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ABSTRACT The commercialization of automated driving vehicles promotes the development of safer
and more efficient autonomous driving technologies including lane marking detection strategy, which is
considered to be the most promising feature in environmental perception technology. To reduce the tradeoff
between time consumption and detection precision, we propose a real-time lane marking detection method
by using LiDAR point clouds directly. A constrained RANSAC algorithm is applied to select the regions of
interest and filter the background data. Further, a road curb detection method based on the segment point
density is also proposed to classify the road points and curb points. Finally, an adaptive threshold selection
method is proposed to identify lane markings. In this investigation, five datasets are collected from different
driving conditions that include the straight road, curved road, and uphill, to test the proposed method. The
proposed method is evaluated under different performance metrics such as Precision, Recall, Dice, Jaccard
as well as the average detection distance and computation time for the five datasets. The quantitative results
show the efficiency and feasibility of this proposed method.

INDEX TERMS Lane marking detection, point cloud, intensity threshold, curb filtering.

I. INTRODUCTION
Recently, self-driving technologies have receivedmuch atten-
tion due to the several research activities of university-
industry collaboration financed by some reputed companies
such as Waymo [1] and Hyundai [2]. However, the real-
ization of autonomous driving technology is difficult. The
most basic yet important function for an automated vehicle
is environmental perception, because of its direct influence
on both drivers and pedestrians. Various objects need to be
recognized in the procedure of environmental perception,
such as lane markings, pedestrians, and adjacent vehicles.
Similarly, different sensing modalities are used to achieve
autonomous driving, for example, visual and thermal cam-
eras, radars, Light Detection and Ranging (LiDAR) sensors,
and ultrasonic sensors. These sensors are equipped alone or
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combined with others for self-driving vehicles to perceive
the driving environment [3]. Among the many targets that
need to be perceived, precise lane marking detection is of
paramount importance for autonomous vehicles maintain-
ing the advanced driving assistance systems (ADAS), which
directly affects the behaviors of driving. Furthermore, the
accurate identification of lane markings will be helpful for
other transportation applications, such as the localization of
vehicles, mobile mapping technology, and optimization of
routes. Therefore, lane marking detection is the fundamental
feature to develop the autonomous driving system.

Several methods have been proposed to recognize the lane
markings from camera images [4], [5]. However, those meth-
ods show performance degradation in the acquisition of three-
dimensional (3D) information of objects, severe weather
conditions, and non-ideal lighting environments [6]. Radar
sensors can work even under adverse weather conditions
by directly measuring the radial velocity of objects via the
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Doppler effect. However, the data collected by radar sensors
are noisy [7]. The booming of the self-driving industry also
promotes the commercialization of LiDAR sensors, because
of their ability to offer three-dimensional (3D) information
of objects. And more importantly, its operation can continue
under different weather and illumination conditions. How-
ever, the 3D information increases the processing time and
complexity due to the tremendous amount of data, especially
due to the multiple (16/32/64) laser scanning system. In order
to effectively separate the lane marking points from the
LiDAR3Dpoint clouds, road surface points are first extracted
from the raw data, then followed by the differentiation of lane
marking points from road clouds.

Usually, approaches of lane marking extraction from
LiDAR point cloud can be classified into two categories:
two-dimensional (2D) image-based methods, and 3D point
cloud-based methods. The first step of 2D image-based
methods is converting 3D point clouds to 2D images,
then, image processing methods are applied to extract road
point clouds. Georeferenced intensity images were inter-
polated from the road points by Guan et al. [8], using
an extended inverse distance weighted (IDW) interpolation
method, followed by a point-density-basedmultiple threshold
segmentation strategy. Guan et al. [9] generated 2D georefer-
enced feature images (GFI) from 3D road surface points by
using a modified IDW interpolation method. After that, the
weighted neighboring difference histogram-based dynamic
thresholding and multiscale tensor voting algorithms were
used to distinguish lane markings from the GFI image.
Cheng et al. [10] extracted lane markings from threshold-
ing normalized intensity images by using the deep learning
approaches. Ma et al. [11] first segmented road surface from
the raw data by using a revised curb-based road extraction
method, followed by the IDW approach for 2D georeferenced
image generation. Then, a U-shaped capsule-based network
was developed to detect lane markings based on the con-
volutional and deconvolutional capsule strategies. However,
there are some apparent shortcomings of the 2D image-
based methods. The conversion from 3D point clouds to 2D
images requires powerful abilities of computation because
of the immense size of data acquired by a multi-array laser
scanning system and corresponding post-processing. Further-
more, such conversion from 3D point clouds to 2D images
also suffers in high precision loss, which eventually affects
the accuracy of measurement for target objects.

