testing has been mainly
focused on finding security-related bugs. In theory, focusing
on security bugs does not imply a difference in the testing
process beyond the selection of a bug oracle. The techniques
used often vary in practice, however. When designing a test-
ing tool, access to source code and some knowledge about
the PUT are often assumed. Such assumptions often drive
the development of testing tools to have different character-
istics compared to those of fuzzers, which are more likely to
be employed by parties other than the developer of the PUT.
Nevertheless, the two fields are still closely related to one
another. Therefore, when we are unsure whether to classify a
publication as relating to “fuzz testing” and include it in this
survey, we follow a simple rule of thumb: we include the
publication if the word fuzz appears in it.

Algorithm 1. Fuzz Testing

Input: C, tjimi

Output: B // afinite set of bugs
1B« g
2 C « Preprocess (C);
3 while teapsed < tiimit A Contme (C) do
4 conf « Scuepuie (C, telapsed, limit)
5 tcs « IneurGen (conf)

// Opyg 1s embedded in a fuzzer

6 IB/, execinfos « IneutEvaL (conf, tcs, Opy);
7 C « ConeUpnate (C, conf, execinfos)
8 B—BUB
9 return B

2.3 Fuzz Testing Algorithm

In Algorithm 1, we present a generic algorithm for fuzz test-
ing, which we imagine to have been implemented in a model
fuzzer. It is general enough to accommodate existing fuzzing
techniques, including black-, grey-, and white-box fuzzing
as defined in Section 2.4. Algorithm 1 takes a set of fuzz con-
figurations C and a timeout ¢j;¢ as input, and outputs a set
of discovered bugs B. It consists of two parts. The first part is
the Preprocess function, which is executed at the beginning of
a fuzz campaign. The second part is a series of five functions
inside a loop: ScuepuLk, InpuTGEn, InputEvaL, ConrUepate, and
Conrmvue. Each execution of this loop is called a fuzz iteration
and each time InputEvar executes the PUT on a test case is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

called a fuzz run. Note that some fuzzers do not implement
all five functions. For example, to model Radamsa [106],
which never updates the set of fuzz configurations, CoxrUppate
always returns the current set of configurations unchanged.

Preprocess (C) — C
A user supplies Preprocess with a set of fuzz configura-
tions as input, and it returns a potentially-modified set
of fuzz configurations. Depending on the fuzz algo-
rithm, Prerrocess may perform a variety of actions such
as inserting instrumentation code to PUTSs, or measur-
ing the execution speed of seed files. See Section 3.

ScEDULE (C, telapsed, timit) — conf
Scuepuie takes in the current set of fuzz configurations,
the current time tjapseq, and a timeout ;i as input, and
selects a fuzz configuration to be used for the current
fuzz iteration. See Section 4.

InpurGey (conf) — tcs
IneurGen takes a fuzz configuration as input and returns
a set of concrete test cases tcs as output. When gener-
ating test cases, InpurGen uses specific parameter(s) in
conf. Some fuzzers use a seed in conf for generating
test cases, while others use a model or grammar as a
parameter. See Section 5.

InrutEvaL (conf, tes, Opye) — B, execinfos
IneutEvaL takes a fuzz configuration conf, a set of test
cases tcs, and a bug oracle Oy, as input. It executes
the PUT on tcs and checks if the executions violate the
correctness policy using the bug oracle Oy,,,. It then out-
puts the set of bugs found B’ and information about
each of the fuzz runs execinfos, which may be used
to update the fuzz configurations. We assume Oy, is
embedded in our model fuzzer. See Section 6.

ConrUppate (C, conf, execinfos) — C
ConeUppate takes a set of fuzz configurations C, the cur-
rent configuration conf, and the information about
each of the fuzz runs execinfos, as input. It may
update the set of fuzz configurations C. For example,
many grey-box fuzzers reduce the number of fuzz con-
figurations in C based on execinfos. See Section 7.

Contvue (C) — {True,False}
Conrmvue takes a set of fuzz configurations C as input and
outputs a boolean indicating whether a new fuzz itera-
tion should occur. This function is useful to model
white-box fuzzers that can terminate when there are no
more paths to discover.

2.4 Taxonomy of Fuzzers

For this paper, we have categorized fuzzers into three
groups based on the granularity of semantics a fuzzer
observes in each fuzz run. These three groups are called
black-, grey-, and white-box fuzzers, which we define
below. Note that this classification is different from tradi-
tional software testing, where there are only black- and
white-box testing [164]. As we will discuss in Section 2.4.3,
grey-box fuzzing is a variant of white-box fuzzing that can
obtain only partial information from each fuzz run.

2.4.1 Black-Box Fuzzer

The term “black-box” is commonly used in software test-
ing [35], [164] and fuzzing to denote techniques that do not

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

see the internals of the PUT—these techniques can observe
only the input/output behavior of the PUT, treating it as a
black-box. In software testing, black-box testing is also
called IO-driven or data-driven testing [164]. Most tradi-
tional fuzzers [8], [16], [52], [53], [107] are in this category.
Some modern fuzzers, e.g., funfuzz [194] and Peach [79],
also take the structural information about inputs into
account to generate more meaningful test cases while main-
taining the characteristic of not inspecting the PUT. A simi-
lar intuition is used in adaptive random testing [60].

2.4.2 White-Box Fuzzer

At the other extreme of the spectrum, white-box fuzzing [93]
generates test cases by analyzing the internals of the PUT and
the information gathered when executing the PUT. Thus,
white-box fuzzers are able to explore the state space of the
PUT systematically. The term white-box fuzzing was intro-
duced by Godefroid [90] in 2007 and refers to dynamic sym-
bolic execution (DSE), which is a variant of symbolic
execution [42], [112], [130]. In DSE, symbolic and concrete exe-
cution operate concurrently, where concrete program states
are used to simplify symbolic constraints, e.g., concretizing
system calls. DSE is thus often referred to as concolic testing (a
portmanteau of “concrete” and “symbolic”) [92], [198]. In
addition, white-box fuzzing has also been used to describe
fuzzers that employ taint analysis [87]. The overhead of
white-box fuzzing is typically much higher than that of black-
box fuzzing. This is partly because DSE implementations [28],
[49], [93] often employ dynamic instrumentation and SMT
solving [160]. While DSE is an active research area [41], [91],
[93], [116], [179], works in DSE generally do not claim to be
about white-box fuzzing and so we did not include many
such works. This paper does not provide a comprehensive
survey on DSE and we refer the reader to recent survey
papers [20], [192] for more information on this topic.

2.4.3 Grey-Box Fuzzer

Some fuzzers [71], [81], [214] take a middle ground approach
dubbed grey-box fuzzing. In general, grey-box fuzzers can
obtain some information internal to the PUT and/ or its execu-
tions. Unlike white-box fuzzers, grey-box fuzzers do not
reason about the full semantics of the PUT; instead, they
may perform lightweight static analysis on the PUT and/or
gather dynamic information about its executions, such as
code coverage. Grey-box fuzzers rely on approximated,
imperfect information in order to gain speed and be able to
test more inputs. Although there usually is some consensus
among security experts, the distinction among black-, grey-
and white-box fuzzing is not always clear. Black-box fuzzers
may collect some information about fuzz runs, and white-
box fuzzers often use some approximations. When classify-
ing the fuzzers in this survey, particularly in Table 1, we
often had to rely on our own judgement.

An early example of grey-box fuzzer is EFS [71], which
uses code coverage gathered from each fuzz run to generate
test cases with an evolutionary algorithm. Randoop [172]
also uses a similar approach, though it was not designed
specifically for finding vulnerabilities. Modern fuzzers
such as AFL [241] and VUzzer [183] are exemplars in this
category.

2315

2.5 Fuzzer Genealogy and Overview

Fig. 1 (p. 5) presents our categorization of existing fuzzers
in chronological order. Starting from the seminal work
by Miller et al. [157], we have manually selected popular
fuzzers that either appeared in a major conference or
obtained more than 100 stars on GitHub and show their
relationships as a graph. Black-box fuzzers are in the left
half of the figure, and grey- and white-box fuzzers are
in the right half. Furthermore, fuzzers are subdivided
depending on the type of input the PUT uses: file, net-
work, Ul, web, kernel I/0O, or threads (in the case of con-
currency fuzzers).

Table 1 (p. 6) presents a detailed summary of the techni-
ques used in the most notable fuzzers in Fig. 1. We had to
omit some of fuzzers in Fig. 1 due to space constraints. Each
fuzzer is summarized based on its implementation of the
five functions of our model fuzzer, and a miscellaneous sec-
tion that provides other details on the fuzzer. Here we will
explain the properties described by each column of the
table. Column 1 indicates whether a fuzzer is black- (@),
white- (O), or grey-box (©). Two circles appear when a fuz-
zer has two phases which use different kinds of feedback
gathering. For example, SymFuzz [55] runs a white-box
analysis as a preprocessing step in order to optimize the
performance of a subsequent black-box campaign (@+0O),
whereas hybrid fuzzers such as Driller [209] alternate
between white- and grey-box fuzzing (©+O). Column 2
shows whether the source code of a fuzzer is publicly avail-
able. Column 3 denotes whether a fuzzer needs the source
code of the PUT to operate. Column 4 indicates whether a
fuzzer supports in-memory fuzzing (see Section 3.1.3). Col-
umn 5 is about whether a fuzzer can infer models
(see Section 5.1.2). Column 6 shows whether a fuzzer per-
forms either static or dynamic analysis in Preprocess. Column
7 indicates if a fuzzer supports handling multiple seeds,
and perform scheduling. Column 8 specifies if a fuzzer per-
forms input mutation to generate test cases. We use © to
indicate fuzzers that guide input mutation based on the exe-
cution feedback. Column 9 is about whether a fuzzer gener-
ates test cases based on a model. Column 10 shows whether
a fuzzer performs a symbolic analysis to generate test cases.
Column 11 identifies fuzzers that leverage taint analysis to
guide their test case generation. Columns 12 and 13 show
whether a fuzzer performs crash triage using either stack
hashing or code coverage. Column 14 indicates if a fuzzer
evolves the seed pool during ConrUppate, such as adding new
seeds to the pool (see Section 7.1). Column 15 is about
whether a fuzzer learns an input model in an online fashion.
Finally, column 16 shows which fuzzers remove seeds from
the seed pool (see Section 7.2).

3 PREPROCESS

Some fuzzers have a first step to prepare the main loop of
Algorithm 1 by modifying the initial set of fuzz configura-
tions before the first fuzz iteration. Such preprocessing is
commonly used to instrument the PUT, to weed out poten-
tially-redundant configurations (i.e., “seed selection” [184]),
to trim seeds, and to generate driver applications. As will be
detailed in Section 5.1.1 (p. 9), Preprocess can also be used to
prepare a model for future input generation (InpurGen).

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2316

1990

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

- Miller et al. & [157]

2001

PROTOS &[124]

SPIKE [16] Sharefuzz [17]
22uf [107] Peach [79]
2005
SPIKEfile [211]
FileFuzz [210] Autodafé & [224]
2006
SNOOZE & [32] fsfuzzer [148] Sidewinder [81]
2007
KiF & [15] Sulley [19] CalFuzzer & [196] —(EFs@ 7] (SAGE & [90], [91], [93]]
2008 —
LZFuzz & [43]
Fuzzbox [216] ‘AtomFuzzer & [175] KLEE & [49]
jsfunfuzz [194]
DOMfuzz [194] RaceFuzzer & [197]
2009 ref_fuzz [244]
™ = jFuzz @ [116]
WiniFuzz [156] DeadlockFuzzer & [120]
2010 N SmartFuzz & [159]
BFF [52] FLAX & [189] AssetFuzzer & [135]) —{(honggfuzz [213]}+ (BitFuzz 47]]
TaintScope & [229]
2011
cross_fuzz [242] Radamsa [106] FuzzBALL & [30], [152), [51
kb-Anonymity & [46]
2012
hz’;?:‘[g;ﬂﬂ [109] Doupé et al. & [76]
MagicFuzzer & [50] | (Mamba & [121]}«— Mahmood et al. & [151]
Householder & [111], [110] Web
BlendFuzz & [239] ity [178]
2013 FOE [53]
AFL [241]
orangfuzz [195]
2014
[KameleonFuzz & [77]) (Rebert et al. & [184] |—
Melkor [99] Tavor [250] Nightmare [133]
D tal. & [72], [73
M ewey et al. & [72], [73]
L—{Choronzon & [202]] (LibFuzzer 9] GRT & [150]
MutaG 127]
:stj:;;e; 2[(1) 3]8] (SymFuzz & [55] }+—— (perf_fuzzer & [231]] (Dharma [4] go-fuzz [225] syakallor 226 utaGen & [127]
Ruiter et al. & [187] CLsmith & [145] {4 (Narada @ [188])
2016
QuickFuzz 8 [97] }+—! Triforce [168] Concurency
[TLS-Attacker & [203] | ——{IFuzzer & [223]] (KernelFuzzer [163]) (Hodor [167]) {GRR [220] Driller & [209]
NeuralFuzzer [65] AFLFast & [40]
classfuzz & [62] MoWF & [179]
2017
Skyfire & [227]
Digtool & [174] GLADE & [33]
DELTA & [139] DIFUZE & [67] VUzzer 8 [183] F—{kAFL & [191]) (CAB-Fuzz @ [129])
IMF & [103]
AFLGo & [39] Kernel
2018
loTFuzzer & [57] Hawkeye & [56] TR @077]
Angora & [59]
CollAFL & [86] Chopper & [219]
FairFuzz & [141]
2019
- REDQUEEN & [26 QSYM & [240
L+(CodeAlchemist & [104] NADTILGS 53[2[5]] PeriScope & [204] D‘gFuZZE’E[/ PA 4]9]
Network File Kernel Concurrency File Kernel
Black-box Grey-box White-box

Fig. 1. Genealogy tracing significant fuzzers’ lineage back to Miller et al.’s seminal work. Each node in the same row represents a set of fuzzers
appeared in the same year. A solid arrow from X to Y indicates that Y cites, references, or otherwise uses techniques from X. & denotes that a

paper describing the work was published.