The second type of 3D-based method identifies lane mark-
ings from the original point cloud directly, without the pro-
cedure of synthesizing point clouds to images. Yu et al. [12]
proposed a multisegment thresholding and spatial density fil-
teringmethod to directly extract lanemarkings after the appli-
cation of a curb-based road points segmentation approach.
Yan et al. [13] first eliminated points in the air and organized
useful points to scan lines. Subsequently, road points are
extracted by the utilization of height difference (HD) and
moving least squares line fitting. In the last step, after the
smoothness of intensities by a dynamic windowmedian filter,

the edge detection and edge constraint methodswere operated
to identify lane markings. Jung and Bae [14] differentiated
drivable regions by setting a vertical slope threshold and
discriminated lane markings with higher intensities. Here, the
marking points are extracted by searching a set of parallel
lines with a fixed interval of lane width. However, most of the
methods mentioned previously are used for the generation of
digital maps and thus do not directly focus on autonomous
driving. Therefore, the design features of such algorithms are
quite different in comparison to actual driving conditions. For
example, computational time may not an important factor
for the generation of digital map, which it has paramount
significance for the application in self-driving. Besides, most
proposals are based on the assumption that roads are flat
and straight. However, the detection of roads with slopes or
curvatures would be challenging in practical scenarios.

In this paper, we present a real-time lane marking detec-
tion method for structured roads with few obstructions based
on a LiDAR sensor using point clouds. Five datasets were
collected from different road conditions including slopes or
curvature in shape and investigated thoroughly to verify the
feasibility of the proposed method. Overall, the main contri-
butions of this paper are as follows:

1) The spatial distribution characteristics of roads are
found, which are used to filter background points.

2) A road curb detection algorithm is proposed to classify
curbstone points and road points by using the different
distribution features of road and curbstones.

3) An adaptive threshold selection method is proposed to
distinguish lane marking points from road points by
determining a unique threshold for each scan line.

4) The proposed method is tested on five datasets col-
lected from different road conditions including straight
roads, curved roads, flat roads, and slopes.

The structure of this paper is as follows: Section 2 presents
the features of devices that are used in this research and
a brief overview of five different datasets. Approaches of
road data segmentation, the proposed curb points filtering
and adaptive threshold selection methods are described in
Section 3. Experiments, results, and discussion are concluded
in Section 4. Finally, Section 5 summarizes the conclusion.

II. DEVICES AND DATASETS
A. DEVICES
In general, researchers choose to use a mobile laser scan-
ning system [8], [9], 64-beam LiDAR [15], [16], or at least
32-beam LiDAR [17], [18] to identify lane markings from
point clouds due to its precise 3D information. However, a
16-beam commercial LiDAR is used for this research consid-
ering the cost-effective application. The five datasets are cap-
tured from five different conditions using the RS-LiDAR-16
sensor mounted on a vehicle about 1.5 meters from the
ground, as shown in Fig. 1. As Fig. 1, assume that the origin
of LiDAR is the origin of data, the driving direction of the
vehicle is the positive direction of the X-axis, the left side
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FIGURE 1. The collection devices: a schematic diagram of collection
devices and the RS-LiDAR-16.

of driving is the positive direction of the Y-axis, and the
vertical direction of the XOY plane is the Z-axis. Fig. 1 also
shows the commercial Robosense LiDAR sensor that is used
for this investigation. This LiDAR comprises 16 laser and
detector pairs with a vertical angular resolution of 2◦ from
−15◦ to 15◦ comprising a total vertical field of view of 30◦.
The detection range is from 20 centimeters to 150 meters
long, with a measurement accuracy within ±2 centimeters.
The horizontal field of view is 360◦ with a data rate of
320000 points per second.