3.1 Instrumentation
Unlike black-box fuzzers, both grey- and white-box
fuzzers can instrument the PUT to gather execution feed-
back as InpurEvaL performs fuzz runs (see Section 6), or to
fuzz the memory contents at runtime. The amount of col-
lected information defines the color of a fuzzer (i.e., black-,
white-, or grey-box). Although there are other ways of
acquiring information about the internals of the PUT (e.g.,
processor traces or system call usage [95], [213]), instru-
mentation is often the method that collects the most
valuable feedback.

Program instrumentation can be either static or
dynamic—the former happens before the PUT runs

(Preprocess), whereas the latter happens while the PUT is
running (IneurEvar). For the convenience of the reader, here
we will present both static and dynamic instrumentation
together.

Static instrumentation is often performed at compile time
on either source code or intermediate code. Since it occurs
before runtime, it generally imposes less runtime overhead
than dynamic instrumentation. If the PUT relies on libraries,
these have to be separately instrumented, commonly by
recompiling them with the same instrumentation. Beyond
source-based instrumentation, researchers have also devel-
oped binary-level static instrumentation (i.e., binary rewrit-
ing) tools [80], [136], [248].

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY 2317

TABLE 1
Overview of fuzzers sorted by their instrumentation granularity and their name. @, ©, and O represent black-,
grey-, and white-box, respectively

Misc. PREPROCESS SCHEDULE INPUTGEN INPUTEVAL CONFUPDATE

1. Feedback Gathering Granularity
2. Open-Sourced

3. Source Code Required

4. Support In-memory Fuzzing

5. Model Construction

6. Program Analysis

7. Seed Scheduling

8. Mutation

9. Model-based

10. Constraint-based

11. Taint Analysis

12. Crash Triage: Stack Hash

13. Crash Triage: Coverage

14. Evolutionary Seed Pool Update
15. Model Update

16. Seed Pool Culling

Fuzzer

BFF [52]
CodeAlchemist [104]
CLsmith [145]
DELTA [139]
DIFUZE [67]
Digtool [174]

Doupé et al. [76]
FOE [53]

GLADE [33]

IMF [103]

jsfunfuzz [194]
LangFuzz [109]
Miller et al. [157]
Peach [79]

PULSAR [88]
Radamsa [106]
Ruiter et al. [187]
TLS-Attacker [203]
zuff [107]

FLAX [189] ®+0O v
IoTFuzzer [57] @+0O [}
SymFuzz [55] ®+0O
AFL [241]

AFLFast [40]

AFLGo [39]
AssetFuzzer [135]
AtomFuzzer [175]
CalFuzzer [196]
classfuzz [62]
CollAFL [86]
DeadlockFuzzer [120]
FairFuzz [141]
go-fuzz [225]
Hawkeye [56]
honggfuzz [213]
kAFL [191]
LibFuzzer [9]
MagicFuzzer [50]
Nautilus [25]
RaceFuzzer [197]
RedQueen [26]
Steelix [143]
Syzkaller [226]
Angora [59]
Cyberdyne [95] +0O
DigFuzz [249] +0O
Driller [209] +0O
QSYM [240] d+O
T-Fuzz [177] +0O
VUzzer [183] +0O
BitFuzz [47]
BuzzFuzz [87]
CAB-Fuzz [129]
Chopper [219]
Dewey et al. [73]
Dowser [101]
GRT [150]

KLEE [49]
MOoWF [179]
MutaGen [127]
Narada [188]
SAGE [93]
TaintScope [229]

<
<

ENEEENENEN
=

oo
SN

®© o o o000 o

SN N N N N NENENEN

000000000000 000000
N NN

SNENEN
e0000000 o
<

SENENENENEN
ENENEN
S
SNENEN
SNENEN
ENENEN

AENENEN

Q\
AN

SN NN NN
\
N

S ENEEEN

SENENEN
<\

—+
-+

gooooooooooooooooooooo
SN
00000c0cC ¢ 000ceC o0
SRR
SECNENCNEENN

SN N N N N N N N NN

AN
<
SN NN
SN N N N N N VNN
A N N N N N N N N NENENEREN

RN NN
=
NN N N S IENENENENEN
EEN N
o

<

O00000OO0OO0O0O

v [' v

The corresponding fuzzer is derived from AFL, and it changed this part of the fuzzing algorithm.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2318

Despite having a higher overhead than static instru-
mentation, dynamic instrumentation has the advantage of
easily instrumenting dynamically-linked libraries because it
is performed at runtime. There are several well-known
dynamic instrumentation tools such as Dynlnst [180],
DynamoRIO [45], Pin [149], Valgrind [169], and QEMU [36].

A given fuzzer can support more than one type
of instrumentation. For example, AFL supports static
instrumentation at the source code level with a modified
compiler, or dynamic instrumentation at the binary level
with the help of QEMU [36]. When using dynamic
instrumentation, AFL can instrument either (1) execut-
able code in the PUT itself, which is the default setting,
or (2) executable code in the PUT and any external
libraries (with the AFL_INST_LIBS option). The second
option—instrumenting all encountered code—can report
coverage information for code in external libraries, and
thus provides a more complete picture of coverage.
However, this also means AFL will fuzz additional paths
in external library functions and some users may prefer
avoiding this option.

3.1.1 Execution Feedback

Grey-box fuzzers typically take execution feedback as input
to evolve test cases. LibFuzzer [9], AFL, and its descendants
compute branch coverage by instrumenting every branch
instruction in the PUT. However, they store the branch cov-
erage information in a compact bit vector, which can
become inaccurate due to path collisions. CollAFL [86]
recently addressed this shortcoming by introducing a new
path-sensitive hash function. Meanwhile, Syzkaller [226]
uses node coverage as their execution feedback, whereas
honggfuzz [213] allows users to choose which execution
feedback to use.

3.1.2 Thread Scheduling

Race condition bugs can be difficult to trigger as they rely
on non-deterministic behaviors, which may occur very
infrequently. However, instrumentation can also be used to
trigger different non-deterministic program behaviors by
explicitly controlling how threads are scheduled [50], [120],
[135], [175], [188], [196], [197]. Existing work has shown that
even randomly scheduling threads can be effective at find-
ing race condition bugs [196].

3.1.3 In-Memory Fuzzing

When testing a large program, it is sometimes desirable to
fuzz only a portion of the PUT without re-spawning a process
for each fuzz iteration in order to minimize execution over-
head. For example, complex (e.g., GUI) applications often
require several seconds of processing before they accept
input. One approach to fuzzing such programs is to take a
snapshot of the PUT after the GUI is initialized. To fuzz a
new test case, one can then restore the memory snapshot
before writing the new test case directly into memory and
executing it. The same intuition applies to fuzzing network
applications that involve heavy interaction between client
and server. This technique is called in-memory fuzz-
ing [108]. As an example, GRR [95], [220] creates a snapshot

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

before loading any input bytes. This way, it can skip over
unnecessary startup code. AFL also employs a fork server
to avoid some of the process startup costs. Although it has
the same motivation as in-memory fuzzing, a fork server
involves forking off a new process for every fuzz iteration
(see Section 6).

Some fuzzers [9], [241] perform in-memory fuzzing on a
function without restoring the state of the PUT after each iter-
ation. We call such a technique in-memory API fuzzing. For
example, AFL has an option called persistent mode [243],
which repeatedly performs in-memory API fuzzing in a loop
without restarting the process. In this case, AFL ignores
potential side-effects from the function being called multiple
times in the same execution.

Although efficient, in-memory API fuzzing suffers from
unsound fuzzing results: bugs (or crashes) found with in-
memory fuzzing may not be reproducible, because (1) it is
not always feasible to construct a valid calling context for
the target function, and (2) there can be side-effects that are
not captured across multiple function calls. Notice the
soundness of in-memory API fuzzing mainly depends on a
good entry point function, and finding such a function can
be a challenging task.

3.2 Seed Selection

Recall from Section 2 that fuzzers receive a set of fuzz con-
figurations controlling the behavior of the fuzzing algo-
rithm. However, some parameters of fuzz configurations,
such as seeds for mutation-based fuzzers, can have large or
even infinite domains. For example, suppose an analyst
fuzzes an MP3 player that accepts MP3 files as input. Since
there are an unbounded number of valid MP3 files, which
seed(s) should we use for fuzzing? This problem of reduc-
ing the size of the initial seed pool is known as the seed selec-
tion problem [184].

Several approaches and tools exist to address this prob-
lem [79], [184]. A common approach, which is known as
minset, finds a minimal set of seeds that maximizes a cover-
age metric such as node coverage. For example, suppose the
current set of configurations C consists of two seeds s;
and s, that cover the following addresses of the PUT:
{s1 — {10,20},s, — {20,30}}. If we have a third seed
s3 — {10,20,30} that executes roughly as fast as s; and s,
one could argue it makes sense to fuzz s; instead of s; and
so because s3 tests the same set of code at half the execution
time cost. This intuition is supported by Miller’s report [158],
which showed that a 1 percent increase in code coverage
increased the percentage of bugs found by .92 percent. As is
noted in Section 7.2, this step can also be part of ConrUppate,
which is useful for fuzzers introducing new seeds into the
seed pool throughout the campaign.

Fuzzers use a variety of different coverage metrics in
practice. For example, AFL’s minset is based on branch cov-
erage with a logarithmic counter on each branch. The ratio-
nale behind this is to consider branch counts as different
only when they differ in their orders of magnitude. Hon-
ggfuzz [213] computes coverage based on the number of
executed instructions, executed branches, and unique basic
blocks. This metric allows the fuzzer to add longer execu-
tions to the minset, which can help discover denial of ser-
vice vulnerabilities or performance problems.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

3.3 Seed Trimming

Smaller seeds are likely to consume less memory and entail
higher throughput. Therefore, some fuzzers attempt to
reduce the size of seeds prior to fuzzing them, which is
called seed trimming. Seed trimming can happen prior to the
main fuzzing loop in Preprocess or as part of ConeUppate. One
notable fuzzer that uses seed trimming is AFL [241], which
uses its code coverage instrumentation to iteratively remove
a portion of the seed as long as the modified seed achieves
the same coverage. Meanwhile, Rebert et al. [184] reported
that their size minset algorithm, which selects seeds by giv-
ing higher priority to smaller seeds in size, resulted in fewer
unique bugs compared to a random seed selection. For the
specific case of fuzzing Linux system call handlers, Moon-
Shine [173] extends Syzkaller [226] to reduce the size of
seeds while preserving the dependencies between calls
which are detected using a static analysis.

3.4 Preparing a Driver Application

When it is difficult to directly fuzz the PUT, it makes sense
to prepare a driver for fuzzing. This process is largely man-
ual in practice although this is done only once at the begin-
ning of a fuzz campaign. For example, when our target is a
library, we need to prepare for a driver program that calls
functions in the library. Similarly, kernel fuzzers may fuzz
userland applications to test kernels [34], [129], [171]. IoT-
Fuzzer [57] targets IoT devices by letting the driver commu-
nicate with the corresponding smartphone application.

4 SCHEDULING

In fuzzing, scheduling means selecting a fuzz configuration
for the next fuzz iteration. As explained in Section 2.1, the
content of a fuzz configuration depends on the type of the
fuzzer. For simple fuzzers, scheduling can be straightfor-
ward—for example, zzuf [107] in its default mode allows
only one configuration and thus there is simply no decision
to make. But for more advanced fuzzers such as BFF [52]
and AFLFast [40], a major factor to their success lies in their
innovative scheduling algorithms. In this section, we will
discuss scheduling algorithms for black- and grey-box fuzz-
ing only; scheduling in white-box fuzzing requires a com-
plex setup unique to symbolic executors and we refer the
reader to another source [41].

4.1 The Fuzz Configuration Scheduling (FCS)
Problem

The goal of scheduling is to analyze the currently-available
information about the configurations and pick one that is
more likely to lead to the most favorable outcome, e.g., find-
ing the most number of unique bugs, or maximizing the
coverage attained by the set of generated inputs. Funda-
mentally, every scheduling algorithm confronts with the
same exploration versus exploitation conflict—time can either
be spent on gathering more accurate information on each
configuration to inform future decisions (explore), or on
fuzzing the configurations that are currently believed to
lead to more favorable outcomes (exploit). Woo et al. [235]
dubbed this inherent conflict the Fuzz Configuration Sched-
uling (FCS) Problem.

2319

In our model fuzzer (Algorithm 1), the function SchebuLe
selects the next configuration based on (i) the current set of
fuzz configurations C, (ii) the current time t,sq, and (iii)
the total time budget tjmi.. This configuration is then used
for the next fuzz iteration. Notice that Scebuie is only about
decision-making. The information on which this decision is
based is acquired by Preprocess and ConrUppate, which augment
C with this knowledge.

4.2 Black-Box FCS Algorithms

In the black-box setting, the only information an FCS algo-
rithm can use is the fuzz outcomes of a configuration—the
number of crashes and bugs found with it and the amount of
time spent on it so far. Householder and Foote [111] were the
first to study how such information can be leveraged in the
CERT BFF black-box mutational fuzzer [52]. In their work,
they modeled black-box mutational fuzzing as a sequence
of Bernoulli trials. By favoring configurations with higher
observed success probabilities (#unique crashes/#runs),
they demonstrated an increase in the number of unique
crashes found by BFF in a fixed amount of time.

This result was further improved by Woo et al. [235] on
multiple fronts. First, they refined the model to become
Weighted Coupon Collector’s Problem with Unknown Weights
(WCCP/UW), which learns a decaying upper-bound on the
success probability of each trial. Second, they applied multi-
armed bandit (MAB) algorithms to fuzzing, which is a com-
mon coping strategy when faced with the exploration ver-
sus exploitation conflict [37]. Third, they normalized the
success probability of a configuration by the time already
spent in it, thereby preferring the faster configurations.
Fourth, they redefined a fuzz iteration from running a fixed
number of fuzz runs to a fixed amount of time, further
deprioritizing slower configurations.

4.3 Grey-Box FCS Algorithms

In the grey-box setting, an FCS algorithm can choose to use a
richer set of information about each configuration, e.g., the
coverage attained when fuzzing a configuration. AFL [241] is
the forerunner in this category and it is based on an evolu-
tionary algorithm (EA). Intuitively, an EA maintains a popu-
lation of configurations, each with some value of “fitness”.
An EA selects fit configurations and applies them to genetic
transformations such as mutation and recombination to pro-
duce offspring, which may later become new configurations.
The hypothesis is that these produced configurations are
more likely to be fit.

To understand FCS in the context of an EA, we need to
define (i) what makes a configuration fit, (ii) how configura-
tions are selected, and (iii) how a selected configuration is
used. As a high-level approximation, among the configura-
tions that exercise a control-flow edge, AFL considers the
one that contains the fastest and smallest input to be fit
(“favorite” in AFL parlance). AFL maintains a queue of con-
figurations, from which it selects the next fit configuration
essentially as if the queue is circular. Once selected, AFL
allocates more runs to configurations which are fastest and
have a higher branch coverage. From the perspective of
FCS, notice the preference for fast configurations is common
with the black-box setting.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2320

AFLFast by Bohme et al. [40] has improved upon AFL in
all three aspects. To start, it modifies configuration fitness
setting and selection to prioritize exploration of new and
rare paths. Moreover, AFLFast fuzzes a selected configura-
tion a variable number of times as determined by a power
schedule. Its FAST power schedule starts with a small
“energy” value to ensure initial exploration among configu-
rations and increases exponentially up to a limit to quickly
ensure sufficient exploitation. Finally, it also normalizes the
energy by the number of generated inputs that exercise the
same path, thus promoting explorations of less-frequently
fuzzed configurations.

The innovations in AFLFast have been partially inte-
grated in AFL as FidgetyAFL [5]. Zalewski found the largest
improvement of AFLFast was to quickly go over all newly-
added seeds. As such, AFL now spend less time on each
seed. In related works, AFLGo [39] extends AFLFast by
modifying its priority attribution in order to target specific
program locations. Hawkeye [56] further improves directed
fuzzing by leveraging a static analysis in its seed scheduling
and input generation. FairFuzz [141] guides the campaign
to exercise rare branches by employing a mutation mask for
each pair of a seed and a rare branch. QTEP [228] uses static
analysis to infer which part of the binary is more “faulty”
and prioritizes configurations that cover them.

5 INPUT GENERATION

Since the content of a test case directly controls whether or
not a bug is triggered, the technique used for input genera-
tion is naturally one of the most influential design decisions
in a fuzzer. Traditionally, fuzzers are categorized into either
generation- or mutation-based fuzzers [212]. Generation-
based fuzzers produce test cases based on a given model
that describes the inputs expected by the PUT. We call such
fuzzers model-based fuzzers in this paper. On the other hand,
mutation-based fuzzers produce test cases by mutating a
given seed input. Mutation-based fuzzers are generally con-
sidered to be model-less because seeds are merely example
inputs and even in large numbers they do not completely
describe the expected input space of the PUT. In this section,
we explain and classify the various input generation techni-
ques used by fuzzers based on the underlying test case gen-
eration (IneurGen) mechanism. Since, the only input of this
function a configuration conf, as shown in Algorithm 1, it
is based on information collected by Preprocess or ConFUPDATE.

5.1 Model-Based (Generation-Based) Fuzzers
Model-based fuzzers generate test cases based on a given
model that describes the inputs or executions that the PUT
may accept, such as a grammar precisely characterizing the
input format or less precise constraints such as magic values
identifying file types.

5.1.1 Predefined Model

Some fuzzers use a model that can be configured by the user.
For example, Peach [79], PROTOS [124], and Dharma [4] take
in a specification provided by the user. Autodafé [224],
Sulley [19], SPIKE [16], SPIKEfile [211], and LibFuzzer [9],
[12] expose APIs that allow analysts to create their own input
models. Tavor [250] also takes in an input specification

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

written in Extended Backus-Naur form (EBNF) and gener-
ates test cases conforming to the corresponding grammar.
Similarly, network protocol fuzzers such as PROTOS [124],
SNOOZE [32], KiF [15], and T-Fuzz [118] also take in a proto-
col specification from the user. Kernel API fuzzers [119],
[163], [168], [226], [231] define an input model in the form of
system call templates. These templates commonly specify
the number and types of arguments a system call expects
as inputs. The idea of using a model in kernel fuzzing
originated in Koopman et al.’s seminal work [132], where
they compared the robustness of OSes with a finite set of
manually chosen test cases for system calls. Nautilus [25]
employs grammar-based input generation for general-
purpose fuzzing and also uses its grammar for seed trim-
ming (see Section 3.3).

Other model-based fuzzers target a specific language or
grammar, and the model of this language is built into
the fuzzer itself. For example, cross_fuzz [242] and DOM-
fuzz [194] generate random Document Object Model
(DOM) objects. Likewise, jsfunfuzz [194] produces random,
but syntactically-correct JavaScript code based on its own
grammar model. QuickFuzz [97] utilizes existing Haskell
libraries that describe file formats when generating test
cases. Some network protocol fuzzers such as Franken-
certs [44], TLS-Attacker [203], tlsfuzzer [128], and llfuz-
zer [207] are designed with models of specific network
protocols such as TLS and NFC. Dewey et al. [72], [73]
proposed a way to generate test cases that are not only
grammatically correct, but also semantically diverse by
leveraging constraint logic programming. LangFuzz [109]
produces code fragments by parsing a set of seeds that are
given as input. It then randomly combines the fragments
and mutates seeds with the fragments to generate test cases.
Since it is provided with a grammar, it always produces
syntactically-correct code. Whereas LangFuzz was applied
to JavaScript and PHP, BlendFuzz [239] targets XML and
regular expression parsers and is based on similar ideas
as LangFuzz.

5.1.2 Inferred Model

Inferring the model rather than relying on a predefined or
user-provided model has recently been gaining traction.
Although there is an abundance of published research on
the topic of automated input format and protocol reverse
engineering [31], [48], [66], [69], [146], only a few fuzzers
leverage these techniques. Similar to instrumentation
(Section 3.1), model inference can occur in either Preprocess or
ConrUPDATE.

Model Inference in Preprocess. Some fuzzers infer the model
as a preprocessing step. TestMiner [70] searches for the data
available in the PUT, such as literals, to predict suitable
inputs. Given a set of seeds and a grammar, Skyfire [227]
uses a data-driven approach to infer a probabilistic context-
sensitive grammar and then uses it to generate a new set of
seeds. Unlike previous works, it focuses on generating
semantically-valid inputs. IMF [103] learns a kernel API
model by analyzing system API logs, and it produces C
code that invokes a sequence of API calls using the inferred
model. CodeAlchemist [104] breaks JavaScript code into
“code bricks” and computes assembly constraints, which
describe when distinct bricks can be assembled or merged

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

together to produce semantically-valid test cases. These
constraints are computed using both static and dynamic
analyses. Neural [65] and Learn&Fuzz [94] use a neural net-
work-based machine learning technique to learn a model
from a given set of test files and then generate test cases
from the inferred model. Liu et al. [147] proposed a similar
approach that is specific to text inputs.

Model Inference in ConrUppate. Other fuzzers can potentially
update their model after each fuzz iteration. PULSAR [88]
automatically infers a network protocol model from a set of
captured network packets generated from a program. The
learned network protocol is then used to fuzz the program.
PULSAR internally builds a state machine and maps which
message token is correlated with a state. This information is
later used to generate test cases that cover more states in the
state machine. Doupé et al. [76] propose a way to infer the
state machine of a web service by observing the I/O behav-
ior. The inferred model is then used to scan for web vulner-
abilities. The work of Ruiter et al. [187] is similar, but it
targets TLS and bases its implementation on LearnLib [181].
GLADE [33] synthesizes a context-free grammar from a
set of I/O samples and fuzzes the PUT using the inferred
grammar. go-fuzz [225] is a grey-box fuzzer, which builds a
model for each of the seed it adds to its seed pool. This
model is used to generate new inputs from this seed. In order
to help with the limitation of symbolic execution, Shen
et al. [201] use neural networks to solve difficult branch
conditions.

5.1.3 Encoder Model

Fuzzing is often used to test decoder programs which parse a
certain file format. Many file formats have corresponding
encoder programs, which can be thought of as an implicit
model of the file format. MutaGen [127] leverages the
implicit model contained in encoder programs to generate
new test cases. Unlike most mutation-based fuzzers, which
mutate an existing fest case (see Section 5.2) to generate test
cases, MutaGen mutates the encoder program. Specifically, to
produce a new test case MutaGen computes a dynamic pro-
gram slice of the encoder program and runs it. The underly-
ing idea is that the program slices will slightly change the
behavior of the encoder program so that it produces test
cases that are slightly malformed.

5.2 Model-Less (Mutation-Based) Fuzzers

Classic random testing [23], [102] is not efficient in generat-
ing test cases that satisfy specific path conditions. Suppose
there is a simple C statement: 1f (input == 42).If input
is a 32-bit integer, the probability of randomly guessing the
right input value is 1/2%2. The situation gets worse when we
consider well-structured inputs such as MP3 files. Indeed, it
is extremely unlikely that random testing will generate a
valid MP3 file as a test case in any reasonable amount of
time. As a result, the MP3 player will most likely reject the
generated test cases from random testing at the parsing
stage before reaching deeper parts of the program.

This problem motivates the use of seed-based input
generation as well as white-box input generation (see
Section 5.3). Most model-less fuzzers use a seed, which is an
input to the PUT, in order to generate test cases by

2321

modifying the seed. A seed is typically a well-structured
input of a type supported by the PUT: a file, a network
packet, or a sequence of Ul events. By mutating only a
fraction of a valid file, it is often possible to generate a new
test case that is mostly valid, but also contains abnormal
values to trigger crashes of the PUT. There are a variety of
methods used to mutate seeds and we describe the common
ones below.

5.2.1 Bit-Flipping

Bit-flipping is a common technique used by many model-
less fuzzers [8], [106], [107], [213], [241]. Some fuzzers sim-
ply flip a fixed number of bits, while others determine the
number of bits to flip at random. To randomly mutate
seeds, some fuzzers employ a user-configurable parameter
called the mutation ratio, which determines the number of
bit positions to flip for a single execution of IneurGen. To
flip K random bits in a given N-bit seed, the mutation
ratio is K/ N.

SymFuzz [55] showed fuzzing performance is sensitive
to the mutation ratio and there is not a single ratio suitable
for all PUTs. Fortunately, there are several ways to set a
good mutation ratio. BFF [52] and FOE [53] use an exponen-
tially scaled set of mutation ratios for each seed and allocate
more iterations to ratios that proved to be statistically effec-
tive [111]. SymFuzz leverages a white-box program analysis
to infer a good mutation ratio for each seed.

5.2.2 Arithmetic Mutation

AFL [241] and honggfuzz [213] contain another mutation
operation where they consider a selected byte sequence as
an integer and perform simple arithmetic on that value. The
computed value is then used to replace the selected byte
sequence. The key intuition is to bound the effect of muta-
tion by a small number. For example, AFL may select a 4-
byte value from a seed and treat the value as an integer ¢. It
then replaces the value in the seed with ¢ £ 7, where r is a
randomly-generated small integer. The range of r depends
on the fuzzer and is often user-configurable. In AFL, the
default rangeis 0 < r < 35.

5.2.3 Block-Based Mutation

There are several block-based mutation methodologies,
where a block is a sequence of bytes of a seed: (1) insert a
randomly-generated block into a random position of a
seed [9], [241]; (2) delete a randomly-selected block from a
seed [9], [106], [213], [241]; (3) replace a randomly-selected
block with a random value [9], [106], [213], [241]; (4) ran-
domly permute the order of a sequence of blocks [9], [106];
(5) resize a seed by appending a random block [213]; and (6)
take a random block from a seed to insert/replace a random
block of another seed [9], [241].

5.2.4 Dictionary-Based Mutation

Some fuzzers use a set of predefined values with potentially
significant semantic meaning for mutation. For example,
AFL [241], honggfuzz [213], and LibFuzzer [9] use values
such as 0, —1, and 1 when mutating integers. Radamsa [106]
employs Unicode strings and GPF [8] uses formatting char-
acters such as $x and %s to mutate strings [58].

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2322

5.3 White-Box Fuzzers
White-box fuzzers can also be categorized into either
model-based or model-less fuzzers. For example, traditional
dynamic symbolic execution [30], [93], [116], [152], [209]
does not require any model as in mutation-based fuzzers,
but some symbolic executors [91], [129], [179] leverage input
models such as a grammar to guide the symbolic executor.
Although many white-box fuzzers including the seminal
work by Godefroid et al. [93] use dynamic symbolic execu-
tion to generate test cases, not all white-box fuzzers are
dynamic symbolic executors. Some fuzzers [55], [150], [189],
[229] leverage a white-box program analysis to find infor-
mation about the inputs a PUT accepts in order to use it
with black- or grey-box fuzzing. In the rest of this subsec-
tion, we briefly summarize the existing white-box fuzzing
techniques based on their underlying test case generation
algorithm. Note that as we have mentioned in Section 2.2,
we intentionally omit dynamic symbolic executors such as
[49], [54], [63], [92], [198], [218] because their authors did
not explicitly describe their work as a fuzzer.