B. DATASETS
In this research, five datasets are used to evaluate the perfor-
mance of the proposed method in different scenarios, such
as the straight road, curved road, and uphill, as presented
in Fig. 2. The location of the datasets is in Yubei District,
Chongqing, China, where the university campus is situated.
Road datasets are collected from inside and outside of the
campus area, where each of the roads is a couple of kilometers
long with diverse scenarios. Dataset 1 is a site of a flat straight
road with two white solid lines and a dashed line, while
dataset 2 with two white solid lines and a yellow solid line.
Dataset 3 is acquired where the road is a straight slope with
three white solid lines and one yellow dashed line. The uphill
straight road with two white solid lines and a yellow dashed
line is also included in this dataset, which is dataset 4. And
dataset 5 is a curved and uphill road with twowhite solid lines
and one yellow dashed line. The road slope of dataset 3 is
lower than datasets 4 and 5. The exact length of each road
and the time of collection are not recorded since we only
select 200 frames of data from each dataset. But the number
of frames of each of the five datasets are 390, 547, 664, 260,
and 239 respectively. This study distinguishes white solid
lane markings from 3D point clouds.

III. METHODOLOGY
The workflow of the proposed system is illustrated in Fig. 3.
The road surface points are segmented from LiDAR raw data
using RandomSample Consensus (RANSAC) algorithmwith
a plane model [19]. However, some constraints are added
to the algorithm in this research and will be discussed in a
later section. For the road curb points detection, the rough

FIGURE 2. Five data collection sites: (a) a flat straight road with two
white solid lines and a dashed line, (b) a flat straight road with two white
solid lines and a yellow solid line, (c) a straight uphill with 3 white solid
lines and a yellow dashed line, (d) a straight uphill with two white solid
lines and a yellow dashed line, (e) a curved uphill with two white
solid lines and a yellow dashed line.

FIGURE 3. The workflow of lane marking detection system.

road data points are clustered using the Euclidean clustering
algorithm and further used for curb detection algorithm based
on segment point density. Finally, the proposed adaptive
threshold selection method including refinement strategy is
used to identify lane marking points.

A. REGION-OF-INTEREST-SELECTION
This section introduces those approaches that are adopted to
select the region-of-interest (ROI). This selective operation
will reduce the computational complexity, which eventually
helps to reach the goal of real-time lane marking recogni-
tion. There are mainly two subsections: road surface data
extraction and curb points detection. The segmentation of raw
road point clouds eliminates the majority of useless points,
whereas curb detection classifies curb points and road points.

1) EXTRACTION OF ROAD DATA
It is evident that background filtering is crucial for lane
marking identification, as the marking points are a small
fraction of total point clouds. The RANSAC algorithm is
commonly used to extract road data. However, this method
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fails when there are more points fall on the pedestrian road
than driving road [20]. Therefore, we set some constraints on
the RANSAC algorithm. Based on the coordinate system as
appeared in Fig. 1(a), the passthrough filter with a specific
range of one coordinate is set to either remove or preserve
surrounding objects in one frame of data. According to the
relation between accuracy and distance of target object based
on the user manual of RS-LiDAR-16 [21], the accuracy fluc-
tuates after 70 meters, so the range of the X-axis is set from
−70 m to +70 m. The threshold of the Y-axis is 10 meters.
Then, the original RANSAC algorithm is applied for the ROI
selection. This algorithm is reported as the best shape esti-
mation method due to its consideration of slope parameters.
First, three points are randomly chosen from point clouds
to form a plane model. Then, points that fit this model are
retained as inliers, while others are outliers. The number of
inliers is recorded and compared between different iterations.
In this paper, a distance threshold of 0.07m and iteration
number of 200 are experimentally achieved to filter unwanted
points and preserve useful points as possible. Finally, the best
model is determined by the maximum number of inliers.

So far, the rough road data are extracted from raw LiDAR
data, where the constrained RANSAC algorithm cannot
remove points of road curb. However, the existence of road
curb points will influence lane marking detection, as these
have reflectivity higher than asphalt points.