5.3.1 Dynamic Symbolic Execution

At a high level, classic symbolic execution [42], [112], [130]
runs a program with symbolic values as inputs, which rep-
resents all possible values. As it executes the PUT, it builds
symbolic expressions instead of evaluating concrete values.
Whenever it reaches a conditional branch instruction, it con-
ceptually forks two symbolic interpreters, one for the true
branch and another for the false branch. For every path, a
symbolic interpreter builds up a path formula (or path pred-
icate) for every branch instruction it encountered during an
execution. A path formula is satisfiable if there is a concrete
input that executes the desired path. One can generate con-
crete inputs by querying an SMT solver [160] for a solution
to a path formula. Dynamic symbolic execution is a variant
of traditional symbolic execution, where both symbolic exe-
cution and concrete execution operate at the same time.
Thus, we often refer to dynamic symbolic execution as con-
colic (concrete + symbolic) testing. The idea is that concrete
execution states can help reduce the complexity of symbolic
constraints. An extensive review of the academic literature
of dynamic symbolic execution beyond its application to
fuzzing is out of the scope of this paper. A broader treat-
ment of dynamic symbolic execution can be found in other
sources [20], [192].

Dynamic symbolic execution is slow compared to grey-
box or black-box approaches as it involves instrumenting
and analyzing every instruction of the PUT. To cope with
the high cost, a common strategy has been to narrow its
usage, for instance, by letting the user to specify uninterest-
ing parts of the code [219] or by alternating between
concolic testing and grey-box fuzzing. Driller [209] and
Cyberdyne [95] have shown the usefulness of this technique
at the DARPA Cyber Grand Challenge. QSYM [240] seeks
to improve the integration between grey- and white-box
fuzzing by implementing a fast concolic execution engine.
DigFuzz [249] optimizes the switch between grey- and
white-box fuzzing by first estimating the probability of
exercising each path using grey-box fuzzing. This allows it
to let its white-box fuzzer focus on the paths that are
believed to be most challenging for grey-box fuzzing.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

5.3.2 Guided Fuzzing

Some fuzzers leverage static or dynamic program analysis
techniques to enhance the effectiveness of fuzzing. These
techniques usually involve fuzzing in two phases: (i) a costly
program analysis for obtaining useful information about the
PUT, and (ii) test case generation with the guidance from the
previous analysis. This is denoted in column 6 of Table 1
(p. 6). For example, TaintScope [229] uses a fine-grained taint
analysis to find “hot bytes”, which are the input bytes
that flow into critical system calls or API calls. A similar idea
is presented by other security researchers [78], [114].
Dowser [101] performs a static analysis during compilation
to find loops that are likely to contain bugs based on a heuris-
tic. Specifically, it looks for loops containing pointer derefer-
ences. It then computes the relationship between input bytes
and the candidate loops with a taint analysis. Finally, Dowser
runs dynamic symbolic execution while making only the
critical bytes to be symbolic hence improving performance.
VUzzer [183] and GRT [150] leverage both static and dynamic
analysis techniques to extract control- and data-flow features
from the PUT and use them to guide input generation.
Angora [59] and RedQueen [26] decrease the cost of their
analysis by first running each seed with a costly instrumenta-
tion and using this information for generating inputs which
are run with a lighter instrumentation. Angora improves
upon the “hot bytes” idea by using taint analysis to associate
each path constraint to corresponding bytes. It then performs
a search inspired by gradient descent algorithm to guide its
mutations towards solving these constraints. On the other
hand, RedQueen tries to detect how inputs are used in the
PUT by instrumenting all comparisons and looking for corre-
spondence between their operands and the given input.
Once a match is found, it can be used to solve a constraint.

5.3.3 PUT Mutation

One of the practical challenges in fuzzing is bypassing a
checksum validation. For example, when a PUT computes a
checksum of an input before parsing it, many test cases will
be rejected by the PUT. To handle this challenge, Taint-
Scope [229] proposed a checksum-aware fuzzing technique,
which identifies a checksum test instruction with a taint
analysis and patches the PUT to bypass the checksum vali-
dation. Once they find a program crash, they generate the
correct checksum for the input to generate a test case that
crashes the unmodified PUT. Caballero et al. [47] suggested
a technique called stitched dynamic symbolic execution that
can generate test cases in the presence of checksums.

T-Fuzz [177] extends this idea to efficiently penetrate all
kind of conditional branches. It first builds a set of branches
that can be transformed without modifying the program
logic, dubbed Non-Critical Checks (NCCs). When the fuzz
campaign stops discovering new paths, it picks an NCC,
transforms it and then restarts a fuzz campaign on the mod-
ified PUT. Finally, after a crash has been found with fuzzing
on a modified PUT, T-Fuzz tries to reconstruct it on the orig-
inal PUT with symbolic execution.

6 INPUT EVALUATION

After an input is generated, the fuzzer executes the PUT on
the input and decides what to do with the resulting

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

execution. This process is called input evaluation. Although
the simplicity of executing a PUT is one of the reasons that
makes fuzzing attractive, there are many optimizations and
design decisions related to input evaluation that effect the
performance and effectiveness of a fuzzer. We will explore
these considerations in this section.

6.1 Bug Oracles

The canonical security policy used with fuzz testing consid-
ers every program execution terminated by a fatal signal
(such as a segmentation fault) to be a violation. This policy
detects many memory vulnerabilities since a memory vul-
nerability that overwrites data or code pointer with an
invalid value usually causes a segmentation fault or abort
when it is dereferenced. Moreover, this policy is efficient
and simple because operating systems allow such excep-
tional situations to be trapped by the fuzzer without any
instrumentation. However, the traditional policy of detect-
ing crashes will not detect some memory vulnerability that
has been triggered. For example, if a stack buffer overflow
overwrites a pointer on the stack with a valid memory
address, the program might run to completion with an
invalid result rather than crashing but the fuzzer would not
detect this. As a mitigation, researchers have proposed a
variety of efficient program transformations to detect unsafe
or unwanted program behaviors and abort the program.
These are often called sanitizers [205].

6.1.1 Memory and Type Safety

Memory safety errors can be separated into two classes: spa-
tial and temporal. Spatial memory errors occur when a
pointer is dereferenced outside of the object it was intended
to point to. For example, buffer overflows and underflows
are canonical examples of spatial memory errors. Temporal
memory errors occur when a pointer is accessed after it is
no longer valid. For example, a use-after-free vulnerability,
in which a pointer is used after the memory it pointed to
has been deallocated, is a typical temporal memory error.

Address Sanitizer (ASan) [199] is a fast memory error
detector that instruments programs at compile time. ASan
can detect spatial and temporal memory errors and has an
average slowdown of only 73 percent, making it an attractive
alternative to a basic crash harness. ASan employs a shadow
memory that allows each memory address to be quickly
checked for validity before it is dereferenced, which allows it
to detect many (but not all) unsafe memory accesses, even if
they would not crash the original program. MEDS [105]
improves on ASan by leveraging the large memory space
available on 64-bit platforms to create large chunks of inac-
cessible memory red-zones in-between allocated objects.
These red-zones make it more likely that a corrupted pointer
will point to invalid memory and cause a crash.

SoftBound /CETS [165], [166] is another memory error
detector that instruments programs during compilation.
Rather than tracking valid memory addresses like ASan,
SoftBound /CETS associates bounds and temporal informa-
tion with each pointer and can thus detect all spatial and
temporal memory errors in theory. However, as expected,
this completeness comes with a higher average overhead
of 116 percent [166]. CaVer [138], TypeSan [100] and

2323

HexType [117] instrument programs during compilation so
that they can detect bad-casting in C++ type casting. Bad
casting occurs when an object is cast into an incompatible
type, such as when an object of a base class is cast into a
derived type.

Another class of memory safety protection is Control Flow
Integrity [13], [14] (CFI), which detects control flow transi-
tions at runtime that are not possible in the original pro-
gram. CFI can be used to detect test cases that have illegally
modified the control flow of a program. A recent project
focused on protecting against a subset of CFI violations has
landed in the mainstream gcc and clang compilers [217].

6.1.2 Undefined Behaviors

Languages such as C contain many behaviors that are left
undefined by the language specification. The compiler is
free to handle these constructs in a variety of ways. In many
cases, a programmer may (intentionally or otherwise) write
their code so that it is only correct for some compiler imple-
mentations. Although this may not seem overly dangerous,
many factors can impact how a compiler implements unde-
fined behaviors, including optimization settings, architec-
ture, compiler, and even compiler version. Vulnerabilities
and bugs often arise when the compiler’s implementation
of an undefined behavior does not match the programmer’s
expectation [3], [230].

Memory Sanitizer (MSan) is a tool that instruments pro-
grams during compilation to detect undefined behaviors
caused by uses of uninitialized memory in C and C++ [208].
Similar to ASan, MSan uses a shadow memory that repre-
sents whether each addressable bit is initialized or not.
Memory Sanitizer has approximately 150 percent overhead.
Undefined Behavior Sanitizer (UBSan) [74] modifies pro-
grams at compile-time to detect undefined behaviors.
Unlike other sanitizers which focus on one particular source
of undefined behavior, UBSan can detect a wide variety of
undefined behaviors, such as using misaligned pointers,
division by zero, dereferencing null pointers, and integer
overflow. Thread Sanitizer (TSan) [200] is a compile-time
modification that detects data races. A data race occurs
when two threads concurrently access a shared memory
location and at least one of the accesses is a write. Such bugs
can cause data corruption and can be extremely difficult to
reproduce due to non-determinism.

6.1.3 Input Validation

Testing for input validation vulnerabilities such as XSS
(cross-site scripting) and SQL injection vulnerabilities is a
challenging problem. It requires understanding the behav-
ior of the very complicated parsers that power web brows-
ers and database engines. KameleonFuzz [77] detects
successful XSS attacks by parsing inputs with a real web
browser, extracting the Document Object Model tree, and
comparing it against manually specified patterns which
indicate a successful attack. ©4SQLi [21] uses a similar trick
to detect SQL injections. Because it is not possible to reliably
detect SQL injections from a web application response,
14SQLi uses a database proxy that intercepts communica-
tion between the target web application and the database to
detect whether an input triggered harmful behavior.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2324

6.1.4 Semantic Difference

Semantic bugs are often discovered using a technique called
differential testing [153], which compares the behavior of simi-
lar (but not identical) programs. Several fuzzers [44], [62],
[178] have used differential testing to identify discrepancies
between similar programs, which are likely to indicate a bug.
Jung et al. [122] introduced black-box differential fuzz testing,
which uses differential testing of multiple inputs on a single
program to map mutations from the PUT’s input to its out-
put. These mappings are used to identify information leaks.

6.2 Execution Optimizations

Our model considers individual fuzz iterations to be exe-
cuted sequentially. While the straightforward implementa-
tion of such an approach would simply load the PUT every
time a new process is started at the beginning of a fuzz itera-
tion, the repetitive loading processes can be significantly
reduced. To this end, modern fuzzers provide functionali-
ties that skip over these repetitive loading processes. For
example, AFL [241] provides a fork-server that allows each
new fuzz iteration to fork from an already-initialized pro-
cess. Similarly, in-memory fuzzing is another way to opti-
mize the execution speed as discussed in Section 3.1.3.
Regardless of the exact mechanism, the overhead of loading
and initializing the PUT is reduced over many iterations.
Xu et al. [238] further lower the cost of an iteration by
designing a new system call that replaces fork ().

6.3 Triage

Triage is the process of analyzing and reporting test cases
that cause policy violations. Triage can be separated into
three steps: deduplication, prioritization, and minimization.

6.3.1 Deduplication

Deduplication is the process of pruning any test case from the
output set that triggers the same bug as another test case.
Ideally, deduplication would return a set of test cases in
which each triggers a unique bug.

Deduplication is an important component of most
fuzzers for several reasons. As a practical implementation
manner, it avoids wasting disk space and other resources
by storing duplicate results on the hard drive. As a
usability consideration, deduplication makes it easy for
users to understand roughly how many different bugs
are present and to be able to analyze an example of each
bug. This is useful for a variety of fuzzer users; for exam-
ple, attackers may want to look for only “home run”
vulnerabilities, meaning those that are likely to lead to
reliable exploitation.

There are currently three major deduplication implemen-
tations used in practice: stack backtrace hashing, coverage-
based deduplication, and semantics-aware deduplication.

Stack Backtrace Hashing. Stack backtrace hashing [159]
is one of the oldest and most-widely used methods for
deduplicating crashes. In this method, an automated tool
records a stack backtrace at the time of the crash and
assigns a stack hash based on the contents of that backtrace.
For example, if the program crashed while executing a
line of code in function foo and the call stack was
main -—d — ¢ —b —a— foo (see Fig. 2), then a stack

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

main

n=>5 b

a

foo (crashed %)

Fig. 2. Stack backtrace hashing example.

backtrace hashing implementation with n = 5 would group
that test case with other crashing executions whose back-
trace ended withd — ¢ — b — a — foo.

Stack hashing implementations vary widely, starting
with the number of stack frames that are included in the
hash. Some implementations use one [22], three [159], [235],
five [52], [85], or do not have any limit [127]. Implementa-
tions also differ in the amount of information included from
each stack frame. Some implementations will only hash the
function’s name or address, but other implementations will
hash both the name and the offset or line. Neither option
works well all the time, and so some implementations [85],
[155] produce two hashes: a major and minor hash. The
major hash is likely to group dissimilar crashes together as
it only hashes the function name, whereas the minor hash is
more precise since it uses the function name and line num-
ber and also includes an unlimited number of stack frames.