2) CURB POINTS DETECTION
Generally, roads include both structured and unstructured
data, and lane markings are only present on structured roads.
By observing datasets collected in this study, we found that
points are arranged in fan-shaped scan lines on the structured
road, and the distance between each arc exceeds at least
0.5 meters as shown in Fig. 4(a). Furthermore, roadside data
are dense than road data in a certain horizontal range, which
is again confirm through data characteristics as shown in
Fig. 4(b). Therefore, this statistical feature is used to filter
curb points, and the curb detection algorithm based on seg-
ment point density is proposed to refine the extracted road
points.

In order to detect curb points, road points are classified
into different clusters based on scan lines. Here, points repre-
senting different scan lines are decided by the K dimensional
tree (Kd-tree) structure with Euclidean distance threshold dth
of 0.2 meters. If the radii of neighbor points in a sphere can
satisfy the constraint of,

r =
√
x2 + y2 + z2 < dth (1)

these points are grouped to the same clusters. Later, those
clusters are subdivided to several segments by a fixed length
of segment LS in the Y direction. However, the real length of
a segmentRLS is not equal to LS due to the spatial distribution
characteristic of points. It is determined by,

RLS = ymax − ymin (2)

FIGURE 4. Diagrams of data characteristics: (a) data feature of structured
roads, (b) statistical features.

FIGURE 5. A schematic diagram of the difference between LS and RLS:
blue points are points on one scan line, the distance divided by the
yellow line is LS, and the distance marked by the green line is RLS.

where, ymax and ymin are the maximum and minimum values
of Y within each segment. A more clear explanation of the
difference between LS and RLS is indicated in Fig. 5.
LS divides the entire cluster into several segments. The

density of points within each segment is similar if the segment
belongs to the road. On the contrary, if the segment contains
the road curb, the point density will increase. RLS is the
real length of the segment. This parameter is set because of
the discontinuous distribution of points. Points on the road
are evenly distributed, so the RLS is quite close to the LS.
But for the segment that contains the curb points, points are
concentrated at the location of the curb. So the RLS may be
smaller than the LS. In conclusion, the LS is only responsible
for dividing the data into segments, and the point density
within the segment is actually determined by the RLS.
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After the division of segments, the number of points within
each segment can also be calculated. Therefore, the point
density of each segment can be easily achieved using,

SPD =
segmentsize

RLS
(3)

where, SPD is the segment point density, segmentsize is the
number of points within one segment. Now the mean Mean
and standard deviation of segments SV can be calculated by,

Mean =

∑
SPD
NS

(4)

SV =

√∑
(SPD−Mean)2

NS − 1
(5)

where, NS is the number of segments within each cluster.
According to the 68-95-99.7 (Empirical) Rule or 3-Sigma
Rule, about 68.27%, 95.45% and 99.73% of the values are
lie within one, two and three standard deviations of the
mean, respectively, in a normal distribution [22]. Thus, val-
ues of segment point density beyond the observation range
[Mean − 3 ∗ SV, Mean + 3 ∗ SV] are considered as noises.
Algorithm 1 shows the detail of this procedure.

Algorithm 1 Curb Points Detection
Input: data of each cluster, LC-length of clusters
Output: cloud_road data
1 LS- length of segments = 0.4m, NS- number of
segments, RLS- real length of segments,

2 LMI- minimum limitation, segmentsize- number of
points within each segment,

3 SPD- segment point density, LMA-maximum limitation,
si- current segment number,

4 SV- standard deviation for segments, Mean- mean of
point number for segments

5 for each cluster do
6 NS = (LC/LS)+ 1
7 for si < NS do
8 if points.y ≤ max_y− si ∗LS && points.y

≥ max_y− (si+ 1)∗LS
9 RLS = max_y− min_y
10 SPD = segmentsize/RLS
11 end if
12 end for
13 Mean = (

∑
SPD)/NS

14 SV =
√
(
∑

(SPD−Mean)2)/(NS − 1)
15 LMI = Mean− 3∗SV ,LMA = Mean+ 3∗SV
16 for each segment do
17 if SPD ≥ LMI SPD ≤ LMA
18 add points in this segment to cloud_road data
19 end if
20 end for
21 end for
22 return cloud_road data

FIGURE 6. A comparison before and after the road curb detection: red
points in the first row are rough road; blue points in the second row are
road, and points in red are road curb data.