Although stack backtrace hashing is widely used, it is not
without its shortcomings. The underlying hypothesis of
stack backtrace hashing is that similar crashes are caused by
similar bugs, and vice versa. However, to the best of our
knowledge, this hypothesis has never been directly tested.
There is some reason to doubt its veracity: some crashes do
not occur near the code that caused the crash. For example,
a vulnerability that causes heap corruption might only
cause a crash when an unrelated part of the code attempts
to allocate memory and not when the heap overflow
occurred.

Coverage-based Deduplication. AFL [241] is a popular grey-
box fuzzer that employs an efficient source-code instrumen-
tation to record the edge coverage of each execution of the
PUT and measure coarse hit counts for each edge. As a
grey-box fuzzer, AFL primarily uses this coverage informa-
tion to select new seed files. However, it also leads to a fairly
unique deduplication scheme as well. As described by its
documentation, AFL considers a crash to be unique if either
(i) the crash covered a previously unseen edge, or (ii) the
crash did not cover an edge that was present in all earlier
crashes [245].

Semantics-aware Deduplication. RETracer [68] performs
crash triage based on the semantics recovered from a reverse
data-flow analysis on each crash. Specifically, RETracer
checks which pointer caused the crash by analyzing a crash
dump (core dump) and recursively identifies which instruc-
tion assigned the bad value to it. It eventually finds a func-
tion that has the maximum frame level and “blames” that

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

function. The blamed function is then used to cluster crashes.
Van Tonder et al. [222] leverages Automated Program
Repair [137] techniques to map crashing test cases to bugs as
a function of change in program semantics. This change
approximates fixing the root cause of the bug.

6.3.2 Perioritization and Exploitability

Prioritization, a.k.a. the fuzzer taming problem [61], is the
process of ranking or grouping violating test cases accord-
ing to their severity and uniqueness. Fuzzing has tradition-
ally been used to discover memory vulnerabilities, and in
this context prioritization is better known as determining
the exploitability of a crash. It informally describes the likeli-
hood that a practical exploit could be developed for the vul-
nerability exposed by the test case. Both defenders and
attackers are interested in exploitable bugs. Defenders gen-
erally fix exploitable bugs before non-exploitable ones, and
attackers are interested in exploitable bugs for obvious
reasons.

One of the first exploitability ranking systems was Micro-
soft’s lexploitable [155], which gets its name from the !
exploitable WinDbg command that it provides. !
exploitable employs several heuristics paired with a simpli-
fied taint analysis [170], [192]. It classifies each crash on the
following severity scale: EXPLOITABLE > PROBABLY_EX-
PLOITABLE > UNKNOWN > NOT_LIKELY_EXPLOITABLE,
where > y means that = is more severe than y. Although
these classifications are not formally defined, !exploitable is
informally intended to be conservative and err on the side of
reporting something as more exploitable than it is. For exam-
ple, lexploitable concludes that a crash is EXPLOITABLE if
an illegal instruction is executed, based on the assumption
that the attacker was able to coerce control flow. On
the other hand, a division by zero crash is considered
NOT_LIKELY_EXPLOITABLE.

Since !exploitable was introduced, other similar rule-
based heuristics systems have been proposed, including the
exploitable plugin for GDB [85] and Apple’s CrashWran-
gler [22]. However, their correctness has not been systemati-
cally studied and evaluated yet.

6.3.3 Test Case Minimization

Another important part of triage is fest case minimization.
Test case minimization is the process of identifying
the portion of a violating test case that is necessary to
trigger the violation, and optionally producing a test
case that is smaller and simpler than the original but still
causes a violation. Although test case minimization and
seed trimming (see 3.3, p. 8) are conceptually similar in
that they both aim to reduce the size of an input, they
are distinct because a minimizer can leverage a bug ora-
cle. In fact, many existing minimizers are inspired by
delta debugging [246].

Some fuzzers use their own implementation and algo-
rithms for minimization. BFF [52] includes a minimization
algorithm tailored to fuzzing [110] that attempts to mini-
mize the number of bits that are different from the original
seed file. AFL [241] also includes a test case minimizer
which attempts to simplify the test case by opportunistically
setting bytes to zero and shortening the length of the test

2325

case. Lithium [186] is a general purpose test case minimiza-
tion tool that minimizes files by attempting to remove
“chunks” of adjacent lines or bytes in exponentially-
descending sizes. Lithium was motivated by the compli-
cated test cases produced by JavaScript fuzzers such as
jsfunfuzz [194].

There are also a variety of test case reducers that are not
specifically designed for fuzzing, but can nevertheless be
used on test cases identified by fuzzing. These include for-
mat-agnostic techniques such as delta debugging [246] and
specialized techniques for specific formats such as C-
Reduce [185] for C/C++ files. Although specialized techni-
ques are obviously limited in the types of files they can
reduce, they have the advantage that they can be signifi-
cantly more efficient than generic techniques because they
have an understanding of the grammar of the test cases
they are trying to simplify.

7 CONFIGURATION UPDATING

The ConrUpnate function plays a critical role in distinguishing
the behavior of black-box fuzzers from grey- and white-box
fuzzers. As discussed in Algorithm 1, the ConrUppate function
can modify the set of configurations (C) based on the config-
uration and execution information collected during the cur-
rent fuzzing run. In its simplest form, ConrUppate returns the
C parameter unmodified. Black-box fuzzers do not perform
any program introspection beyond evaluating the bug ora-
cle Oy, and so they typically leave C unmodified because
they do not have any information collected that would
allow them to modify it. However, we are aware that some
fuzzers add violating test cases to the set of seeds. For exam-
ple, BFF [52] calls this feature “crash recycling”.

In contrast, grey- and white-box fuzzers are distin-
guished by their more sophisticated implementations of the
ConeUppate function, which allows them to incorporate new
fuzz configurations or remove old ones that may have been
superseded. ConrUppaTE enables information collected during
one fuzzing iteration to be used by all future iterations. For
example, white-box fuzzers typically create a new fuzz con-
figuration for every new test case produced since they pro-
duce relatively few test cases compared to black- and grey-
box fuzzers.

7.1 Evolutionary Seed Pool Update
An Evolutionary Algorithm (EA) is a heuristic-based
approach that involves bio-inspired evolution mechanisms
such as mutation, recombination, and selection. In the con-
text of fuzzing, an EA maintains a seed pool of promising
individuals (i.e., seeds) that evolves over the course of a
fuzz campaign as new individuals are discovered. Although
the concept of EAs is relatively simple, it forms the basis of
many grey-box fuzzers [9], [226], [241]. The process of
choosing the seeds to be mutated and the mutation process
itself were detailed in Sections 4.3 and 5 respectively.
Arguably, the most important step of an EA is to add
a new configuration to the set of configurations C, which
occurs during the ConrUpbate step of fuzzing. Most EA-
based fuzzers use node or branch coverage as a fitness
function: if a new node or branch is discovered by a test
case, it is added to the seed pool. As the number of

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

2326

reachable paths can be orders of magnitude larger than
the number of seeds, the seed pool is intended to be a
diverse sub-selection of all reachable paths in order to
represent the current exploration of the PUT. Also note
that seed pools of different sizes can have the same cov-
erage (as mentioned in Section 3.2, p. 7).

A common strategy in EA fuzzers is to refine the fitness
function so that it can detect more subtle and granular
indicators of improvements. For example, AFL [241]
refines its fitness function definition by recording the num-
ber of times a branch has been taken. STADS [38] presents
a statistical framework inspired by ecology to estimate
how many new configurations will be discovered if the
fuzz campaign continues. Another common strategy is to
measure the fraction of conditions that are met when
complex branch conditions are evaluated. For example,
LAF-INTEL [134] simply breaks multi-byte comparison
into several branches, which allows it to detect when
a new seed passes an intermediate byte comparison.
LibFuzzer [9], honggfuzz [213], go-fuzz [225], and Steelix
[143] instrument all comparisons and add any test case
that makes progress on a comparison to the seed pool. A
similar idea was also released as a stand-alone instrumen-
tation module for clang [123]. Additionally, Steelix [143]
checks which input offsets influence comparison instruc-
tions. Angora [177] improves the fitness criteria of AFL by
considering the calling context of each branch taken. Deep-
Xplore [176] adapts fuzzing to neural network testing by
using “neuron coverage” as its fitness function.

VUzzer [183] is an EA-based fuzzer whose fitness func-
tion relies on the results of a custom program analysis,
which determines weights for each basic block. Specifi-
cally, VUzzer first uses a built-in program analysis to clas-
sify basic blocks as either normal or error-handling (EH).
For a normal block, its weight is inversely proportional to
the probability that a random walk on the CFG containing
this block visits it according to transition probabilities
defined by VUzzer. This favors configurations exercising
normal blocks deemed rare by the aforementioned random
walk. The weight of EH blocks is negative, which discour-
ages the execution of error handling (EH) blocks. This
assumes that traversing an EH block signals a lower chance
of exercising a vulnerability since bugs often coincide with
unhandled errors.

7.2 Maintaining a Minset

With the ability to create new fuzz configurations comes the
risk of creating too many configurations. A common strat-
egy used to mitigate this risk is to maintain a minset, or a
minimal set of test cases that maximizes a coverage metric.
Minsetting is also used during Preprocess, and is described in
more detail in Section 3.2. Some fuzzers use a variant of
maintaining a minset that is specialized for configuration
updates. As one example, rather than completely removing
configurations that are not in the minset, as Cyberdyne [95]
does, AFL [241] uses a culling procedure to mark minset
configurations as being favorable. Favorable configurations
are given a significantly higher chance of being selected by
the Scuepuee function. The author of AFL notes that “this pro-
vides a reasonable balance between queue cycling speed
and test case diversity” [245].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

8 RELATED WORK

The literature on fuzzing had an early bloom in 2007-2008,
when three trade-books on the subject were published
within the two-year period [82], [212], [214]. These books
took a more practical approach by presenting the different
tools and techniques available at the time and their usages
on a variety of targets. We note that Takanen et al. [214]
already distinguished among black-, white- and grey-box
fuzzers, although no formal definitions were given. Most
recently, [214] had been revised after a decade. The second
edition [215] contained many updates to include modern
tools such as AFL [241] and ClusterFuzz [64].

9 CONCLUDING REMARKS

As we have set forth in Section 1, our goal for this paper is to
distill a comprehensive and coherent view of the modern
fuzzing literature. To this end, we first presented a general-
purpose model fuzzer to facilitate our effort to explain the
many forms of fuzzing in current use. Then, we illustrated a
rich taxonomy of fuzzers using Fig. 1 (p. 5) and Table 1
(p. 6). We explored every stage of our model fuzzer by dis-
cussing the design decisions involved while showcasing the
many achievements by the community at large. It is our
hope that our work can help bring some more uniformity to
future works, particularly in the terminology and in the
presentation of fuzzing algorithms.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful feedback and the developers of BFF for
pointing out a mistake in an earlier draft. This work was
partly supported by (1) an Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) under Grant
No.2019-0-01697, Development of Automated Vulnerability
Discovery Technologies for Blockchain Platform Security
and (2) the Siemens Corporation.

REFERENCES

[1] ~ “Binspector: Evolving a security tool,” 2015. [Online]. Available:
https://blogs.adobe.com/security /2015/05/binspector-
evolving-a-security-tool.html

2] “Cisco secure development lifecycle,” 2018. [Online]. Available:
https://www.cisco.com/c/en/us/about/security-center/
security-programs/secure-development-lifecycle/sdl-process/
validate.html

[3] “Cwe-758: Reliance on undefined, unspecified, or implementa-
tion-defined behavior,” 2019. [Online]. Available: https://cwe.
mitre.org/data/definitions/758.html

[4] “dharma,” 2015. [Online]. Available: https://github.com/
MozillaSecurity /dharma

[5] “Fidgety afl,” 2016. [Online]. Available: https://groups.google.
com/forum/#!topic/afl-users /fOPeb62FZUg

[6] “The fuzzing project,” 2014. [Online]. Available: https://
fuzzing-project.org/software.html

[7]1 “Google chromium security,” 2013. [Online]. Available: https://
www.chromium.org/Home/chromium-security /bugs

[8] “GPF,” 2005. [Online]. Available: http://www.vdalabs.com/
tools/efs_gpf.html

[9] “LibFuzzer,” 2015. [Online]. Available: http://llvm.org/docs/

LibFuzzer.html

“Microsoft Security Development Lifecycle, verification phase,”

2019. [Online]. Available: https://www.microsoft.com/en-us/

sdl/process/verification.aspx

[10]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html
https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/758.html
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma
https://groups.google.com/forum/#!topic/afl-users/fOPeb62FZUg
https://groups.google.com/forum/#!topic/afl-users/fOPeb62FZUg
https://fuzzing-project.org/software.html
https://fuzzing-project.org/software.html
https://www.chromium.org/Home/chromium-security/bugs
https://www.chromium.org/Home/chromium-security/bugs
http://www.vdalabs.com/tools/efs_gpf.html
http://www.vdalabs.com/tools/efs_gpf.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

“Reddit: Jama mayhem, the hacking machine that won darpa’s
cyber grand challenge. ama!” 2016. [Online]. Available: https://
www.reddit.com/r/IAmA/comments/4x9yn3/iama_mayhem
the_hacking machine that won_darpas/

“Structure-aware fuzzing with libFuzzer,” 2019. [Online]. Avail-
able: https://github.com/google/fuzzer-test-suite /blob/master/
tutorial/structure-aware-fuzzing.md

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. ACM Conf. Comput. Commun. Security, 2005,
pp- 340-353.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM
Trans. Inf. Syst. Security, vol. 13, no. 1, pp. 4:1-4:40, 2009.

H. J. Abdelnur, R. State, and O. Festor, “KiF: A stateful sip
fuzzer,” in Proc. Int. Conf. Principles, 2007, pp. 47-56.

D. Aitel, “An introduction to SPIKE, the fuzzer creation kit,” in
Proc. Black Hat USA, 2001.

D. Aitel, “Sharefuzz,” 2001. [Online]. Available: https://
sourceforge.net/projects/sharefuzz/

M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and M. Whittaker,
“Announcing OSS-Fuzz: Continuous fuzzing for open source
software,” Google Testing Blog, 2016. [Online]. Available:
https:/ /testing.googleblog.com/2016/12/announcing-oss-fuzz-
continuous-fuzzing.html

P. Amini, A. Portnoy, and R. Sears, “sulley,” 2012. [Online].
Available: https://github.com/OpenRCE/sulley

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn, “An
orchestrated survey of methodologies for automated software test
case generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978-2001, 2013.
D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan,
“Automated testing for SQL injection vulnerabilities: An input
mutation approach,” in Proc. Int. Symp. Softw. Testing Anal., 2014,
Pp- 259-269.

Apple Inc., “Accessing crashwrangler to analyze crashes for
security implications,” Technical Note TN2334. [Online]. Avail-
able: https://developer.apple.com/library/archive/technotes/
tn2334/ index.html

A. Arcuri, M. Z. Igbal, and L. Briand, “Random testing: Theoreti-
cal results and practical implications,” IEEE Trans. Softw. Eng.,
vol. 38, no. 2, pp. 258-277, Mar./ Apr. 2012.

Ars Technica, “Pwn2own: The perfect antidote to fanboys who
say their platform is safe,” 2014. [Online]. Available: http://
arstechnica.com/security /2014 /03 /pwn2own-the-perfect-
antidote-to-fanboys-who-say-their-platform-is-safe /

C. Aschermann, P. Jauernig, T. Frassetto, A.-R. Sadeghi, T. Holz,
and D. Teuchert, “NAUTILUS: Fishing for deep bugs with
grammars,” in Proc. Netw. Distrib. Syst. Security Symp., 2019.

C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with input-to-state correspondence,” in
Proc. Netw. Distrib. System Security Symp., 2019.

K. W.Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyz-
ing the android permission specification,” in Proc. ACM Conf.
Comput. Commun. Security, 2012, pp. 217-228.

T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with Veritesting,” in Proc. Int. Conf. Softw.
Eng., 2014, pp. 1083-1094.

A. Avizienis,].-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE
Trans. Depend. Secure Comput., vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004.
D. Babic, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proc. Int. Symp.
Softw. Testing Anal., 2011, pp. 12-22.

G. Bai, etal.,, “/AUTHSCAN: Automatic extraction of web auth-
entication protocols from implementations,” in Proc. Netw. Dis-
trib. System Security Symp., 2013.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer,
and G. Vigna, “SNOOZE: Toward a stateful network protocol
fuzzer,” in Proc. Int. Conf. Inf. Security, 2006, pp. 343-358.

O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing
program input grammars,” in Proc. ACM Conf. Program. Language
Design Implementation, 2017, pp. 95-110.

I. Beer, “pwn4fun spring 2014-safari—part II,” 2014. [Online].
Available: http://googleprojectzero.blogspot.com/2014/11/
pwnéfun-spring-2014-safari-part-ii.html

B. Beizer, Black-box Testing: Techniques for Functional Testing of
Software and Systems. Hoboken, NJ, USA: Wiley, 1995.

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

2327

F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proc. USENIX Annu. Tech. Conf., 2005, pp. 41-46.

D. A. Berry and B. Fristedt, Bandit Problems: Sequential Allocation
of Experiments. Amsterdam, The Netherlands: Springer, 1985.

M. Bohme, “STADS: Software testing as species discovery,” ACM
Trans. Softw. Eng. Methodol., vol. 27, no. 2, pp. 7:1-7:52, 2018.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proc. ACM Conf. Comput. Com-
mun. Security, 2017, pp. 2329-2344.

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proc. ACM Conf. Comput.
Commun. Security, 2016, pp. 1032-1043.

E. Bounimova, P. Godefroid, and D. Molnar, “Billions and
billions of constraints: Whitebox fuzz testing in production,” in
Proc. Int. Conf. Softw. Eng., 2013, pp. 122-131.

R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal sys-
tem for testing and debugging programs by symbolic execution,”
ACM SIGPLAN Notices, vol. 10, no. 6, pp. 234-245, 1975.

S. Bratus, A. Hansen, and A. Shubina, “LZfuzz: A fast compres-
sion-based fuzzer for poorly documented protocols,” Dartmouth
College, Hanover, NH, Tech. Rep. TR2008-634, 2008.

C. Brubaker, S. Janapa, B. Ray, S. Khurshid, and V. Shmatikov,
“Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations,” in Proc. IEEE
Symp. Security Privacy, 2014, pp. 114-129.

D. L. Bruening, “Efficient, transparent, and comprehensive run-
time code manipulation,” Ph.D. dissertation, Massachusetts
Institute of Technology, Electrical Engineering and Computer
Science Department, Cambridge, MA, USA, 2004.

A.Budi, D. Lo, L. Jiang, and Lucia, “kb-Anonymity: A model for
anonymized behavior-preserving test and debugging data,” in
Proc. ACM Conf. Program. Language Design Implementation, 2011,
pp- 447-457.

J. Caballero, P. Poosankam, S. McCamant, D. Babi¢, and D. Song,
“Input generation via decomposition and re-stitching: Finding
bugs in malware,” in Proc. ACM Conf. Comput. Commun. Security,
2010, pp. 413-425.

J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary
analysis,” in Proc. ACM Conf. Comput. Commun. Security, 2007,
pp- 317-329.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. USENIX Symp. Operating System Design
Implementation, 2008, pp. 209-224.

Y. Cai and W. Chan, “MagicFuzzer: Scalable deadlock detection
for large-scale applications,” in Proc. Int. Conf. Softw. Eng., 2012,
pp. 606-616.

D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant,
and D. Song, “Transformation-aware exploit generation using a
HI-CFG,” Univ. California, Oakland, CA, Tech. Rep. UCB/
EECS-2013-85, 2013.

CERT, “Basic fuzzing framework,” 2010. [Online]. Available:
https:/ /www.cert.org/vulnerability-analysis/tools/bff.cfm
CERT, “Failure Observation Engine,” 2012. [Online]. Available:
https:/ /www.cert.org/vulnerability-analysis/tools/foe.cfm

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proc. IEEE Symp. Security Privacy,
2012, pp. 380-394.

S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive muta-
tional fuzzing,” in Proc. IEEE Symp. Security Privacy, 2015,
pp. 725-741.

H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu,
“Hawkeye: Towards a desired directed grey-box fuzzer,” in
Proc. ACM Conf. Comput. Commun. Security, 2018, pp. 2095-2108.
J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “IoTFuzzer: Discovering mem-
ory corruptions in IoT through app-based fuzzing,” in Proc.
Netw. Distrib. System Security Symp., 2018.

K. Chen and D. Wagner, “Large-scale analysis of format string
vulnerabilities in debian linux,” in Proc. Workshop Program.
Languages Anal. Security, 2007, pp. 75-84.

P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proc. IEEE Symp. Security Privacy, 2018, pp. 855-869.
T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The ART of test case diversity,” J. Syst. Softw.,
vol. 83, no. 1, pp. 60-66, 2010.

https://www.reddit.com/r/IAmA/comments/4x9yn3/iama_mayhem_the_hacking_machine_that_won_darpas/
https://www.reddit.com/r/IAmA/comments/4x9yn3/iama_mayhem_the_hacking_machine_that_won_darpas/
https://www.reddit.com/r/IAmA/comments/4x9yn3/iama_mayhem_the_hacking_machine_that_won_darpas/
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md
https://sourceforge.net/projects/sharefuzz/
https://sourceforge.net/projects/sharefuzz/
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://github.com/OpenRCE/sulley
https://developer.apple.com/library/archive/technotes/tn2334/_index.html
https://developer.apple.com/library/archive/technotes/tn2334/_index.html
http://arstechnica.com/security/2014/03/pwn2own-the-perfect-antidote-to-fanboys-who-say-their-platform-is-safe/
http://arstechnica.com/security/2014/03/pwn2own-the-perfect-antidote-to-fanboys-who-say-their-platform-is-safe/
http://arstechnica.com/security/2014/03/pwn2own-the-perfect-antidote-to-fanboys-who-say-their-platform-is-safe/
http://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
http://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://www.cert.org/vulnerability-analysis/tools/foe.cfm

2328

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Y. Chen, et al., “Taming compiler fuzzers,” in Proc. ACM Conf.
Program. Language Design Implementation, 2013, pp. 197-208.

Y. Chen, C. Su, C. Sun, S. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Proc. ACM Conf.
Program. Language Design Implementation, 2016, pp. 85-99.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform
for in-vivo multi-path analysis of software systems,” in Proc. Int.
Conf. Architectural Support Program. Languages Operating Syst.,
2011, pp. 265-278.

Chrome Security Team, “Clusterfuzz,” 2012. [Online]. Available:
https:/ /google.github.io/ clusterfuzz/

CIFASIS, “Neural fuzzer,” 2016. [Online]. Available: https://
github.com/CIFASIS/neural-fuzzer

P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: Protocol specification extraction,” in Proc. IEEE Symp.
Security Privacy, 2009, pp. 110-125.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “DIFUZE: Interface aware fuzzing for kernel
drivers,” in Proc. ACM Conf. Comput. Commun. Security, 2017,
pp- 2123-2138.

W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis,
“RETracer: Triaging crashes by reverse execution from partial
memory dumps,” in Proc. Int. Conf. Softw. Eng., 2016, pp. 820-831.
W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz,
“Tupni: Automatic reverse engineering of input formats,” in
Proc. ACM Conf. Comput. Commun. Security, 2008, pp. 391-402.

L. Della Toffola, C. A. Staicu, and M. Pradel, “Saying ‘hi!" is not
enough: Mining inputs for effective test generation,” in Proc. Int.
Conf. Automated Softw. Eng., 2017, pp. 44-49.

J. D. DeMott, R. J. Enbody, and W. F. Punch, “Revolutionizing
the field of grey-box attack surface testing with evolutionary
fuzzing,” in Proc. Black Hat USA, 2007.

K. Dewey,]J. Roesch, and B. Hardekopf, “Language fuzzing
using constraint logic programming,” in Proc. Int. Conf. Auto-
mated Softw. Eng., 2014, pp. 725-730.

K. Dewey,]J. Roesch, and B. Hardekopf, “Fuzzing the rust type-
checker using CLP,” in Proc. Int. Conf. Automated Softw. Eng.,
2015, pp. 482-493.

W. Dietz, P. Li,]J. Regehr, and V. Adve, “Understanding
integer overflow in C/C++,” in Proc. Int. Conf. Softw. Eng., 2012,
pp. 760-770.

B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust
signatures for kernel data structures,” in Proc. ACM Conf.
Comput. Commun. Security, 2009, pp. 566-577.

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the
State: A state-aware black-box web vulnerability scanner,” in
Proc. USENIX Security Symp., 2012, pp. 523-538.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
Evolutionary fuzzing for black-box XSS detection,” in Proc. ACM
Conf. Data Appl. Security Privacy, 2014, pp. 37-48.

D. Duran, D. Weston, and M. Miller, “Targeted taint driven fuzz-
ing using software metrics,” in Proc. CanSecWest Conf., 2011,
pp. 246-261.

M. Eddington, “Peach fuzzing platform,” 2014. [Online]. Avail-
able: http:/ /community.peachfuzzer.com/WhatlsPeach.html

A. Edwards, A. Srivastava, and H. Vo, “Vulcan: Binary tran-
formation in a distributed environment,” Microsoft Research,
Redmond, WA, Tech. Rep. MSR-TR-2001-50, 2001.

S. Embleton, S. Sparks, and R. Cunningham, ““sidewinder”: An
evolutionary guidance system for malicious input crafting,” in
Proc. Black Hat USA, 2006.

G. Evron, N. Rathaus, R. Fly, A. Jenik, D. Maynor, C. Miller,
and Y. Naveh, Open Source Fuzzing Tools. Burlington, MA, USA:
Syngress, 2007.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. ACM Conf. Comput. Commun.
Security, 2011, pp. 627-638.

S. Fewer, “A collection of burpsuite intruder payloads, fuzz lists
and file uploads,” 2015. [Online]. Available: https://github.
com/1N3/IntruderPayloads

J. Foote, “Gdb exploitable,” 2012. [Online]. Available: https://
github.com/jfoote/exploitable

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“CollAFL: Path sensitive fuzzing,” in Proc. IEEE Symp. Security
Privacy, 2018, pp. 660-677.

V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed white-
box fuzzing,” in Proc. Int. Conf. Softw. Eng., 2009, pp. 474-484.

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971]

[98]

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]
[107]
[108]
[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“PULSAR: Stateful black-box fuzzing of proprietary network
protocols,” in Proc. Int. Conf. Security Privacy Commun. Syst., 2015,
pp- 330-347.

GitHub, “Public fuzzers,” 2019. [Online]. Available: https://
github.com/search?q=fuzzing&type=Repositories

P. Godefroid, “Random testing for security: Blackbox versus
whitebox fuzzing,” in Proc. Int. Workshop Random Testing, 2007, p. 1.
P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in Proc. ACM Conf. Program. Language Design
Implementation, 2008, pp. 206-215.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing,” in Proc. ACM Conf. Program. Language
Design Implementation, 2005, pp. 213-223.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated white-
box fuzz testing,” in Proc. Netw. Distrib. System Security Symp.,
2008, pp. 151-166.

P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine
learning for input fuzzing,” in Proc. Int. Conf. Automated Softw.
Eng., 2017, pp. 50-59.