Fig. 6 shows the comparison result of before and after the
operation of the curb detection algorithm. Here, the red points
in the first row are rough road points. The second row of that
figure indicates the results of the road curb points detection
algorithm. Points in blue are the recognized road points, while
red points are road curb points that will be ignored in the next
procedure of lane marking identification. Therefore, Fig. 6
shows that points representing roadside curbs are successfully
filtered, and road surface data are preserved.

B. LANE MARKING IDENTIFICATION AND REFINEMENT
It is quite usual that the reflectivity of white color objects,
such as roadmarkings, is higher than in black, such as asphalt.
As the lane markings are made of high reflectivity materials,
so the intensity values of lane marking points are higher than
asphalt pavement points. Therefore, those markings can be
identified using the intensity value of such points. However,
intensity information preserved by LiDAR sensors, varies
greatly even in the same longitudinal position between dif-
ferent scan lines because of the influence of distance, angle,
or road geometry [23], as illustrated in Fig. 7(a). In this figure,
X and Y are distance information, Z is the echo intensity. The
positive direction of the X-axis is the driving direction, and
road points are symmetrically distributed along the Y-axis.
There are 6 points with high-intensity values for three scan
lines are marked as A, B, C, D, E, F. Fig. 7(b) is the bird
eye view (BEV) of Fig. 7(a). It can show the positional
relationship of these 6 points more clearly. Y values of points
A, B, and C or the other three points D, E, and F are similar.
However, the difference in intensity values is quite large.
For example, the difference in intensity between A and B
is about 20. So, we can conclude that even in the same
longitudinal position of different scan lines, the intensity
information differs. To solve the above issues, an adaptive
threshold selection method is proposed in this paper, and the
corresponding results show the successful recognition of lane
marking points.

As mentioned in the previous section, curb points are
filtered and pavement points are sorted out based on scan
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FIGURE 7. Intensity distribution: (a) intensity distribution for three
clusters, (b) the BEV of the intensity distribution for three clusters.

lines after implementing constrained RANSAC algorithm
and curb filtering algorithm based on segment point density.
Hence, lane marking points can be distinguished from road
clouds based on their features within each scan line instead
of setting a global threshold [24] or an intensity band [25].
Algorithm 2 shows the detailed description of the proposed
adaptive threshold selection approach. In this method, the
linearity gray transform is first applied to unify intensity
values within each scan line to k: [0, 255] by using (6).

grayvaluej =
(grayscale− 1) ∗ intensityj

max_intensityi
(6)

where, grayvaluej is the transformed gray value of point j,
grayscale equals 256, intensityj is the original intensity value
of point j, max_intensityi is the maximum intensity value of
scan line i. And calculate the global average gray value ave

ave =

clustersizei∑
j=0

grayvaluej

clustersizei
(7)

where clustersizei is the number of points within scan line i.
Count the number numgrayvalue>ave of points with gray values

higher than the global average gray value ave. And calculate
the mean value ave0 of those points.

ave0 =

∑
grayvalue>ave grayvaluej
numgrayvalue>ave

(8)

Then, calculate probabilities pk for each gray level.

pk =
num_k

clustersizei
(9)

where, num_k is the number of points with gray value k within
scan line i. Next, the mean value ave0 is set as the initial
threshold, and the threshold interval is defined as [ave0, 255].
Therefore, the optimum threshold is determined by the fol-
lowing equations

ω1i =

th∑
k=ave0

pk (10)

µ1i =

th∑
k=ave0

kpk

ω1i
(11)

where th is the current threshold, and points in scan line iwith
gray values higher than ave0 will be divided into two classes.
Points with gray values higher than ave0 but smaller than th
are class 1, while points with gray values belong to the range
[th, 255] are class 2. So, ω1i is the probability of class 1 for
scan line i. µ1i is the mean gray value of class 1 for scan line
i. The following equation shows the inter-class variance.

σ 2
i = ω1iσ

2
1i+ω2iσ

2
2i = ω1i (µ1i − µGi)

2
+ω2i (µ2i − µGi)

2

(12)

In this equation, σ 2
i is the inter-class variance of scan line i,

and µGi is the global mean. ω2i is the probability of class 2,
and µ2i is the mean gray value of class 2. They use the same
calculation equations as like class 1, where only the range
of k is different.

The desired threshold is the value of th that maximizes
the inter-class variance. Compared with the original Otsu’s
method [24] that determines the best possible threshold by
stepping through integers from 0 to 255 as potential thresh-
olds, this method reduces the number of calculations by
about 200 for one scan line by using the redefined threshold
selection interval. Besides, the best threshold determined by
this method is more appropriate because of the reduction of
interference from road points with lower gray values.

In addition, to further optimize the results of the adaptive
threshold selection method, the RANSAC algorithm with
a line model is performed to filter noises far away from
lane markings in the driving direction. This approach is
implemented based on the assumption that lane markings are
organized regularly in the shape of straight or curved. The
reason for using a model-based method is that it has good
robustness when the lane markings are worn or blocked by
obstacles [26]–[28].
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Algorithm 2 Adaptive Threshold Selection Algorithm
Input: road_data
Output: cloud_candidate_points
1 grayscale = 256, grayvalue- gray values, clustersize-
number of points within a cluster,

2 max_intensity- maximum intensity, ave- global average
gray value, ave0- mean value,

3 intensity- intensities of points, pk- probability of gray
level k, th- current threshold,

4 �- probability of classes,µ- mean gray values of classes,
threshold- optimal threshold

5 for each cluster do
6 grayvalue= (grayscale− 1)∗intensity/max_intensity
7 ave =

∑clustersize
j=0 grayvalue/clustersize

8 ave0 =
∑

grayvalue>ave grayvalue/numgrayvalue>ave
9 pk = num_k/clustersize
10 for th from ave0 to grayscale do
11 ω1 =

∑th
k=ave0 pk µ1 =

∑th
k=ave0 kpk/ω1

12 ω2=
∑grayscale−1

k=th+1 pk µ2=
∑grayscale−1

k=th+1 kpk/ω2

13 µG =
∑grayscale−1

k=ave0 kpk σ 2
= ω1 (µ1 − µG)

2

+ω2 (µ2 − µG)
2

14 if max σ 2

15 threshold = th
16 end if
17 end for
18 if grayvalue ≥ threshold
19 add point with this grayvalue to cloud_candidate

_points
20 end if
21 end for
22 return cloud_candidate_points

IV. RESULTS AND DISCUSSION
A. REGION-OF-INTEREST
Fig. 8 shows the outcomes of the ROI selection approach that
includes the results of the rough road data with marks of curb
points as well as, the results using the curb filtering algorithm
based on segment point density. Fig. 8(a) shows a frame of
the original point clouds. The extraction of road surface data
and its effect is displayed in Fig. 8(b). After operating the
constraint RANSAC-plane algorithm, rough ground data are
segmented from the whole point clouds. Here, the blue points
are rough road data, while other objects are in red. It is clear
that some curb points still exist as the result of road segmen-
tation as shown in Fig. 8(c). The selected area is enlarged
in a yellow box, where the circles indicate the positions of
road curb points. Subsequently, the curb detection algorithm
based on segment point density is carried out, and results are
presented in Fig. 8(d). At this stage, the ROI selection of point
clouds is completed, and ground points are well prepared for
further processing.

B. QUALITATIVE RESULTS
The application of the adaptive threshold selection method
and its results based on five datasets are presented in Fig. 9.

FIGURE 8. Results based on the ROI selection: (a) original data, (b) rough
road data with curb points in yellow circles (inset shows the zoom-in of
selected points), (c) results of final road data (inset shows the zoom-in of
selected area).