P. Goodman and A. Dinaburg, “The past, present, and future of
cyberdyne,” in Proc. IEEE Symp. Security Privacy, 2018, pp. 61-69.
GrammaTech, “Grammatech blogs: The cyber grand challenge,”
2016. [Online]. Available: http://blogs.grammatech.com/the-
cyber-grand-challenge

G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic
random fuzzer for common file formats,” in Proc. 9th Int. Symp.
Haskell, 2016, pp. 13-20.

J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “DLFuzz: Differen-
tial fuzzing testing of deep learning systems,” in Proc. Int. Symp.
Foundations Softw. Eng., 2018, pp. 739-743.

A.H. H, “Melkor_elf fuzzer,” 2014. [Online]. Available: https://
github.com/IOActive/Melkor ELF Fuzzer

I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. Van Der Kouwe, “TypeSan: Practical type confusion
detection,” in Proc. ACM Conf. Comput. Commun. Security, 2016,
pp. 517-528.

I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for overflows: A guided fuzzer to find buffer
boundary violations,” in Proc. USENIX Security Symp., 2013,
pp- 49-64.

D. Hamlet, “When only random testing will do,” in Proc. Int.
Workshop Random Testing, 2006, pp. 1-9.

H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in
Proc. ACM Conf. Comput. Commun. Security, 2017, pp. 2345-2358.
H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-aware
code generation to find vulnerabilities in javascript engines,” in
Proc. Netw. Distrib. System Security Symp., 2019.

W. Han, B. Joe, B. Lee, C. Song, and I. Shin, “Enhancing memory
error detection for large-scale applications and fuzz testing,” in
Proc. Netw. Distrib. System Security Symp., 2018.

A. Helin, “radamsa,” 2011. [Online]. Available: https:/ /github.
com/aoh/radamsa

S. Hocevar, “zzuf,” 2006. [Online]. Available: https://github.
com/samhocevar/zzuf

G. Hoglund, “Runtime decompilation,” in Proc. Black Hat USA,
2003.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in Proc. USENIX Security Symp., 2012, pp. 445-458.
A. D. Householder, “Well there’s your problem: Isolating the
crash-inducing bits in a fuzzed file,” CERT, Tech. Rep. CMU/
SEI-2012-TN-018, 2012.

A.D. Householder and J. M. Foote, “Probability-based parameter
selection for black-box fuzz testing,” CERT, Tech. Rep. CMU/
SEI-2012-TN-019, 2012.

W. E. Howden, “Methodology for the generation of program test
data,” IEEE Trans. Comput., vol. C, no. 5, pp. 554-560, May 1975.
InfoSec Institute, “Charlie Miller reveals his process for
security research,” 2011. [Online]. Available: http://resources.
infosecinstitute.com/how-charlie-miller-does-research /

V. lozzo, “0-knowledge fuzzing,” in Proc. Black Hat USA, 2010.

S. Jana and V. Shmatikov, “Abusing file processing in malware
detectors for fun and profit,” in Proc. IEEE Symp. Security Privacy,
2012, pp. 80-94.

K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jFuzz: A
concolic whitebox fuzzer for java,” in Proc. 1st NASA Forma Meth-
ods Symp., 2009, pp. 121-125.

https://google.github.io/clusterfuzz/
https://github.com/CIFASIS/neural-fuzzer
https://github.com/CIFASIS/neural-fuzzer
http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/1N3/IntruderPayloads
https://github.com/1N3/IntruderPayloads
https://github.com/jfoote/exploitable
https://github.com/jfoote/exploitable
https://github.com/search?q=fuzzing&type=Repositories
https://github.com/search?q=fuzzing&type=Repositories
http://blogs.grammatech.com/the-cyber-grand-challenge
http://blogs.grammatech.com/the-cyber-grand-challenge
https://github.com/IOActive/Melkor_ELF_Fuzzer
https://github.com/IOActive/Melkor_ELF_Fuzzer
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://github.com/samhocevar/zzuf
https://github.com/samhocevar/zzuf
http://resources.infosecinstitute.com/how-charlie-miller-does-research/
http://resources.infosecinstitute.com/how-charlie-miller-does-research/

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “HexType:
Efficient detection of type confusion errors for c++,” in Proc.
ACM Conf. Comput. Commun. Security, 2017, pp. 2373-2387.

W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and
V. Gulisano, “T-Fuzz: Model-based fuzzing for robustness test-
ing of telecommunication protocols,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation, 2014, pp. 323-332.

D. Jones, “Trinity,” 2006. [Online]. Available: https://github.
com/kernelslacker/trinity

P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized
dynamic program analysis technique for detecting real dead-
locks,” in Proc. ACM Conf. Program. Language Design Implementa-
tion, 2009, pp. 110-120.

R. L. S. Jr., “A framework for file format fuzzing with genetic
algorithms,” Ph.D. dissertation, Univ. Tennessee, 2012.

J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy oracle: A system for finding application leaks
with black box differential testing,” in Proc. ACM Conf. Comput.
Commun. Security, 2008, pp. 279-288.

M. Jurczyk, “CompareCoverage,” 2019. [Online]. Available:
https:/ / github.com/googleprojectzero/CompareCoverage

R. Kaksonen, M. Laakso, and A. Takanen, “Software security
assessment through specification mutations and fault injection,”
in Proc. IFIP TC 6/TC 11 Int. Conf. Commun. Multimedia Security,
2001, pp. 173-183.

A. Kanade, R. Alur, S. Rajamani, and G. Ramanlingam,
“Representation dependence testing using program inversion,”
in Proc. Int. Symp. Foundations Softw. Eng., 2010, pp. 277-286.

A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser exten-
sions,” in Proc. USENIX Security Symp., 2014, pp. 641-654.

U. Kargén and N. Shahmehri, “Turning programs against each
other: High coverage fuzz-testing using binary-code mutation
and dynamic slicing,” in Proc. Int. Symp. Foundations Softw. Eng.,
2015, pp. 782-792.

H. Kario, “tlsfuzzer,” 2015. [Online]. Available: https:/ /github.
com/tomato42 /tlsfuzzer

S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim,
“CAB-Fuzz: Practical concolic testing techniques for COTS oper-
ating systems,” in Proc. USENIX Annu. Tech. Conf., 2017, pp. 689—
701.

J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385-394, 1976.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proc. ACM Conf. Comput. Commun. Security,
2018, pp. 2123-2138.

P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz,
“Comparing operating systems using robustness benchmarks,”
in Proc. Symp. Reliable Distrib. Syst., 1997, pp. 72-79.

J. Koret, “Nightmare,” 2014. [Online]. Available: https://github.
com/joxeankoret/nightmare

lafintel, “Circumventing fuzzing roadblocks with compiler
transformations,” 2016. [Online]. Available: https://lafintel.
wordpress.com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler-transformations /

Z. Lai, S. Cheung, and W. Chan, “Detecting atomic-set seri-
alizability violations in multithreaded programs through active
randomized testing,” in Proc. Int. Conf. Softw. Eng., 2010,
pp. 235-244.

M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“PEBIL: Efficient static binary instrumentation for linux,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2010, pp. 175-183.
C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. Int. Conf. Softw. Eng., 2012, pp. 3-13.

B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in Proc. USENIX Security
Symp., 2015, pp. 81-96.

S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras,
“DELTA: A security assessment framework for software-defined
networks,” in Proc. Netw. Distrib. System Security Symp., 2017.

C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Auto-
matically generating pathological inputs,” in Proc. Int. Symp.
Softw. Testing Anal., 2018, pp. 254-265.

C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proc. Int. Conf.
Automated Softw. Eng., 2018, pp. 475-485.

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]
[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]
[164]

[165]

[166]

[167]

[168]

2329

J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity,
vol. 1, no. 1, 2018, Art. no. 6.

Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state based binary fuzzing,” in Proc. Int. Symp.
Foundations Softw. Eng., 2017, pp. 627-637.

H. Liang, X. Pei, X. Jia, W. Shen, and]J. Zhang, “Fuzzing: State of
the art,” IEEE Trans. Rel., vol. 67, no. 3, pp. 1199-1218, Sep. 2018.
C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-
core compiler fuzzing,” in Proc. ACM Conf. Program. Language
Design Implementation, 2015, pp. 65-76.

Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in Proc. Int. Symp. Foundations Softw. Eng., 2008,
pp- 83-93.

P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proc. Int.
Conf. Softw. Eng., 2017, pp. 643-653.

LMH, S. Grubb, I. van Sprundel, E. Sandeen, and]J. Wilson,
“fsfuzzer,” 2011. [Online]. Available: http:/ /people.redhat.com/
sgrubb/files/fsfuzzer-0.7.tar.gz

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in Proc. ACM Conf. Program. Language Design Implementation,
2005, pp. 190-200.

L. Ma, C. Artho, C. Zhang, H. Sato,]. Gmeiner, and R. Ramler,
“GRT: Program-analysis-guided random testing,” in Proc. Int.
Conf. Automated Softw. Eng., 2015, pp. 212-223.

R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security testing
of android applications on the cloud,” in Proc. Int. Workshop
Autom. Softw. Test, 2012, pp. 22-28.

L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis, “Path-exploration lifting: Hi-fi tests for lo-fi emu-
lators,” in Proc. Int. Conf. Architectural Support Program. Languages
Operating Syst., 2012, pp. 337-348.

W. M. McKeeman, “Differential testing for software,” Digital
Tech. J., vol. 10, no. 1, pp. 100-107, 1998.

D. Mckinney, “antiparser,” 2005. [Online]. Available: http://
antiparser.sourceforge.net/

Microsoft Corporation, “!lexploitable crash analyzer — MSEC
debugger extensions,” 2009. [Online]. Available: https://
msecdbg.codeplex.com

Microsoft Corporation, “Minifuzz,” 2011. [Online]. Available:
https:/ /msdn.microsoft.com/en-us/biztalk/gg675011

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of
the reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12,
pp. 3244, 1990.

C. Miller, “Fuzz by number: More data about fuzzing than you
ever wanted to know,” in Proc. CanSecWest Conf., 2008.

D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation
to find integer bugs in x86 binary linux programs,” in Proc.
USENIX Security Symp., 2009, pp. 67-82.

L. D. Moura and N. Bjerner, “Satisfiability modulo theories:
Introduction and applications,” Commun. ACM, vol. 54, no. 9,
pp. 69-77,2011.

M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in Proc. Netw. Distrib. System Security Symp.,
2018.

C. Mulliner, N. Golde, and].-P. Seifert, “SMS of death: From
analyzing to attacking mobile phones on a large scale,” in Proc.
USENIX Security Symp., 2011, pp. 24-24.

MWR Labs, “KernelFuzzer,” 2016. [Online]. Available: https://
github.com/mwrlabs /KernelFuzzer

G.]J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing.
Hoboken, NJ, USA: Wiley, 2011.

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“SoftBound: Highly compatible and complete spatial memory
safety for C,” in Proc. ACM Conf. Program. Language Design Imple-
mentation, 2009, pp. 245-258.

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“CETS: Compiler enforced temporal safety for C,” in Proc. Int.
Symp. Memory Manage., 2010, pp. 31-40.

NCC Group, “Hodor fuzzer,” 2016. [Online]. Available: https://
github.com/nccgroup/hodor

NCC Group, “Triforce linux syscall fuzzer,” 2016. [Online]. Avail-
able: https:/ /github.com /nccgroup/TriforceLinuxSyscallFuzzer

https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/googleprojectzero/CompareCoverage
https://github.com/tomato42/tlsfuzzer
https://github.com/tomato42/tlsfuzzer
https://github.com/joxeankoret/nightmare
https://github.com/joxeankoret/nightmare
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
http://antiparser.sourceforge.net/
http://antiparser.sourceforge.net/
https://msecdbg.codeplex.com
https://msecdbg.codeplex.com
https://msdn.microsoft.com/en-us/biztalk/gg675011
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer
https://github.com/nccgroup/hodor
https://github.com/nccgroup/hodor
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer

2330

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

N. Nethercote and J. Seward, “Valgrind: a framework for heavy-
weight dynamic binary instrumentation,” in Proc. ACM Conf.
Program. Language Design Implementation, 2007, pp. 89-100.

J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” in Proc. Netw. Distrib. System Security Symp., 2005.
D. Oleksiuk, “Ioctl fuzzer,” 2009. [Online]. Available: https://
github.com/Cr4sh/ioctlfuzzer

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proc. Int. Conf. Softw. Eng.,
2007, pp. 75-84.

S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS
fuzzer seed selection with trace distillation,” in Proc. USENIX
Security Symp., 2018, pp. 729-743.

J. Pan, G. Yan, and X. Fan, “Digtool: A virtualization-based
framework for detecting kernel vulnerabilities,” in Proc. USENIX
Security Symp., 2017, pp. 149-165.

C.-S. Park and K. Sen, “Randomized active atomicity violation
detection in concurrent programs,” in Proc. Int. Symp. Foundations
Softw. Eng., 2008, pp. 135-145.

K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated
whitebox testing of deep learning systems,” in Proc. 26th Symp.
Operating Syst. Principles, 2017, pp. 1-18.

H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by
program transformation,” in Proc. IEEE Symp. Security Privacy,
2018, pp. 917-930.

T. Petsios, A. Tang, S. J. Stolfo, A. D. Keromytis, and S. Jana,
“NEZHA: Efficient domain-independent differential testing,” in
Proc. IEEE Symp. Security Privacy, 2017, pp. 615-632.

V.-T. Pham, M. Bohme, and A. Roychoudhury, “Model-based
whitebox fuzzing for program binaries,” in Proc. Int. Conf. Auto-
mated Softw. Eng., 2016, pp. 543-553.

P. Project, “DynlInst: Putting the performance in high perfor-
mance computing,” 2000. [Online]. Available: http://www.
dyninst.org/

H. Raffelt, B. Steffen, and T. Berg, “LearnLib: A library for
automata learning and experimentation,” in Proc. Int. Workshop
Formal Methods Ind. Critical Syst., 2005, pp. 62-71.

S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory
behave maliciously: Targeted fuzzing of android execution envi-
ronments,” in Proc. Int. Conf. Softw. Eng., 2017, pp. 300-311.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proc.
Netw. Distrib. System Security Symp., 2017.

A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing,” in
Proc. USENIX Security Symp., 2014, pp. 861-875.

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, , and X. Yang,
“Test-case reduction for C compiler bugs,” in Proc. ACM Conf.
Program. Language Design Implementation, 2012, pp. 335-346.

J. Ruderman, “Lithium,” 2008. [Online]. Available: https://
github.com/MorzillaSecurity /lithium /

J. D. Ruiter and E. Poll, “Protocol state fuzzing of tls
implementations,” in Proc. USENIX Security Symp., 2015,
pp- 193-206.

M. Samak, M. K. Ramanathan, and S. Jagannathan, “Synthes-
izing racy tests,” in Proc. ACM Conf. Program. Language Design
Implementation, 2015, pp. 175-185.

P. Saxena, S. Hanna, P. Poosankam, and D. Song, “FLAX:
Systematic discovery of client-side validation vulnerabilities in
rich web applications,” in Proc. Netw. Distrib. System Security
Symp., 2010.

F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf.
System Security, vol. 3, no. 1, pp. 30-50, 2000.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for os kernels,” in
Proc. USENIX Security Symp., 2017, pp. 167-182.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward sym-
bolic execution (but might have been afraid to ask),” in Proc.
IEEE Symp. Security Privacy, 2010, pp. 317-331.

M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster,
A. Fogh, and S. Mangard, “Automated detection, exploitation,
and elimination of double-fetch bugs using modern CPU
features,” in Proc. ACM Symp. Inf., Comput. Commun. Security,
2018, pp. 587-600.

M. Security, “funfuzz,” 2016. [Online]. Available: https:/ /github.
com/MozillaSecurity / funfuzz

[195]
[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]
[211]
[212]
[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]
[221]

[222]

M. Security, “orangfuzz,” 2013. [Online]. Available: https://
github.com/MozillaSecurity / orangfuzz

K. Sen, “Effective random testing of concurrent programs,” in
Proc. Int. Conf. Automated Softw. Eng., 2007, pp. 323-332.

K. Sen, “Race directed random testing of concurrent programs,”
in Proc. ACM Conf. Program. Language Design Implementation,
2008, pp- 11-21.

K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proc. Int. Symp. Foundations Softw. Eng., 2005,
pp- 263-272.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in Proc. USE-
NIX Annu. Tech. Conf., 2012, pp. 309-318.

K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race
detection in practice,” in Proc. Workshop Binary Instrum. Appl.,
2009, pp. 62-71.

S. Shen, S. Shinde, S. Ramesh, A. Roychoudhury, and P. Saxena,
“Neuro-symbolic execution: Augmenting symbolic execution
with neural constraints,” in Proc. Netw. Distrib. System Security
Symp., 2019.

Z. Sialveras and N. Naziridis, “Introducing Choronzon: An
approach at knowledge-based evolutionary fuzzing,” in Proc.
ZeroNights, 2015.

J. Somorovsky, “Systematic fuzzing and testing of tls libraries,” in
Proc. ACM Conf. Comput. Commun. Security, 2016, pp. 1492-1504.
D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert,
G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz, “Periscope: An
effective probing and fuzzing framework for the hardware-os
boundary,” in Proc. Netw. Distrib. System Security Symp., 2019.

D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz, “SoK: Sanitizing for security,” in Proc. IEEE Symp.
Security Privacy, 2019, pp. 1275-1295.

W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI testing
for android applications,” in Proc. Int. Conf. Automated Softw.
Eng., 2017, pp. 27-37.

C. Spensky and H. Hu, “Ll-fuzzer,” 2015. [Online]. Available:
https:/ /github.com/mit-11/LL-Fuzzer

E. Stepanov and K. Serebryany, “MemorySanitizer: Fast detector
of uninitialized memory use in C++,” in Proc. Int. Symp. Code
Generation Optimization, 2015, pp. 46-55.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augment-
ing fuzzing through selective symbolic execution,” in Proc. Netw.
Distrib. System Security Symp., 2016.

M. Sutton, “Filefuzz,” 2005. [Online]. Available: http://osdir.
com/ml/security.securiteam /2005-09 /msg00007.html

M. Sutton and A. Greene, “The art of file format fuzzing,” in Proc.
Black Hat Asia, 2005.

M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnera-
bility Discovery. Reading, MA, USA: Addison-Wesley, 2007.

R. Swiecki and F. Grobert, “honggfuzz,” 2010. [Online]. Avail-
able: https:/ /github.com/google/honggfuzz

A. Takanen, J. D. DeMott, and C. Miller, Fuzzing for Software Secu-
rity Testing and Quality Assurance. Norwood, MA, USA: Artech
House, 2008.

A. Takanen, J. D. DeMott, C. Miller, and A. Kettunen, Fuzzing for
Software Security Testing and Quality Assurance, 2nd ed. Norwood,
MA, USA: Artech House, 2018.

D. Thiel, “Exposing vulnerabilities in media software,” in Proc.
Black Hat EU, 2008.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlings-
son, L. Lozano, and G. Pike, “Enforcing forward-edge control-
flow integrity in gcc & llvm,” in Proc. USENIX Security Symp.,
2014, pp. 941-955.

N. Tillmann and J. De Halleux, “Pex-white box test generation
for NET,” in Proc. Int. Conf. Tests Proofs, 2008, pp. 134-153.

D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped
symbolic execution,” in Proc. Int. Conf. Softw. Eng., 2018,
pp- 350-360.

Trail of Bits, “GRR,” 2016. [Online]. Available: https:/ /github.
com/ trailofbits / grr

R. Valotta, “Taking browsers fuzzing to the next (dom) level,” in
Proc. DeepSec, 2012.

R. van Tonder, J. Kotheimer, and C. Le Goues, “Semantic crash
bucketing,” in Proc. Int. Conf. Automated Softw. Eng., 2018,
pp. 612-622.

https://github.com/Cr4sh/ioctlfuzzer
https://github.com/Cr4sh/ioctlfuzzer
http://www.dyninst.org/
http://www.dyninst.org/
https://github.com/MozillaSecurity/lithium/
https://github.com/MozillaSecurity/lithium/
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/orangfuzz
https://github.com/MozillaSecurity/orangfuzz
https://github.com/mit-ll/LL-Fuzzer
http://osdir.com/ml/security.securiteam/2005-09/msg00007.html
http://osdir.com/ml/security.securiteam/2005-09/msg00007.html
https://github.com/google/honggfuzz
https://github.com/trailofbits/grr
https://github.com/trailofbits/grr

MANES ET AL.: THE ART, SCIENCE, AND ENGINEERING OF FUZZING: A SURVEY

[223]

[224]
[225]
[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]
[245]

[246]

[247]

[248]

[249]

[250]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2021 at 05:21:02 UTC from IEEE Xplore. Restrictions apply.

S. Veggalam, S. Rawat, I. Haller, and H. Bos, “IFuzzer: An evolu-
tionary interpreter fuzzer using genetic programming,” in Proc.
Eur. Symp. Res. Comput. Security, 2016, pp. 581-601.

M. Vuagnoux, “Autodafé: an act of software torture,” in Proc.
Chaos Commun. Congr., 2005, pp. 47-58.

D. Vyukov, “go-fuzz,” 2015. [Online]. Available: https:/ /github.
com/dvyukov/go-fuzz

D. Vyukov, “syzkaller,” 2015. [Online]. Available: https://
github.com/google/syzkaller

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proc. IEEE Symp. Security Privacy,
2017, pp. 579-594.

S. Wang, J. Nam, and L. Tan, “QTEP: Quality-aware test case
prioritization,” in Proc. Int. Symp. Foundations Softw. Eng., 2017,
pp. 523-534.

T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” in Proc. IEEE Symp. Security Privacy, 2010, pp. 497-512.
X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama,
“Towards optimization-safe systems: Analyzing the impact of
undefined behavior,” in Proc. ACM Symp. Operating System
Principles, 2013, pp. 260-275.

V.M. Weaver and D. Jones, “perf fuzzer: Targeted fuzzing of the
perf_event_open() system call,” UMaine VMW Group, 2015.

J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig, “Singularity:
Pattern fuzzing for worst case complexity,” in Proc. Int. Symp.
Foundations Softw. Eng., 2018, pp. 213-223.

S. Winter, C. Sarbu, N. Suri, and B. Murphy, “The impact of fault
models on software robustness evaluations,” in Proc. Int. Conf.
Softw. Eng., 2011, pp. 51-60.

M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator
for the dynamic analysis of android malware,” in Proc. Netw.
Distrib. System Security Symp., 2016.

M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling
black-box mutational fuzzing,” in Proc. ACM Conf. Comput.
Commun. Security, 2013, pp. 511-522.

T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-
guided path exploration in dynamic symbolic execution,” in
Proc. Int. Conf. Dependable Syst. Netw., 2009, pp. 359-368.

D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping,” in
Proc. IEEE Symp. Security Privacy, 2017, pp. 921-937.

W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operat-
ing primitives to improve fuzzing performance,” in Proc. ACM
Conf. Comput. Commun. Security, 2017, pp. 2313-2328.

D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based
framework for fuzz testing programs with grammatical inputs,”
in Proc. ACM Conf. Program. Language Design Implementation,
2012, pp. 1070-1076.

I Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in Proc.
USENIX Security Symp., 2018, pp. 745-762.

M. Zalewski, “American Fuzzy Lop,” 2014. [Online]. Available:
http:/ /lcamtuf.coredump.cx/afl/

M. Zalewski, “Crossfuzz,” 2011. [Online]. Available: https://
lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-
potential-0-day-in.html

M. Zalewski, “New in AFL: persistent mode,” 2015. [Online].
Available: https:/ /lcamtuf.blogspot.com/2015/06 /new-in-afl-
persistent-mode.html

M. Zalewski, “ref fuzz,” 2010. [Online]. Available: http:/ /lcamtuf.
blogspot.com/2010/06/announcing-reffuzz-2yo-fuzzer.html

M. Zalewski, “Technical “whitepaper” for afl-fuzz,” 2014. [Online].
Awvailable: http:/ /lcamtuf.coredump.cx/afl/technical_details.txt
A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2,
pp- 183-200, Feb. 2002.

K. Zetter, “A famed hacker is grading thousands of programs—
and may revolutionize software in the process,” 2016. [Online].
Available: https://goo.gl/LRwaVl

M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform for
secure static binary instrumentation,” in Proc. Int. Conf. Virtual
Execution Environments, 2014, pp. 129-140.

L. Zhao, Y. Duan, H. Yin, and]. Xuan, “Send hardest problems
my way: Probabilistic path prioritization for hybrid fuzzing,” in
Proc. Netw. Distrib. System Security Symp., 2019.

M. Zimmermann, “Tavor,” 2014. [Online]. Available: https://
github.com/zimmski/tavor

2331

Valentin J.M. Manes received the master's
degree from Télécom ParisTech with a speciali-
zation in information security. He is a researcher
at Cyber Security Research Center (CSRC) at
KAIST, Korea. His research interests include
improving bug finding ability in automatic soft-
ware testing.

HyungSeok Han received the BS and MS
degrees from the Korea Advanced Institute of
Science and Technology. He is working toward
the PhD degree at KAIST. His research is mainly
focused on building and evaluating systems that
can automatically find vulnerabilities in programs.
He has developed several systems to find numer-
ous vulnerabilities in large programs such as ker-
nels and browsers.

Choongwoo Han received the BS degree in
computer science and engineering from the
Ulsan National Institute of Science and Technol-
ogy (UNIST), and the MS degree in computer sci-
ence from Korea Advanced Institute of Science
and Technology (KAIST). He worked at NAVER
Corp. where he contributed to security of their
web browser and the development of deep learn-
ing serving platform.

Sang Kil Cha received the PhD degree from the
Electrical & Computer Engineering Department,
Camegie Mellon University. He is an assistant pro-
fessor of Computer Science at Korea Advanced
Institute of Science and Technology. His current
research interests include software security, soft-
ware engineering, and program analysis. He
received an ACM distinguished paper award in
2014. He is currently supervising GoN and KaisH-
ack, which are, respectively, undergraduate and
graduate hacking team at KAIST.

Manuel Egele is an assistant professor at the
Electrical and Computer Engineering Depart-
ment, Boston University (BU). He is a co-director
of the Boston University Security Lab where his
research interests include on practical security of
commodity and mobile systems. He is a member
of the IEEE and the ACM.

Edward J. Schwartz received the PhD degree
from Carnegie Mellon University’s CyLab. He is a
research scientist on CERT/CC’s executable
code analysis team. His dissertation, studied the
performance benefits of explicitly recovering pro-
gram abstractions (e.g., decompiling software)
when performing static binary analysis. At CERT,
he works on a variety of binary analysis projects
in both vulnerability discovery and reverse engi-
neering.

Maverick Woo received the PhD degree in com-
puter science from Carnegie Mellon, in 2009, and
joined CyLab in 2011. He is a systems scientist at
the CyLab Security and Privacy Institute at Car-
negie Mellon University His current research
interests include software security and program
analysis, with a focus on algorithm design and
budget optimization.

https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl/
https://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-0-day-in.html
https://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-0-day-in.html
https://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-0-day-in.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
http://lcamtuf.blogspot.com/2010/06/announcing-reffuzz-2yo-fuzzer.html
http://lcamtuf.blogspot.com/2010/06/announcing-reffuzz-2yo-fuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://goo.gl/LRwaVl
https://github.com/zimmski/tavor
https://github.com/zimmski/tavor

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