Green, blue, and red points are identified as lane markings,
road, and other objects, respectively. Fig. 9(a) is a sample
of dataset 1, which is collected from an ideal structured
road. It is a double-driving straight road without any slope.
Fig. 9(b) is a sample from dataset 2 which is also collected
from a flat double-driving straight road. The only difference
is that there is a dashed white line in dataset 1 but a yellow
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FIGURE 9. Results of lane marking detection: (a) a sample result of dataset 1, (b) a sample result of dataset 2, (c) a sample result of dataset 3,
(d) a sample result of dataset 4, (e) a sample result of dataset 5.

solid line in dataset 2. Some parts of the white dashed line
are in green. Due to the long gap between each scan line with
data processing frame by frame, dashed lines cannot be fully
recognized. Here, the two white solid lines are identified.
Fig. 9(c) is the result of dataset 3, which is collected from

an incline roadside parking lot with three white solid lines,
which are successfully detected. A result of an uphill road
with two solid lines is drawn in Fig. 9(d). In Fig. 9(e), the
sample of an uphill curved road with two solid lane markings
is presented. The yellow box marks a moving vehicle which
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shows that the proposed method can determine the lane line
points even some parts of lane markings are obscured. The
experimental results justify that the model can successfully
detect lane markings when the majority of lane marking
points are recorded. Overall, the presented results show the
effectiveness of the proposed algorithm of identifying lane
markings under different road conditions.

C. QUANTITATIVE RESULTS
To evaluate the performance of the proposed lane marking
detection algorithm, different performance metrics are inves-
tigated [29]. Here, four coefficients are commonly utilized:
Precision, Recall, Dice, and Jaccard. The following equations
are the corresponding definitions of performance metrics:

Precision represents the fraction of detected marking
points that are true marking points. It reflects the correctness
of the lane marking detection. The definition is as follows:

Precision =
TP

TP+ FP
(13)

where TP is the number of true positive points, which reflects
the detected lane marking points are true lane marking points.
FP is the number of false positive points, which is the detected
lane marking points are actually road points.

Recall signifies the fraction of truly detected marking
points, and it reflects the completeness of the lane marking
detection. It defines as follows:

Recall =
TP

TP+ FN
(14)

where FN is the number of false negative points, whichmeans
that the undetected points are actually lane marking points.

Dice is the harmonic mean of Precision and Recall, and it
quantifies the average performance. It defines as follows:

Dice =
2∗Precision∗Recall
Precision+ Recall

(15)

Jaccard manifests worst case performance. This metric
defines as follows:

Jaccard =
TP

TP+ FP+ FN
(16)

This evaluation is done by manually comparing with
ground truth datasets. The width of lane markings is fixed,
while the distance between two neighboring points is dif-
ferent for each scan line because of the different detection
distances. But still, the number of points representing lane
markings can be calculated. So, we can set different numbers
of the true lane marking points for every scan line. The
program is set to show the number of detected lane marking
points to evaluate the performance metrics. Then the evalua-
tion can be achieved. The quantitative evaluation results are
recorded in Table 1. We select 200 frames of data from every
dataset, randomly. So, this is an average evaluation table for
the five datasets.

As shown in Table 1, the adaptive threshold selection
method achieved Precision of 97.23%, 99.22%, 98.23%,

TABLE 1. Quantitative evaluation results.

FIGURE 10. Histogram of evaluation coefficients for dataset 1: precision,
recall, dice, and Jaccard.

92.56%, and 85.23%; Recall of 84.04%, 81.91%, 87.39%,
90.97%, and 92.55%; Dice of 89.91%, 89.58%, 92.40%,
91.65%, and 88.48%; Jaccard of 82.06%, 81.41%, 85.98%,
84.76%, and 79.91% on the five datasets, respectively. The
average Precision, Recall, Dice, and Jaccard for five datasets
are 94.49%, 87.37%, 90.40% and 82.82%, respectively.

In [29], quantitative results are based on the Dice coef-
ficient and Jaccard index for four datasets, which are as
follows. Dice coefficient: 77.80%, 55.90%, 71.33%, 66.23%,
and Jaccard index are 66.38%, 43.22%, 58.66%, 54.82%.
In comparison, based on our proposed model using five
datasets, the Dice coefficient and Jaccard index are as fol-
lows. Dice coefficient: 89.91%, 89.58%, 92.40%, 91.65%,
88.48%, and Jaccard index: 82.06%, 81.41%, 85.98%,
84.76%, 79.91%. Results of Dice and Jaccard confirm that
the proposed method outperforms the results as appeared
in [29], where a similar 16-beam-LiDAR has been used for
investigation.

The comparison of dataset 1 and dataset 2 shows that white
lines can be detected, even some parts of the dashed line. The
results of dataset 3 clarify that a little slope will enhance the
detection quality of lane markings, compared with the flat
road in dataset 1. But if the slope is too high, as the uphill
in dataset 4, the quality can be affected. The comparison of
results of dataset 5 and dataset 4 shows that the curvature of
roads does influence the quality of detection.

Fig. 10 to Fig. 14 present the histogram of Precision,
Recall, Dice and Jaccard coefficients for the respective five
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FIGURE 11. Histogram of evaluation coefficients for dataset 2: precision,
recall, dice, and Jaccard.

FIGURE 12. Histogram of evaluation coefficients for dataset 3: precision,
recall, dice, and Jaccard.

FIGURE 13. Histogram of evaluation coefficients for dataset 4: precision,
recall, dice, and Jaccard.

datasets. The occurrence frequency is normalized so that the
sum of heights of all bars equals 1.

Table 2 lists the average detection distance of the adaptive
threshold selection method for 200 frames data from every
dataset. Since this method process data frame by frame,

FIGURE 14. Histogram of evaluation coefficients for dataset 5: precision,
recall, dice, and Jaccard.

TABLE 2. Detection distance.

TABLE 3. Computation time.

the detection range shown in Table 2 is the average dis-
tance per frame. The average detection distance for the five
datasets is 47.14 m, 33.52 m, 42.41m, 33.01 m, and 38.31 m,
respectively.

The curb filtering and lane marking identification algo-
rithm proposed in this research is written in C++ and oper-
ated on an Intel Core i5-1035G7 computer in the Linux
system. The computation time of five datasets for extracting
rough road points and detecting lanemarking points are stated
in Table 3. The time used for lane marking detection for the
five datasets is 38.70 ms, 29.07 ms, 31.50 ms, 32.17 ms, and
25.07 ms, respectively. The total running time is no more
than 50ms per frame. This fast response time is quite effective
for lane marking detection especially using LiDAR sensors
in autonomous driving. As stated before, many researchers
used LiDAR to develop digital road maps, and thus the com-
putational time is not a primary factor to consider for their
investigation.

According to the regulations of speed limitation, the max-
imum speed on the expressway cannot exceed 120 km/h,
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which is 33.3 m/s. Therefore, the proposed method could
detect lane markings reach at least 33 mwithin 50 ms. Hence,
the presented results justify the use of the proposed method
for the detection of lane marking in real-time.

However, there are still some opportunities to improve the
presented results such as the full identification of dashed lines
and yellow lines. The quantitative evaluation results still need
to be improved. After all, safety is of paramount importance.
Besides, other markings play a significant role in guiding the
behavior of vehicles as well. Our future direction will focus
on solving these issues.

V. CONCLUSION
An efficient method with real-time operation was proposed
in this research to filter curb points and detect lane markings
on the structured roads from 3D point clouds operated by
cost-effective 16-beam LiDAR. The overall system includes
two sections: ROI selection and lane marking identification.
In the ROI selection, a constrained RANSAC algorithm,
and the newly designed curb detection approach based on
segment point density were applied to achieve the road data
segmentation and refinement. Additionally, in the lane mark-
ing recognition part, an adaptive threshold selection method
was implemented to distinguish marking points from ground
point clouds and reduce the computation time. The proposed
method was tested for five datasets with diverse road condi-
tions as prepared by our research laboratory. Moreover, the
quantitative results were evaluated by performance metrics
like Precision, Recall, Dice, and Jaccard. Here, the average
results for five datasets are 94.49%, 87.37%, 90.40%, and
82.82%, respectively. Also, the average detection range for
a frame is 47.14 m, 33.52 m, 42.41 m, 33.01 m, and 38.31 m,
respectively. In addition, the average computation time is no
more than 50milliseconds per frame, which eventually shows
the efficient operation on a real-time basis of the proposed
method.
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